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Note Solutions to problem 3 courtesy Prof. Jacob White of MIT.

3 (a) The Local Error (LE) of a multistep method is defined to be the result of plugging
the exact solution z(t) into the multistep equation. In other words, the LE is a measure of
how well the exact solution fits into the multistep method.

Frow class notes we hase  Xn -~ Zu-z _hxuy =0 s @
2 2 )

secound - ovder me\'b\éA with
oY, , dy=o, Ay=-V, b Pe=o, B=-1 Pa=o

(Notre P=2, K=2 ¢ % i = -1)

\=o0
Since meMiod 15 Second ovder
7 LE - ¢ W% U"‘)
where ¢ > W)y B )T
Lt (-
3 - -‘;—\ (Z )+ 3 )

Az 0 =0

T N A copa2)* |

= lé[ —_\i(—8> +5(-|)J = 15(4—3) =_|€
o LE = |_'\; X (bn)

(b)
Consider that the stability polynomial for the midpoint formula is

22 — 2h)z — 1.

Its two roots z are
z1i2=hA £ \/1 + (hA)2

and for any real hA < 0 one root is always outside the unit circle (|z;| > 1).

No matter how small the timestep is, if Re(\) # 0, hA will not lie in the region of absolute
stability and that could lead you to think that the midpoint formula is not convergent.
However, this is not the case. We saw in part (a) that the formula is consistent and clearly
the roots as h — 0 are

212 = +1
which are simple on the unit disk. Therefore, the midpoint formula is convergent, which
means that if you shrink the timestep enough you will eventually converge.




(c,d)

The plots obtained with the midpoint formula using, respectively, h = 2,h = 0.5 and
h = 0.1, applied to the given problem are shown in Figures 1, 2 and 3. As can be seen
from the plots the method is unstable for finite A. As A — 0, however, the instability
weakens, as we expect, since the method is in fact stable as A — 0, thus convergent.

Study this example until you understand the meaning of convergence, and the difference
between small-h stability and time-stability!
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Figure 1: Solution obtained using the midpoint formula, for A = 2.
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Figure 3: Solution obtained using the midpoint formula, for A = 0.1.
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Reglon of Absolute Stablllty
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