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Abstract

We address the calculation of dc operating points
of nonlinear circuits by using parameter embedding
methods, and we show that the usefulness of these
methods depends on the type of a circuit's descrip-
tive equations. We discuss various approaches to em-
bedding a parameter into nonlinear equations that de-
scribe bipolar and MOS transistor circuits. Embed-
ding algorithms were implemented in an industrial
circuit simulator. We demonstrated that homotopy
methods can be used as an alternative to the Newton-
Raphson-type solvers and that they can be successfully
applied to solving nonlinear circuit equations as well as
to calculating dc operating points and transfer curves
of nonlinear transistor circuits.

I. Introduction

In this paper1 we address the calculation of dc operat-
ing points of nonlinear circuits by means of parameter
embedding methods (also known as continuation and
homotopy methods). One of the �rst implementations
of continuation methods in an industrial circuit sim-
ulator was by Cermak in 1971 [1]. Other implemen-
tations followed [2]{[7]. Continuation and homotopy
methods have been rediscovered several times in cir-
cuit theory (see [5] and [8] for extensive reference lists).
Nevertheless, information about implementations of

homotopy methods in industrial circuit simulators is
not readily available in the literature with the excep-
tion of [3]{[7]. In [5], the authors describe an imple-
mentation that is suitable for bipolar transistor cir-
cuits based on the Gummel-Poon bipolar transistor
model [9] with an embedded continuation parameter.

1Part of this work was presented at the NDES'95 Workshop,

Dublin, Ireland, July 1995.

In [6], the authors discuss the application of pub-
licly available software packages with continuation al-
gorithms PITCON [10] and HOMPACK [11] for cal-
culation of dc operating points. Although interesting
results were obtained, the authors did not address the
details of parameter embedding that are crucial for a
successful application of homotopy methods for solv-
ing circuit equations by circuit simulators.

II. Embeddings and Network Equations

In contrast to classical methods for solving a system
of nonlinear equations

f(x) = 0; (1)

we consider a parameterized family of nonlinear equa-
tions

F(x; �) = 0; 0 � � � 1: (2)

If a solution x0 is known for a �xed value �0, a homo-
topy method tries to �nd a solution for another value
�. In applications, it is a nontrivial problem to �nd a
suitable criteria to embed a parameter � into a given
set of nonlinear equations. In case of circuit equations,
it is useful to decompose the circuit descriptive equa-
tions into the linear part that corresponds to the linear
network, and a nonlinear part that corresponds to the
nonlinear network elements. A rather simple principle
can be used to generate parameterized equations from
nonlinear equations (1):

F(x; �) := (1 � �)L(x � a) + �f(x) = 0; (3)

where a is an arbitrary constant vector. If L is a lin-
ear operator, this type of embedding is called stan-

dard embedding. Often, L is the identity operator and
L(x) = x is used as the linear part of equation (3).



It can be shown using a simple example that this
approach may cause di�culties if the well-knownMod-
i�ed Nodal Analysis (MNA) equations [12] are used to
describe networks.
We should mention that it is not necessary to re-

strict the decomposition of a nonlinear network that
will be parameterized with an embedding (or its de-
scriptive equations) into a linear and a nonlinear part.
A more general idea is to use a decomposition of the
form

F(x; �) =N1(x) + �N2(x); (4)

where N1 and N2 are nonlinear operators. If � = 0,
then N1(x) = 0 describes a nonlinear network. In this
case we need to demonstrate that these equations are
well-conditioned and posses a unique solution that can
be calculated. Such an approach is described in [3]{
[6] where the gains of the Ebers-Moll transistor model
are multiplied by �. For � = 0 the network consists of
independent sources, linear resistors, and diodes, and,
therefore, possesses a unique dc operating point.

III. Choice of Equations

We now show that the usefulness of parameter em-
bedding method depends on the type of a circuit's de-
scriptive equations. If a resistive circuit is described
by a system of nonlinear equations (1), then the zeros
of this system of equations are its dc operating points.
The essential idea of the homotopy approach is to em-
bed a parameter into equation (1) and, thus, obtain
a parameterized family of equations (2) The original
equation is obtained by setting � = 1:

F(x; 1) := f(x) = 0: (5)

If � = 0, then the equation

F(x; 0) = 0 (6)

should be much simpler than the original equation (1)
and �nding its zeros should be an \easy" task.
We show that the standard embedding

F(x; �) := (1� �)x + �f(x) = 0 (7)

fails if we use the MNA equations. The MNA method
is used today in most SPICE-like circuit simulators
[13]. The main reason for choosing the MNA approach
when writing circuits' equations is to include network
elements that are not current sources or do not have an
admittance representation (such as certain controlled
sources). For such elements one cannot introduce their
currents into the vector of network variables. There-
fore, in contrast to the basic nodal equations, not all
MNA equations represent sums of currents. Some of
these equations describe the inter-connection of net-
work elements.

Consider the simple circuit shown in Figure 1(a).
The MNA equations of this circuit (see e.g., [14]) are:

�
G 1
1 0

��
u1
i0

�
=

�
0
U0

�
: (8)

In order to apply the homotopy approach, we de�ne
the following function:

f(x) :=

�
G 1
1 0

�
x�

�
0
U0

�
; (9)

where x =

�
u1
i0

�
. Standard embedding of (9) into (7)

leads to the di�culties we are addressing in this paper.
Even though we use a simple circuit to illustrate the
cause of the problem, it is easy to extend this result to
more complex circuits. If, when embedding a param-
eter, we add to the original MNA equations (9) the
term (1��)x (7), we create a new circuit. The follow-
ing equations are obtained by applying the standard

embedding, after dividing both equations by �:

1� �

�
u1 + (Gu1 + i0) = 0

1� �

�
i0 + (u1 � U0) = 0: (10)

A circuit interpretation of the additional terms in
(10) leads to the circuit shown in Figure 1(b). It is
evident from the polarity of u2 that 1��

�
should be

negative. That implies that in the process of �nding
solutions of (8) we need to �nd operating points of
circuits with negative resistors. Therefore, for some
�, the coe�cient matrix of the MNA equations may
become singular. In our example, for G = 1=2, the
coe�cient matrix� 1��

� + 1=2 1

1 1��
�

�
(11)

becomes singular for � � 0:562. This is in contrast to
the behavior of nodal equations, where similar embed-
ding always leads to circuits with non-negative resis-
tances [15].
In conclusion, the embedding of a parameter should

be done in a manner that avoids non-physical net-
work instances (e.g., occurrence of negative resistors).
For that reason, we opted to implement in an indus-
trial circuit simulator [16] the embeddings suggested
by Trajkovi�c et al., [3]{[6] and by Hasler et al., [17]
(see also Mathis [18]).

IV. Useful Homotopies

A useful embedding approach [17] is to parameterize
all nonlinear network elements with � in a multiplica-
tive manner.



Starting point of the approach in [17] is the solution
of a linear network obtained by setting � = 0. The
continuation or homotopy approach is applied using
the general formulation:

F(x; �) := (Lx� b) + �N(x) = 0; (12)

where Lx = b describes the linear network (when
� = 0) and the original nonlinear network is described
by Lx+N(x) = b (when � = 1).
For a successful homotopy method, it is necessary

that the linear equations are well-conditioned and solv-
able. Therefore, a suitable choice of the values of the
added resistors is essential.
We illustrate this approach by considering a nonlin-

ear resistor i = g(v) that will be replaced by

i = (1� �)G(v � a) + �g(v); (13)

where a is an arbitrary voltage. (Note that the choice
� = 1 leads to the nonlinear resistor.) A simpli�ed
version can be obtained for a = 0:

i = Gv + �(g(v) � Gv): (14)

A common nonlinear circuit element is a diode. The
diode current is id = g(v), where

g(v) = I0 (exp(v=VT )� 1) : (15)

This approach can be extended to other nonlinear cir-
cuit elements.
If a network contains bipolar junction transistors

that are described by the Ebers-Moll model [19]:

IE = �
IS
�F

[exp (�vEB=VT )� 1] +

+IS [exp (�vCB=VT )� 1]

IC = IS [exp (�vEB=VT )� 1]�

�
IS
�R

[exp (�vCB=VT ) � 1] ; (16)

where IE is the emitter and IC is the collector current.
For the embedding, we use the same approach as in the
diode case.
Finally, in the case of MOS transistors we need to

parameterize the nonlinear terms of the drain current.
We only considered a simpli�ed expression for the non-
saturation mode:

ID = C

�
(vgs � VTh)vds �

1

2
(1 + �)v2ds

�
; (17)

where vgs is the gate-sources voltage, vds is the drain-
source voltage, VTh is the threshold voltage, and C
and � are the MOS transistor parameters [20]. Again,
the nonlinear terms were replaced by suitable resistors
when � = 0.

An alternative embedding approach [3]{[6] is ap-
plicable if the nonlinear operator satis�es condition
N(0) = 0. This embedding can be formulated by

F(x; �) := (Lx � b) +N(�x) = 0: (18)

Nonlinear parts of many equations describing models
of semiconductor devices have this property. For ex-
ample, the diode current id = g(v) satis�es id(0) = 0.
This embedding for diode equations leads to:

id(v; �) = I0 (exp((�v)=VT )� 1) : (19)

The linear network description obtained by setting
� = 0 corresponds to the descriptive equations of em-
bedding given in [17].
Transistors are multi-input elements. Their cur-

rents, for example, depend on two junction voltages.
Therefore, the embeddings for transistor equations are
performed by multiplying each input voltage by �.
Note that if the voltages vEB and vCB of a bipolar
junction transistor are multiplied by �, the currents
IE ; IC , and IB become zero for � = 0. Furthermore,
additional resistors values have to be suitably chosen.
Similarly, the drain current ID = f(vgs; vds) of a MOS
transistor in the non-saturation mode satis�es the con-
dition N(0) = 0 if both input voltages are multiplied
by �. There are other more complex MOS models
where the drain current depends on additional inter-
nal variables (the Fermi potential in the bulk region
�FB and the 
at-band voltage VFB) and external vari-
ables (the source voltage vS ) [20]:

~iD = ~C

�
vgs � VFB � 2�FB �

1

2
vds

�
vds �

�
3

2


h
(vds + vS + 2�FB)

3=2 � (vS + 2�FB)
3=2

i
: (20)

In these cases a choice an appropriate parameter em-
bedding remains an open issue.
In many practical models for semiconductor devices

the condition N(0) = 0 is satis�ed and, therefore, the
embedding approach of [3]{[6] is applicable.
Note that the implementation of these embeddings

in a SPICE-like circuit simulator is rather straightfor-
ward: the embedding is performed by simplymultiply-
ing the input currents and voltages by � before their
evaluation.

V. Comparison of Two Embedding

Approaches

Unfortunately, we do not have a mathematical criteria
for measuring the di�erences and usefulness of these
embeddings. Therefore, we will compare these embed-
dings by applying them to several nontrivial circuits.
We have shown that the standard embedding is not

suitable in case of MNA equations. The embedding



proposed by Trajkovi�c et al., [3]{[6] was much more
robust then the embedding proposed by Hasler et al.,
[17] and lead in many cases to fewer Jacobian evalua-
tions.
Simulation performance in terms of the number of

Jacobian evaluations of several industrial circuits is
shown in Table 1. In all cases, the embedding (18) sug-
gested in [3]{[6] was more robust than the embedding
approach (12) given in [17]. For example, in the case
of the CMOS reference circuit for a 16 Mbit DRAM
with 27 equations, the embedding (18) required only
66 Jacobian evaluations (with HOMPACK's �xpNf al-
gorithm), while embedding (12) required 67879 Jaco-
bian evaluations. Other examples were even more fa-
vorable.

VI. Application

A useful application of the homotopy methods is the
calculation of transfer curves of circuits where the
input-output characteristics exhibit folds (negative dif-
ferential resistance regions) or hysteresis (e.g., Schmitt
trigger circuit). These curves cannot be traced us-
ing the conventional circuit simulator (SPICE). Such
curves are easy to trace using HOMPACK [11]. HOM-
PACK uses the arc-length parameterization of the ho-
motopy parameter and solve the associated di�erential
equations,
We �rst multiply the input (current or voltage) by �.

In contrast to the above discussed embeddings, the
network equations are not linear for � = 0. Hence, in
the �rst step we used [3]{[6] embedding to calculate
the starting point of the input-output transfer curve.
HOMPACK's curve tracing algorithms is then used to
generate the input-output characteristic. The details
are shown in Table 2.

VII. Implementation of a Homotopy

Algorithm

All analog circuits that were successfully simulated in
[5] and [6] were analog designs with bipolar transis-
tors. We have generalized the embedding method to
MOS transistor circuits and have developed an embed-
ding model for MOS transistors. The implementation
was done in the industrial circuit simulator TITAN
[16] using HOMPACK [11]. We have also added a
modi�cation to TITAN for calculating transfer curves.
TITAN-HOMPACK Interface is shown in Figure 2.
During our simulations, we observed di�culties with

choosing the starting points for the homotopy paths.
Further research is needed to design a user-friendly
tool that can help circuit designers select a \good"
starting point.

VIII. Conclusions

We show that the usefulness of the parameter embed-
ding methods depends on the type of a circuit's de-

scriptive equations. By carefully choosing the embed-
ding equation, we demonstrated that homotopy meth-
ods can be successfully applied to solving nonlinear
equations and to calculating dc operating points of
nonlinear transistor circuits. These methods can be
used as an alternative to the Newton-Raphson-type
solvers.
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Figure 1: A simple example network for applying MNA equations. (a) Original circuit. (b) Circuit to be solved
after parameter embedding.
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