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ABSTRACT
We describe simple software implementations of parameter
embedding (also called continuation and homotopy) algo-
rithms for calculating dc operating points of nonlinear cir-
cuits. Past implementation of homotopy algorithms in in-
dustrial circuit simulators proved that they were viable op-
tions to resolving convergence difficulties when finding cir-
cuits’ dc operating points. These software implementations
involved proprietary circuit simulation tools and sophisti-
cated software implementation of homotopy algorithms. The
implementation described here, relies on commercially avail-
able MATLAB tools. In spite of its simplicity, our imple-
mentation proved powerful enough to solve benchmark non-
linear circuits with multiple dc operating points.

1. INTRODUCTION

Parameter embedding methods are robust and accurate nu-
merical techniques for solving nonlinear algebraic equations
[1], [2]. They can be used to find multiple solutions of equa-
tions that possess more than one solution [3]. A class of
embedding algorithms called probability-one homotopy al-
gorithms that promise global convergence [4] have been im-
plemented in a publicly available software package HOM-
PACK [5]. Past research and implementations of homotopy
algorithms for finding circuit dc operating points indicated
promising results [6]-[11]. These algorithms have been used
to find solutions to highly nonlinear circuits that could not
be simulated [12] using conventional numerical methods.
They are also useful in finding dc operating points of mul-
tistable circuits. The main drawback in using homotopy
methods is their computational intensity. Therefore, they
are most suitable for solving difficult nonlinear problems
where initial solutions are hard to estimate or multiple so-
lutions are desired. For circuits that fall in this category,
homotopy algorithms offer a very attractive alternative.
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We describe here simple software implementations of
homotopy algorithms using the MATLAB software pack-
age [13]. In spite of it simplicity, our implementation proved
powerful enough to solve benchmark nonlinear circuits with
multiple operating points.

2. HOMOTOPY METHODS: BACKGROUND

Homotopy methods are used to solve systems of nonlinear
algebraic equations and can be applied to a large variety of
problems. We are most interested in solving the zero finding
problem

F(x) = 0; (1)

where x 2 Rn, F : Rn ! Rn. (Note that the fixed point
problem can be easily reformulated as a zero finding prob-
lem.)

We create the homotopy function H(x; �) by embed-
ding a parameter � into F(x) and thus obtaining an equa-
tion of higher dimension

H(x; �) = 0; (2)

where � 2 R, H : Rn �R ! Rn. For � = 0,

H(x; 0) = 0 (3)

is an easy equation to solve, and for � = 1,

H(x; 1) = 0 (4)

is the original problem (1). The parameter � is called the
continuation or homotopy parameter.

An example of a homotopy is

H(x; �) = (1� �)G(x) + �F(x): (5)

Hence, H(x; 0) := G(x) = 0 has an easy solution, while
H(x; 1) := F(x) = 0 is our original problem. By follow-
ing solutions of H(x; �) = 0 as � varies from 0 to 1, we
reach the solution to F(x) = 0.



The solutions trace a path known as the zero curve. Var-
ious numerical problems may occur depending on the be-
havior of this curve. One problem occurs if the curve folds
back. At the turning point the values of � decrease as the
path progresses. Increasing � from 0 to 1 results in “losing”
the curve. The difficulty is resolved by making � a function
of a new parameter: the arc length s. This method is known
as the arc length continuation [2], [5].

3. DC OPERATING POINT ANALYSIS

We used homotopy methods to find the dc operating points
of nonlinear circuits. This method of solving equations was
implemented through the use of two software programs. First,
a parser generates the mathematical equations from a de-
scription of the circuit in the commonly used SPICE for-
mat [14], [15]. These equations are then solved by a MAT-
LAB tool [13]. We tested the method by solving Chua’s
four-transistor benchmark circuit [16]. As expected, nine
distinct solutions were found.

3.1. Parser

Implementation of the homotopy method requires that the
set of equations that describe the circuit be specified. Only
for very simple circuits, these equations can be written by
hand. The parser is a C++ program that accepts a SPICE
input file [14], [15], and produces either nodal analysis or
modified nodal analysis [17] circuit equations, as well as
their Jacobian matrices.

We used simple models of nonlinear circuits compo-
nents (diodes and bipolar junction transistors) to demon-
strate the parser correctness. More realistic models could
be implemented by specifying the nonlinear equations that
govern the components’ behavior.

3.2. Solver

There are several approaches to implement homotopy meth-
ods [2]. We opted for algorithms based on the ordinary dif-
ferential equations.

The solution of the equation

H(x(s); �(s)) = 0; (6)

where s is the arc length parameter, is a trajectory

y(s) =

�
�(s)
x(s)

�
: (7)

This trajectory is found by solving the differential equation

d

ds
H(x(s); �(s)) = 0; (8)

with conditions

�(0) = 0; x(0) = a; and k
d�

ds
;
dx

ds
k2= 1: (9)

Differential equation (8) can be written as

P(y) _y :=

�
@H

@�

@H

@x

� �
d�

ds

dx

ds

�
: (10)

We wish to solve
P(y) _y = 0 (11)

for _y. The solution is unique if the extended Jacobian matrix
(8) is of full rank. Conditions (9) define the starting point
for x, the starting value of �, and ensure that the sign and
the magnitude of _y are fixed in the implementation. The
solution _y is found by solving linear differential equation
(11) using standard linear solvers via the QR factorization
algorithm [18].

Once the derivatives are determined, we used the variable-
step predictor-corrector method to find y(s) from its deriva-
tive that were found in the previous step. The method proved
superior to the Runge-Kutta methods that we initially used.

Finally, the “end game” was used to determine the step
size so that the solution to y(s) for � = 1 can be reached. A
cubic spline interpolation of �(s) and a solution to �(s) = 1
(the smallest root that is greater than the current value of s)
were used to predict the next step size. Once � is within the
preselected tolerance, the value of x was assumed to be the
sought solution.

3.3. Example

Nine dc operating points of the four-transistor circuit [16]
shown in Figure 1 were found by using our MATLAB im-
plementation of the homotopy algorithm. Parser was used to
generate modified nodal analysis equations, and the simple
homotopy function An example of a homotopy is

H(x; �) = (1� �)G(x � a) + �F(x); (12)

where G is a diagonal scaling matrix, and a is a starting
vector.

MATLAB can also generate plots of the homotopy paths
for the unknown node voltages and for the currents flowing
through each voltage source. They are shown in Figure 2
and Figure 4, respectively. By zooming in on the path for
an individual node voltage and current, we can see that each
path crosses the vertical line � = 1 nine times. These paths
are shown in Figures 3 and 5.

The results from MATLAB can be compared with so-
lutions from other homotopy methods [11]. Even though
Newton-Raphson method solvers like PSPICE and SPICE
3F5 will calculate only one dc operating point, it is possi-
ble to give PSPICE an initial guess that is close to a desired
solution by using the .NODESET option. In this manner,
by using the MATLAB results as a starting point, we have
found all nine dc operating points.
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Figure 1: Four-transistor circuit that has nine dc operating
points. Circuit parameters: R1 = 1K
, R2 = R3 = 4K
, R4
= 5K
, R5 = R8 = 30K
, R6 = R7 = 0.5K
, R9 = R10 =
10.1K
, R11 = R12 = 4K
, R13 = R14 = 30K
, V1 = 10V,
V2 = 2V, and VCC = 12V.

4. CONCLUDING REMARKS

Our implementation, which employs commercially widely
available software package MATLAB, illustrates that im-
plementations of homotopy algorithms need not necessarily
rely on large numerical solvers or proprietary circuit simula-
tion tools. Furthermore, simple homotopy functions proved
adequate for solving some difficult benchmark circuits. We
successfully used the current implementation to find nine
dc operating points of a benchmark four-transistor circuit.
The accuracy of the results was verified by comparison with
PSPICE solutions and results of other homotopy implemen-
tations.

Our implementation could be made more efficient. It
takes several minutes to calculate the nine solutions and pro-
duce the resulting plot for our example circuit. The speed
of the algorithm and the number of solutions found depend
on the starting point of the homotopy path. One possible
improvement is to use an algorithm to determine a better
starting point, rather than choosing a random value. The al-
gorithm could also be improved to eliminate numerical in-
stability for values of � very close to 1 (the so called “end
game” [19]). Other homotopy mappings could also be im-
plemented.
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Figure 2: Homotopy paths for the fourteen node voltages of
the four-transistor circuit.

0.98 0.99 1 1.01 1.02 1.03 1.04 1.05

2

4

6

8

10

12

Lambda

v 
(1

0)

Figure 3: Closer view of the homotopy path for the voltage
at node 10.
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