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ABSTRACT
This paper presents a survey of engine health mon-

itoring systems for commercial aircraft. The state of
practice is explored first, with the purpose of identifying
the shortcomings of current systems. The state of the re-
search to address these shortcomings is them surveyed
to explore the alternatives. Research and monitoring ap-
plications for various other types of engines provide a
good basis for further exploring the topic. This survey
is meant to serve as a precursor to engine health and
monitoring research at the NASA Ames Research Cen-
ter.

ENGINE MONITORING SYSTEMS
Aircraft engines constitute a complex system, re-

quiring adequate monitoring to ensure flight safety and
timely maintenance [28]. Cockpit displays indicate en-
gine performance through vital information such as ro-
tational speeds, engine pressure ratios, exhaust gas tem-
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peratures, etc. Oil supply to critical parts, such as bear-
ings, is vital for safe operation. For monitoring fuel and
oil status, indicators for quantity, pressure, and temper-
ature are used. In addition to these crucial parameters,
vibration is constantly monitored during engine opera-
tion to detect possible unbalance from failure of rotat-
ing parts, or loss of a blade. Any of these parameters
can serve as an early indicator to prevent costly compo-
nent damage and/or catastrophic failure, and thus help
reduce the number of incidents and the cost of main-
taining aircraft engines [55].

To accomplish this demanding task, engine moni-
toring systems (EMS) have become increasingly stan-
dard in the last two decades, in step with advances in
aircraft engines and computer technology. The first Air-
craft Gas Turbine Engine Monitoring System guide was
published by the SAE in 1981 [1]. It provided guide-
lines to airlines and engine manufacturers in their de-
sign and implementation of EMS. The current state of
practice focuses on using some form of EMS on all air-
craft, especially on military aircraft. For commercial
aircraft, routine use of EMS for Engine Health Moni-
toring (EHM) poses challenges, mainly due to the abun-
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dance and ambiguity of the data to interpret, and due to
the high number of false alarms that cause the users’
reluctance to rely on the results. To overcome these
practical problems, researchers have been developing
many other advanced techniques. This paper presents
a survey of the current state of practice and research in
EHM. The purpose of this survey is to identify the cru-
cial needs in the area of engine health monitoring, and
the promising areas of research to resolve the perceived
problems in current practice.

CURRENT STATE OF PRACTICE
Engine performance monitoring, a current trend in

monitoring the gas turbine engine’s day-to-day condi-
tion, is proving to be very effective in providing early
warning information of ongoing or impending failures,
thus reducing unscheduled delays and more serious en-
gine failures. The goal is to have these performance
parameters as a reliable indicator of developing defects
and impending failures that are detected and repaired
during inspection and overhaul. The following is a sum-
mary of the current issues for engine monitoring sys-
tems that are implemented on commercial aircraft en-
gines.

Parameters for Engine Monitoring Systems
The typical parameters that are recommended for

monitoring in aircraft are temperatures (inlet, outside
air, exhaust gas, compressor, turbine, bleed air), pres-
sures (inlet, compressor, discharge, lube oil, bleed
air), oil system (quantity, filters, consumption, debris,
contamination), vibration (rotors, shafts, afterburners,
reduction gears, bearings, transmissions, and acces-
sories), life usage (operating hours, start times, fa-
tigue, stresses, cracks) and additional parameters such
as speeds, fuel flow, throttle position, nozzle position,
and stator position. For commercial aircraft, the main
parameters that are monitored to determine engine per-
formance are: (1) aerodynamic performance: EPR (en-
gine pressure ratio), F/F (fuel flow), RPM (speed), EGT
(exhaust gas temperature), and, throttle position; (2)
mechanical performance: vibration amplitude and oil
consumption.

Data Collection
The current practice for commercial aircraft re-

quires the continuous on-board monitoring of perfor-

mance parameters, and transmission to the ground only
when an exceedance is observed. Even though the data
are collected at a sufficiently high sampling rate during
flight, this data is not stored for further analysis. In-
stead, a single value (e.g., rms value) is transmitted to
the ground personnel for maintenance purposes, in or-
der to detect general trends over a long period of time.
Cockpit instrument readings are taken once a day, or on
every flight during cruise conditions. Recorded data is
processed and compared to “normal” data established
by the manufacturer or operator. One problem with
data collected for commercial aircraft is the low sam-
pling rate due to the high cost of data transmission to
the ground personnel for further analysis (for mainte-
nance, for example). Engine manufacturers are work-
ing on determining whether an on-board diagnosis for
maintenance purposes would be preferable, since the
problem is due to the inability and cost of transmitting
and storing large amounts of data.

Condition Monitoring and Diagnosis
Certain kinds of engine failures will result in spe-

cific changes in the parameters being monitored. Many
airline and engine manufacturing companies work to-
gether to implement engine monitoring and diagnosis
systems to monitor and diagnose a minimum set of pa-
rameters, for known sets of defects, collected over many
years of operation [12, 17, 35, 38, 39, 48, 50, 52, 55].
Official guidelines for implementing such systems have
been around for two decades [2, 3, 4, 5, 6, 7, 8, 9, 10].
Even though these guidelines provide a sufficiently
thorough set of guidelines to implement EMS systems,
commercial aircraft have not achieved an effective en-
gine monitoring status, mainly due to strict FAA regula-
tions, the high cost of implementing such systems, and
the high number of false alarms.

The standard means of monitoring parameters in-
volves the comparison of parameters to reference lev-
els or evaluating shifts through time by trending. Ex-
ceedance monitoring involves the storage of a record of
data whenever an engine operating limit (e.g., speed,
temperature) is exceeded. Operating limits for such
parameters are typically set by engine manufacturers
based on design performance models, and by operators
based on field experience from other airplanes and en-
gines [8]. Limits for vibrational signatures are set by
expected peak vibrational amplitudes at the relevant fre-
quencies and average baseline signatures collected over
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time [2, 10]. Automatic troubleshooting procedures or
expert system diagnostics are used when rules can be
defined adequately, to identify the most probable cause
of the exceedance and estimate the possible damage.
Commercial software packages have been developed in
conjunction with the engine manufacturers to accom-
plish the exceedance detection and diagnosis task, once
the exceedance data has been transferred to the ground
station [8].

The automation of the diagnosis step using the ex-
ceedance and trend data relies on building trend and
baseline signature databases through engine manufac-
turer’s data and through field experience [5]. Expert
system software packages attempt to capture the knowl-
edge of the experts, and provide possible diagnoses to
the operators, in a quick and automated fashion [8].
Commercially developed software packages are avail-
able for use in aircraft monitoring [17].

Perceived Problems in EMS Practice
The current state of practice of EMS is flooded with

problems waiting to be resolved. Many of the prob-
lems result from the strict regulations airlines and en-
gine manufacturers have to follow, and the difficulty
in justifying the cost of implementing such systems for
commercial aircraft. Most of the problems concentrate
on the high number of false alarms. False alarms are
caused by several factors. The main factors that most
researchers focus on are: (1) unreliable feature extrac-
tion algorithms for detection of the relevant failure in-
dicators; (2) insufficient failure knowledge for diagno-
sis of failures with expert systems. Additional issues
contributing to these factors are insufficient sampling
of engine parameters, cost of transmitting the data to
the ground, cost of implementing more elaborate moni-
toring systems, and ambiguity caused by the inadequate
alert-reporting and interactive troubleshooting methods.

CURRENT STATE OF RESEARCH
To address the practical problems for EMS in com-

mercial aircraft, researchers have been searching for
better feature extraction and fault diagnosis methods,
with the purpose of providing a reliable means to moni-
tor and diagnose engine failures. Research in the area of
monitoring aims to find better anomaly detection meth-
ods that discriminate between data characteristics from
an acceptable condition and trends which are associated

with developing faults. The aim of these efforts is to re-
place the standard threshold setting and fault detection
process, by enhancing the feature extraction capabili-
ties. Research in the area of fault diagnosis aims to find
automated diagnosis tools which provide the automatic
generation of more meaningful and accurate fault di-
agnostic information. The efforts tend to move towards
combining the knowledge from standard expert systems
with theoretical knowledge and test-rig information, to
develop more reliable and thorough fault libraries and
classification tools. There are other applications, such
as helicopters and the space shuttle engines, where en-
gine monitoring systems have advanced further than for
commercial aircraft. Experience from these applica-
tions provides valuable insight into the problems and
potential solutions that work to improve the effective-
ness of engine monitoring systems.

Research in Engine Parameter Monitoring
Monitoring systems collect large amounts of data

that are usually analyzed offline. Well-established sta-
tistical methods are still the norm. The implementation
of these methods has grown in sophistication and speed
with increases in computational power [29]. For typi-
cal engine parameters such as temperatures, pressures,
and speeds, exceedances and trends are monitored us-
ing commercially available software packages [19, 54].
If a predefined limit is exceeded, a cockpit caution is
activated, and performance data are recorded for fur-
ther investigation on-ground [19]. Alerts based on ex-
ceedances and trend reporting have provided improved
diagnostic capabilities in commercial and military air-
craft [35]. For vibrational diagnostics, health indicators
are established by means of signal averaging, by gener-
ating component-specific vibration signatures. The idea
is to use a variety of indicators from time-domain (syn-
chronously time-averaged) and frequency-domain sig-
nals, specific to engine components, as well as ampli-
tude and phase modulation signatures [44]. Alerts are
generated when changes in indicator trends exceed the
set thresholds.

Helicopter Health Monitoring One of the most
active areas of research in engine monitoring is in the
development of Health Usage and Monitoring Systems
(HUMS) for helicopters [18, 30, 34, 51, 54]. HUMS
have been implemented on a number of helicopters for
several years, providing valuable in-flight experience to
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determine the success and benefits of implementing an
engine monitoring system on aircraft. While the cost
of implementing such systems is still high, the rate of
failure to detect vital faults using HUMS is decreas-
ing steadily. Benefits due to HUMS include improved
safety and reduced maintenance costs [30, 34].

The HUMS experience provides a valuable testbed
for collecting fault databases and testing the effective-
ness of monitoring systems on helicopters. For ex-
ample, research shows that traditional monitoring sys-
tems (e.g., pressure, temperature, torque) can be en-
hanced by introducing a thorough vibration monitor-
ing tool [18, 45, 57]. Vibration monitoring can en-
hance the capabilities of traditional parameter monitor-
ing techniques, by adding information about vital fail-
ures caused by the rotating components of a jet engine.
Early detection of such indicators is crucial in avoiding
catastrophic failures. For example, damage to one of the
bearings will result in an increase in the amplitude of
vibrational components, and a possible increase in the
temperature measured on the casing around that bear-
ing. As a result, the monitoring of the temperature pa-
rameter, if complemented with the monitoring of bear-
ing vibrations, will result in a more accurate determi-
nation of the severity and cause of failure. In addition,
novel methods to detect fatigue-related cracks are being
developed in the research community to help with the
life usage monitoring of aircraft engines [51, 53, 54].
The goal is to establish a reliable library of fault patterns
and health indicators that will help in assuring more re-
liable discrimination between faults. The detection of
the correct trends and signatures for normal operation
vs. faulty states depends largely upon the ability to ex-
tract the relevant features from the data.

Rocket Engine Monitoring Another very active
area is health monitoring of the Space Shuttle Main En-
gine (SSME) or rocket engines in general. An exam-
ple is using a model-based system for the SSME [27].
Using information from a thermodynamic model of the
engine and using sensor measurements, predictions of
sensor outputs are made and compared with actual out-
put to detect failures. A thorough model for propul-
sion systems is developed in [32] and is applied to the
SSME [33]. In the unmanned spacecraft realm, moni-
toring and control determine the success of the mission.
The critical issue is the type and number of parameters
to be measured to characterize the system’s health. An

example is modeling and monitoring arcjet thrusters us-
ing geometrical parameters, inlet conditions, electrical
parameters and performance parameters [11]. Other
examples, including rocket engine failure detection by
means of system identification, and an implementation
of a diagnostic system using feature extraction algo-
rithms, can be found in [13, 37, 41, 42].

Research in Automated Fault Diagnosis
The traditional means of achieving automated di-

agnosis is by establishing a library of faults, based on
field experience and manufacturer data [8], and using
this knowledge to build an expert system to identify the
potential failure sources. There are commercially avail-
able software packages that are implemented to achieve
this task on aircraft [19, 54]. The reliability of such
packages depends greatly upon the accuracy of faults
identified by experts. Years of accumulation of knowl-
edge is typically necessary to establish all the necessary
rules for engine diagnostics. Even when a good knowl-
edge basis is established, new engines still need to be
tested based on these rules, as variations between en-
gines can cause different fault signatures.

Many of the research efforts focus on establishing
reliable and thorough sets of fault libraries to assure cor-
rect diagnosis [16, 35, 54]. However, the main efforts in
the research community concentrate on improving diag-
nosis reliability by either combining the rule-based di-
agnosis method with other AI techniques, such as neural
networks and fuzzy logic [49, 20], to “learn” the nec-
essary rules, or combining the rules and test data with
theoretical knowledge, based on models of engine per-
formance. A summary of the main methods is provided
below.

Model-based diagnosis Model-based diagnosis
presents a powerful complement to expert systems by
adding to the knowledge database obtained from field
experience and experts. Model-based diagnosis mainly
concentrates on combining theoretical knowledge with
test rig information [47, 49]. Examples of models
are propulsion system modeling [26], finite element
modeling [23], and autoregressive modeling [24]. In
model-based diagnosis, an estimated system model is
compared to a nominal system model. The residual
between the two models provides a measure of the
deviation between the estimated and nominal models,
and is used to make a decision as to whether a failure
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has occurred [40, 47, 49]. An essential requirement
for model-based diagnosis is the development of an
accurate system model. An example is a spectral
model of the plume of the SSME that is used to
monitor the engine by extracting chemical data from
the runtime electromagnetic spectrum and comparing
it with known signatures [13]. Other examples include
a model-based vehicle health monitoring system for
the SSME, an example of military usage monitoring
of fracture-critical parts using modeling, and the
use of model-based reasoning for gas turbine engine
diagnostics [15, 27, 56].

Neural networks-based diagnosis Neural
network-based diagnosis is another means of comple-
menting rule-based diagnosis. Neural network models
can be used instead of traditional models as a means of
providing a nonlinear modeling technique [47]. Neural
network models can also provide a general tool for
classifying test data for comparison to theoretical data
from other models [23, 49]. The main advantage of
neural networks is their ability to learn the faulty and
normal operating signatures from actual test data and
help with the reliable classification of faults in engines,
without requiring detailed system models. However,
a thorough neural-based diagnostic tool requires the
collection of extensive training data, including all
possible fault signatures, to develop the model. One
possible source of training data is from flight tests, as in
the study on helicopter rotor loads [22]. A new method
proposed for training neural nets is the fuzzy learning
rate steepest descent (FSD) method [36], which makes
the training process more efficient. Other examples of
using neural networks for gas turbine engines and for
the SSME are found in [20, 41, 46].

Other AI Techniques for Diagnosis As EHM
has become mainstream, there is a wealth of aircraft
engine monitoring data being collected routinely.
Extracting useful information from these data, for
making better technical and strategic decisions, is the
next challenge. Knowledge discovery in databases
is a data-driven approach that is widely applicable
in many fields of research [21]. For example, de-
cision tree learning is one of the most widely used
methods for inductive inference, which approximates
discrete-valued functions and is capable of learning
disjunctive expressions. The output of the algorithm is

a decision tree describing the data. The central choice
in the algorithm is selecting which attribute to test at
each node. One popular algorithm is ID3 [43], which
grows the tree top-down, at each node selecting the
attribute that best classifies the local training example.
Some other potential knowledge discovery techniques
propose the use of fuzzy cognitive maps [31], fuzzy
belief nets [25], and other soft computing techniques
for diagnostics and prognostics [14]. The methods
make use of whatever data and knowledge is available
to achieve reliable diagnosis in cases where failure
modes are not thoroughly understood for reliable
detection and diagnosis.

CONCLUSIONS AND FUTURE OF EMS
This paper provides a survey of engine health mon-

itoring tools used for monitoring the condition of cru-
cial flight parameters and critical components in com-
mercial aircraft. A survey of guidelines and papers de-
scribing current practice and implementation issues is
first presented. The perceived problems in current prac-
tice are identified based on this survey are, followed
by a survey of the state of the research in the field to
address the shortcomings of current systems. Specifi-
cally, papers are surveyed that address two critical is-
sues: (1) lack of reliable feature extraction tools; (2)
lack of reliable failure diagnosis tools. Research pa-
pers are complemented by practice and research in other
types of engines, such as helicopter engines and rocket
engines. Most of the research ideas focus on developing
improved feature discrimination tools to reduce false
alarms, and developing more reliable fault classification
tools to combine all available knowledge. The future of
EHM systems for commercial aircraft is strongly de-
pendent upon weighing the cost of implementing such
systems versus their longterm benefits. Experience in
other aircraft such as military aircraft, helicopters, and
the space shuttle can be used to prove the benefits of
such systems. Most engine manufacturers are currently
conducting research on the implementation of such sys-
tems, particularly for condition-based maintenance to
reduce maintenance costs.

The survey presented in this paper serves as a pre-
cursor to a group of researchers at the NASA Ames Re-
search Center, Computational Sciences Division. The
purpose of this literature survey is to understand engine
failure modes and engine condition monitoring prob-
lems, and to use this information to develop engine
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monitoring tools that better discriminate between cor-
rect and false alarms, and better diagnose the origin of
faults in engines, in an automated fashion. A more spe-
cific goal is to develop a means to use engine moni-
toring systems to help with engine maintenance deci-
sions, such as scheduling overhaul times and predicting
the remaining life of engine components, by monitor-
ing engine parameters such as temperatures, pressures,
speeds, and vibration. The authors believe that the thor-
ough survey of practical and research information pre-
sented in this paper will help other researchers in the
field of condition monitoring of aircraft engines, prior
initiating such a research program.
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