HW, Exam, Quiz scores posted on Canvas please report any discrepancies.

Single-transistor amplifier circuits

CE amplifier

Intrinsic gain \(\frac{v_o}{v_i} = -G_m R_o \)

\(v_o = -G_m v_i R_o \)

\(\frac{v_o}{v_i} = -G_m R_o \)

\(v_o = -G_m R_o \frac{R_o + R_L}{R_i + R_o + R_L} \)

\(A_{v3} = \frac{-G_m R_o R_L}{R_o + R_L} \frac{R_i}{R_i + R_o + R_L} \)

Voltage amplifier: \(R_e \) large, \(R_o \) low, \(A_v \) large

Short-circuit current gain

\(A_i = \frac{i_o}{i_i} \)

\(i_i = \frac{v_i}{R_i} \)

\(i_o = G_m v_i \Rightarrow \frac{i_o}{i_i} = G_m R_i \)
CE amplifier with emitter degeneration

\[R_i = \frac{v_i}{i_i} = r_k + R_E \left(1 + g_m r_k \beta \right) \]

\[v_E = R_E \left(i_t + g_m v_k \right) \]

\[= R_E \left(i_t + g_m r_k i_t \right) \]

\[= R_E \left(1 + g_m r_k \right) i_t \]

\[v_t = v_k + v_E = r_k i_t + R_E \left(1 + g_m r_k \right) i_t \]

\[R_i = \frac{v_t}{i_t} = r_k + R_E \left(1 + g_m r_k \beta \right) \]

\[R_E \rightarrow (\beta + 1) R_E \quad \text{when seen at the base} \]
\[R_1 = \frac{R_S}{\beta+1} + \frac{r_k}{\beta+1} \]

Resistance reflection rule: base-emitter

\[R_i = r_k + (\beta+1) R_E \]

\[\approx r_k + \beta R_E \quad \text{when } \beta \text{ is large} \]

\[\approx r_k + g_m r_k R_E = r_k \left(1 + g_m R_E \right) \]

\[G_m = \frac{i_o}{v_t} \]

\[i_o = g_m v_k \]

\[v_k = \frac{r_k}{r_k + (\beta+1) R_E} v_t \]

\[G_m = \frac{i_o}{v_t} = \frac{g_m r_k}{r_k + (\beta+1) R_E} \approx \frac{g_m r_k}{r_k + \beta R_E} \]

\[\approx \frac{g_m r_k}{r_k + g_m r_k R_E} = \frac{g_m}{1 + g_m R_E} \]

\[i_t = \frac{v_t}{R_C} + g_m v_k \]

\[v_k = i_t r_k \Rightarrow i_t = \frac{v_k}{r_k} \]

\[v_E = R_E \left(i_t + g_m v_k \right) \]

\[= R_E \left(\frac{v_k}{r_k} + g_m v_k \right) \]

\[v_t R_s + v_k + v_E = 0 = \frac{v_k}{r_k} R_s + v_k + R_E \left(\frac{v_k}{r_k} + g_m v_k \right) \]
\[v_K \left[\frac{R_S}{V_K} + 1 + R_E \left(\frac{1}{V_K} + g_m \right) \right] = 0 \]
\[\Rightarrow v_K = 0 \]

\[u_t = \frac{v_t}{R_C} \Rightarrow R_o = R_C \]

\[R_i = \frac{R_E (1 + g_m R_E)}{R_C} \]

\[G_m = \frac{g_m}{1 + g_m R_E} \]

\[R_o = R_C \]

Recall for a CE stage:
\[A_v = -g_m R_C \]

So the gain is reduced by a factor of \((1 + g_m R_E)\) relative to the CE stage.

The common base (CB) amplifier

\[R_i = \frac{R_K}{\beta + 1} \]