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Linear Multistep Methods — Stability

p

Z:(xixmi +hB,x, ; =0; Testproblemix(t) = Ax(t),x(0) = 1 (1)
i=0 dt

p p
Z(qi + BihA)xn—i = Z(qi + cBi )xn—i =0 (2)
i-0 i-0

* A method is stable if all solutions of the
associated difference equation (2) obtained by
setting =0 remain bounded as n—®

* The region of absolute stability of a method is
the set of 6 (complex) such that all solutions of
(2) remain bounded as n—w

* Note: A method is stable if its region of absolute
stability contains the origin, i.e., =0

Stability

The region of absolute stability of a method is the set of o such

P .
that all the roots of Z(O(i +0B,)z"" =0 are inside or on the complex
i=0

unit circle, i.e., |z <1, and the roots for which |z| = 1are of multiplicity 1

A method is A-stable if the region of absolute stability
contains the entire left-half plane (Re(c)<0)
TR is an A-stable method

Im(z)i ‘ Im(c)
-1 | 1 Re(z) ‘ Re(o)

Stability

+ Each method is associated with two
polynomials of coefficients o and B:

= o associated with past function values (x,,;)
= 3: associated with past derivative values (X))

« Stability: roots of a polynomial must satisfy
|z]<1 and be of multiplicity 1 for |z|=1

* Absolute stability: roots of (a+ ofj)
polynomial must satisfy |z|<1 and be of
multiplicity 1 for |z|=1

From: A. Nardi

Stability and Region of Absolute Stability

p _ As h—0, roots move
roots of > a,z"" =0 Im inside or on the unit

i=0 circle to match the a
\\ polynomial
\1 /f

-1 \+ Y1 Re

p .
roots of Y _(a, +0p,)z*" =0 forh>0

i=0 From: A. Nardi




FE Region of Absolute Stability

Forward Euler z=1+0

Im(c)

ODE stability
In|1(z) region

ifference Eqn Region o

BE Region of Absolute Stability

Backward Euler z=——
Im(c)

Im(z)

Diff
T sabiyregon o) T X Sl 1 Re(©) — Shniny gon ¥ Re(2)
Region of
| | Absolute Re(CT)

Stability

From: A. Nardi From: A. Nardi
e Finding the Region of Absolute Stabilit
L-Stability g g y

* An A-stable method is L-stable if Re(A)<0
implies limx_ =0forallx,,

h—wo

Consider TRRe(A) <0:x, - X, —h()'(n +X,,)=0

(1 - A—h)xn - (1 + Ahij =0
2 2

Ah
1+ — X(t
[+2j (t)

=X, =——%<X, = limx, =—x,.
(1 — &j ! ho 1 Xn-1 Xn+1
2 \
i.e., there is ringing

| tn-1\t// tn+1 \ t

TR in not an L-stable method n

(1+ 0B, )z° +(a, + 0B, )2*" +...(up +o[3p): 0
For what values of ¢ do all the p roots of this polynomial
satisfy the stability condition?

zP +a.2” "+, +0(Boz'° +B,z"" +...+|3p)= 0
Methods
1. Choose o, compute roots, test, repeat for all c (BAD)
2. Solve for 6=-Py(z)/Pp(z)

P(z)=2"+az2""+. .a,

Po(2)=B,z° +B.Zz° " +...B,
ENEZ;’Z < 1} andlet zvaryin|z/<1

r4

D

Consider S = {oc =—

May get same o values for two or more different z’s,
one with |z|<1 and one with |z|>1

= S is a superset of the region of absolute stability




Boundary Locus I'_
Boundarylocus T is the contour—P"—(z)when z|=1,i.e.,,z=¢",
Py (z)

0<0<2m.Itis amap from the z-plane to the o -plane

Basic Results from Theory of Complex Variables

» Mapping is conformal, i.e., angle preserving

', separates the o-plane into disjoint sets. In each set,
the number of roots outside the unit circle is constant

» The boundary of the stability region is a subset of I,

Region of Absolute Stability

Move counterclockwise along |z|=1, then you see one
more root to the outside of the unit circle for those o to
the right than for those c to the left when traversing I'

TR.: x, = Xn_1+%(xn—1+xn}

- 2(z-1) 2¢e"-1)
N I e

— T ¥4
\
_ 0=n/2
B.E q(z=e'9)=1-$=1-e'9J
a=0
N
./

From: A. Sangiovanni-Vincentelli

Large Timestep Issues

Stiff Problems
d;(:t) =—A,(x—s(t)) + d::t) where  s(t)=1-e™
X(0)=X0 )\1:106,)‘2:1

Exact solution: x(t) =x,e™" +1-e™*

- For t>5.10° x,e™ =0
For t>5 1-e™' »1

| 5x10°8 5
Interval of interest is [0,5]
Uniform step size (for accuracy)

= At<10°
= 5x108 steps !!! From: A. Nardi

One Possible Strategy — Variable Time
Steps

* Take 5 steps of size 106 for accuracy during
initial phase and then 5 steps of size 1

» With FE cannot use h > 2x10-¢ (A= 10°)

\

Stiff problem: WA
1. Natural time constants I
2. Input time constants
3. Interval of interest
If these are widely separated, then the
problem is stiff

7"

From: A. Nardi




Application Example
On-chip Signal Transmission— 2x2 example

BRAE
J_ 2 J_ LetC1=C2=1,R1:R3=10,R2=1

Time Constants 1/0.1 sec and 1/2.1 sec

From: A. Nardi

FE on Two Time-constant Circuit

1

Small h Large h

/

FE Computed Solution

0 5 10 15 20

goes unstable when timestep is increased

From: A. Nardi

25

Forward-Euler is accurate for small timesteps, but

BE on Two Time-constant Circuit
1

Circuit Example
Small h

d ,
0® / Backward-Euler EX(Z) = Ax(?)

0.6

Computed Solution .

0.4

Large h

/

0 5 10 15 20 25

0.2

With BE can use small timesteps for fast dynamics anc
then switch to large timesteps for the slow decay

From: A. Nardi

Summary of Stiff Problems

The analysis of stiff circuits requires the use of
variable step sizes

Not all the linear multistep methods can be
efficiently used to integrate stiff equations

To be able to choose h based only on accuracy
considerations, the region of absolute stability
should allow a large h for large time constants,
without being constrained by the small time
constants

A-stable methods satisfy this requirement

From: A. Nardi




Requirements of Stiffly Stable Integration
Methods

x;(t)=Ax;(t) i=1,2,..,n,A =a,+]b,
X,(t) =C,e*‘cosb;t

X(t)

|

For accuracy want at least 8 points per cycle

:>hs1 2 orhbiSE:Im(cr)sE
8l b 4 4

Requirements of Stiffly Stable Integration
Methods

Want a region of absolute stability which gives
a stable algorithm for initial transient

=a,h>0,a,h<p
Re(o)=ah
Require:0<Re(o)<p

Requirements of Stiffly Stable Integration
Methods

Require a small h to capture fast transient

. 5
Afast :afast _Hbfa\st:> Take " 6 > ’ afast> 0

fast

stability | ¢

u

accuracy

5 |
Remarks:
» There is a region Re(c)<-5 that is absolutely stable
» For 0 < Im(o)< n/4 the region is of absolute stability
and the algorithm is accurate
» For 0 < Re(o)<u the region is stable and the algorithm
is accurate

Backward Differentiation Formula -
BDF (Gear Methods)

k
D ax,;+hBx,=0 where B,=0
i=0

e Gear’s first order method is BE

* |t can be shown that:

— Gear’s methods up to order 6 are stiffly stable
and are well-suited for stiff ODEs

— Gear’s methods of order higher than 6 are not
stiffly stable

 Less stringent than A-stable

From: A. Nardi
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Gear’s Method Region of Absolute Stability
(outside the closed curve)
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k=1 k=2
From: A. Sangiovanni-Vincentelli

Gear’s Method Region of Absolute Stability
(outside the closed curve)

k=3 k=4
From: A. Sangiovanni-Vincentelli

Observations on Stiff Stability

* FE: timestep is limited by stability and not by
accuracy

* BE: A-stable, any timestep could be used
* TR: most accurate A-stable multistep method
* Gear: stiffly stable method (up to order 6)

« The analysis of stiff circuits requires the use
of variable timestep

From: A. Nardi




