
IEEE TRANSACTIONS ON CIRCUIT THEORY, VOL. CT- 18, NO. 1, JANUARY 197 1 101

The Sparse Tableau Approach to
Network Analysis and Design

GARY D. HACHTEL, MEMBER, IEEE, ROBERT K. BRAYTON,
AND FRED G. GUSTAVSON

Abstract-The tableau approach to automated network design
optimization via implicit, variable order, variable time-step integra-
tion, and adjoint sensitivity computation is described. In this ap-
preach. the only matrix operation required is that of repeatedly solv-
ing linear algebraic equations of fixed sparsity structure. Required
partial derivatives and numerical integration is done at the branch
level leading to a simple input language, complete generality and
maximum sparsity of the characteristic coefficient matrix. The bulk
of computation and program complexity is thus located in the sparse
matrix routines; described herein are the routines OPTORD and l-2-3
GNSO. These routines account for variability type of the matrix ele-
ments in producing a machine code for solution of,Ax=b in nested
iterations for which a weighted sum of total operations count and
round-off error incurred in the optimization is minimized.

LkP,)

!FF--l+
E(t) 7 y 43’ *(%~“z)

Fig. 1. Nonlinear network.

i5z+(i3,pI)

wqqsvq

n “,;+ jJk pyy

T I T
OGZGG PARA;TOR

Fig. 2. Augmented network.

I. INTRODUCTION

OMPUTER-AIDED design of electrical networks
has recently been undergoing a rapid evolution due
to the development of highly efficient methods for

solving systems of linear equations where the matrix of
coefficients is sparse [l]-[4]. These new techniques, when
fully absorbed in a computer-aided design program, dras-
tically affect even the initial formulation of the problem.

In this paper we describe a research investigation aimed
at designing and implementing a computer network design
program (NDP) for automated network optimization
which fully incorporates the sparse matrix methods. The
formulation is unorthodox yet simple and is applicable to
any system described mathematically by a set of algebraic
and differential equations. A general nonlinear electrical
network is such a system, and it follows that the basic pro-
cedure for solving for the currents and voltages in a network
can be viewed in terms of a simple mathematical procedure :
Gaussian elimination. This has both a simplifying and
unifying effect and makes possible a simple yet truly gen-
eral-purpose computer program. By combining the concept
of variability type with sparse matrix techniques, this pro-
gram can achieve practically optimum efficiency by choos-
ing the order of elimination so as to minimize the total op-
erations count required for simulation .and/or automated
optimization.

In this section we give an overview of our method for
orientation purposes. Basic to our approach is the concept

Maduscript received May 27, 1970; revised August 10, 1970.
The authors are with the IBM T. J. Watson Research Center, York-

town Heights, N. Y. 10598.

Fig. 3. Node-branch labeling for the directed graph

of a tableau which includes all network information in a
nonreduced form.

For illustration consider the automatic design of the
network of Fig. 1. The nonlinear elements were chosen to
demonstrate that there are no restrictions on element type.
In general, we consider design objectives of the class

s

T

minimize Q = $+J> P, t) dt (1)
PWI~P~PM 0

where @ represents a generalized scalar objective functional
and 4 an objective function of the unknown vector w and the
vector of designable parameters p. In Fig. 1, $=4(i3, pi).
It is convenient in automated network design to add these
quantities directly to the tableau of unknowns. This is done
(Fig. 2) by augmenting the original network with a unit
capacitance driven by a dependent current source of value
4 (the integrand in (1)) and another unit capacitance con-
nected only to the reference node. The reason for this last
augmentation has to do with adjoint sensitivity computa-
tion [5] and will be made clear in Section II. The first aug-
mentation (cf., Fig. 2) is called herein an objector and the
second a parametor. The directed graph of the augmented
network is shown in Fig. 3 with integer node and branch
labels. Fig. 4 shows the tableau of algebraic and differential
equations which describe the network, where I/, i, v stand

102 IEEE TRANSACTIONS ON CIRCUIT THEORY, JANUARY 1911

Tableau Operator

= fl V. i, Y. 4. 0, p, tl = 0

A

Tableau error vector

Fig. 4. Tableau operator, unknown vector, and tableau vector.

for the vectors’ of node voltages, branch currents, and
branch voltages, respectively. Energy storage is denoted by
the generic term 4 which stands, in network applications,
either for magnetic flux or electronic charge. However,
since the objector and parametor charges, are of special
interest, the labels Q and p are retained for these elements.

The tableau operator F(. , . , . , . , . , . , t) (Fig. 4) is an alge-
braic-differential operator which operates to the right on the
unknown vector w c co1 (V, i, u, ~7, c$, p) to form the tableau
error vector f(w, t). The network equations may thus be
stated in the form

The tableau matrix F,(w, t) is the linearization of the tableau
operator F around the operating point w, i.e.,

(3)

The tableau matrix for the network of Fig. 1 is illustrated in
Fig. 5. Figs. 4 and 5 show that (for this case) the first ten
rows represent the Kirchoffs current (A’i=O) and voltage
(Al/- u=O) laws. The matrix A is the branch versus node
incidence matrix [6], which has the advantage of being
directly obtainable from the network description input data
cards (which also establish the labeling of Fig. 3.) Rows
11-16 of f (Fig. 4) state the branch constitutive relations
(one per branch) of the network, while rows 17-20 give the
dynamic relations describing the generalized energy storage
elements (e.g., i, - cj3 = 0 (row 18)).

For general networks, the tableau matrix Fl has the form
of Fig. 6, wherein for network applications submatrices
A, B, and E have all elements + 1 or 0. Note FI is very sparse,
averaging in general about three nonzero elements per row.

Note that the optimization problem (1) for any system of
ordinary differential equations (ODE) of the form
g(Q, q, p, t) = 0 can be put in the form of Fig. 6 by the following

’ A lower case letter is a column vector unless otherwise specified,
” ’ ” denotes the transoose oeeration. Thus u’ is a row vector.

The tableau approach to time-domain simulation is to
discretize, at the branch level, the derivative operator d/dt.
The nth discrete time point is denoted by t, and w,= w(t,). _.
Thus the last nq + 1 + np rows (nq charges, 1 objector, np

Fig. 5. Tableau matrix.

0 A’ 0 0

A 0 -1 0

a

0 .z Y a

0 E ‘%+

Fig. 6. Form of general tableau matrix

ql(=“K w+I+J=%+,tJ

T
+N+l+J

K=I,N ihl.~=+(q.P.t) J=l.“p
EQUATOR O= PARAGTOR

Fig. 7. Network analog of general ODE optimization problem.

substitution:

The network analog of the general ODE optimization
problem is shown in Fig. 7, wherein each of the N com-
ponents gK, K = 1, N, of the system g(a, 4, p, t)=O is repre-
sented by an equator, i.e., a unit capacitance driven by a
current source, i, = uK, and a floating current source of
value i,,=g,(u, 4, p, t). The objector and parametors (one
for each of the np designable parameters) are as previously
defined for the network problem.

HACHTEL t?t al. : SPARSE TABLEAU APPROACH TO ANALYSIS AND DESIGN

parametors) have d/d replaced by the &h-order backward
differentiation formula [7]. For example, for charges

where h = t, - t,- r. This transforms the tableau operator F,
the tableau error vector f, and the tableau matrix F,, into
their discrete time forms Fd, fd, and FdP Here fd is obtained
from f by replacing 4,6, and Ij by sums of the form (5), and
Fdl is obtained from Fl (Figs. 5 and 6) by replacing d/dt
by -cc,/h.

Thus the time-domain simulation problem (2) is trans-
formed into that of solving the difference equations

w() = w(t,) = w(0)

Fd(. 3 P, t”)w” = j&J”, P, t) = 0 (6)

at each time point t, in the interval [0, T]. (Actually, fd
depends on w,- r,. . . , w,-~ because of (5), but this de-
pendence is suppressed here for convenience of notation.)
A Newton iteration is used to solve the nonlinear algebraic
difference equations so that the overall computational task
of time-domain simulation is the following double iteration.

t, = 0
n=O

w0 = initial condition
4 n=n+l

t, = t,.e 1 + h,
K=O

103

differentiation formulas (5) to algebraic-differential sys-
tems. This approach is similar to that developed by Gear
[8] for strictly differential systems except that -we store
backward differences instead of the Nordsieck vector. Ex-
cept for systems with only a small number of differential
equations, the use of backward differences is more efficient
computationally. This can be established by a simple op-
erations count. Section IV discusses the sparse matrix
algorithms, and in Section V we show how the tableau fd,
& for the network optimization may be straightforwardly
set up from a SCEPTRE-like input language [9].

Sparse matrix packages OPTORD and t-2-3 GNSO are used
to invert F,, (actually the L/U factorization method is em-
ployed rather than direct inversion). Section IV gives the
specific algorithms employed. The output of OPTORD is a
pivoting order, i.e., the order in which the rows and columns
of Fdl are eliminated in inverting &. The ordering selected
gives an optimized compromise between 1) minimum
roundoff error in the solution Aw, and 2) minimum total
operations count in performing the double iteration (7).
1-2-3 GNSO produces the required machine code SOLVE in
three partitions : C-SOLVE, to be executed at the beginning of
each optimization step, i.e., before entering the time loop of

I

t

wp = W”_ 1 (or wk”) is obtained by prediction, cf., Section II).

time iteration Newton iteration

r

K=K+l
FdI(w;K-l))Aw;K-l) = - fd(w;K-l’)
w;KIK) = w;K-l) + Awf-I)

no Converged?
J yes

yes et,, I T?d

(7)

With only trivial modifications (7) applies to dc and ac
cases also. In Section II we show how the routine for in-
verting Fd, may be used also to obtain the performance
gradient &D/iTp by the efficient adjoint approach [5].
(With this approach the cost of computing the np-dimen-
sional vector X@p is roughly equal to that involved in (7)).
Thus the tableau approach achieves dc, ac, and transient
optimization with one matrix operation, namely, the in-
version of Fd, in (7). Note (7) is essentially a two-step algo-
rithm. The first step is to evaluatef, and F,,. A virtue of the
tableau approach is that fd and Fdl may be read directly
from a simple input language using one input card per
branch. The second computationally critical step is the in-
version of the sparse matrix Fdl. This operation is handled by
package programs for sparse Gaussian elimination. The
tableau format allows these packages to be general-purpose
programs not special to the network application. In Section
III we describe prediction and control of truncation error
in a variable-order variable-time-step application of the

(7) ; T-SOLVE, to be executed in the time loop of (7) ; and
X-SOLVE, to be executed in the Newton loop of (7). All
elimination of variables is done by the Gaussian elimination
routines. For example, the program does not require the
determination of state variables, trees, nodal admittance
matrices, capacitor loops, or any of the various special-
ized network concepts which tend to complicate a basically
simple procedure. The sparse matrix packages OPTORD and
l-2-3 GNSO allow us to dispense with these procedures. In
this sense the tableau matrix-Gaussian elimination ap-
proach tends to have a simplifying effect on network anal-
ysis not only computationally but to some extent theoretic-
ally as well. In Section VI we demonstrate that nodal
analysis [6] and state-variable analysis [lo] may be re-
garded as special methods of performing Gaussian elimina-
tion with different pivoting strategies. From this point of
view there are many methods of analysis, and the most ap-
propriate one for purposes of computation is the one which
gives the best combination of accuracy and efficiency.

104 IEEE TRANSACTIONS ON CIRCUIT THEORY, JANUARY 1971

Comparisons of unconstrained OPTORD analysis with
OPTORD constrained to eliminate state variables or nodal
variables last are among the numerical results given in
Section VII. Also, results showing how storage require-
ments grow with problem size are given for a sequence of
examples.

II. THE TABLEAU AND ADJOINT SENSITIVITY COMPUTATION

The main computation in minimizing O(p) is to compute,
given p, Q’(p) and dQ/~?p. With these quantities, nonlinear
programming algorithms (e.g., Davidon-Fletcher-Powell
[111) can be utilized in minimizing Q@). In this section we

., J 1
present a theorem which demonstrates the role of the tableau

Fig. 8. Algebraic-differential format of tableau.

matrix Fdl in the adjoint-method computation of &D/ap. It is
convenient for this purpose to group the algebraic network and 7 satisfies the adjoint algebraic equations
equations and variables so that

a = col(l/,i,v)

and

da, 42 P, t)
Ea -4

e, 4, P, t) - 6

-P

1 > 0 I t I T. (8)

Thus

@ = (D(T) =
s

‘+(a, q, p, t) dt (9)
0

and the format of the tableau matrix Fdl is as shown in
Fig. 8.

In these terms we may now state, without proof, the fol-
lowing theorem.

Theorem 1

Assume that the system (8) starts at equilibrium, i.e.,
4(O) = 0, and that T is independent of p, i.e., aT/ap = 0. Then

- = p(0) + 2
ap

where f(t), 0 <t I T, satisfies the adjoint differential equa-
tions’

[ii’, q, 6, f] age) ado o am __ ~
da aq ap

E dldt 0 0

ada ada -d,dt w(t)
da a4 ap

= [O, 0, 0, 01

(11) 0 0 0 - dJdt III. DISCRETIZATION OF THE TIME DERIVATIVE OPERATOR

Two basic assumptions have guided the development of
the tableau approach to network simulation: for most net-

[a’, q’, @,p’] da ~’
---- 1110) af,(o) o aa4 ~

all ap
E 0 0 0

a40 w(o) _ 1 w(o)
aa aq ap
0 0 0 -1

Note that except for the d/dt entries, the coefficient
matrices in (11) and (13) are identical to the tableau operator
matrices F,(t) and F,(O), respectively. Thus the columns of
F,, operating to the left on the adjoint unknown vector
[a’, 4’, 6, $‘I give the adjoint sensitivity equations just as the
rows of F, (cf., Fig. 4) operating to the right on co1 [a’, q’, Q, p’],
give the original differential equations (8). Thus to solve (11)
and (13) as well as (8) involves Gaussian elimination applied
only to Fdl (of Fig. 8), modified as shown in the d/dt entries.

This theorem establishes the actual flow of the compu-
tations leading to aQ/ap. First (7) is solved yielding
a(t,), q(t,), cD(t,) at the time points t, in the interval [0, T].
Those components of a(t,) and q(t,) which cause Fdl to vary
are stored on disk. These are returned to core during
solution of (11). Since the times t, involved in solving (11)
do not generally coincide with the t, involved in (7), kth-
order interpolation formulas, similar to (5), are used to
obtain a(t,) and q(tJ. The final value of Q’(t), i.e., g’(O), is
then passed into the right-hand side of (13) which is solved to
give p’. Finally, f(O) and 7 are added to give dQ/dp.

At this point both Q(J) and SD/ap are available, and an
optimization step may be taken. It is important to emphasize
that in the iterations involved in solving (7) and (11) only
one matrix structure, that of Fdl, is subject to sparse Gaussian
elimination, and no other matrix operations, e.g., addition,
transposition, and multiplication, are necessary.

with initial conditions

d’(T) = q(T) = p’(T) = 0, a)(T) = - 1 (12) works the tableau matrix 1) is sparse and 2) has widely
separate eigenvalues (i.e., it describes a stiff system of ODE).

* ag(f)/&z, etc., denotes a/&z{g(a(f), q(t), p, t)}, where a(t), q(t) is the These assumptions dictate that for efficiency, implicit
solution of (8). quasi-A-stable integration formulas be used [7]. The back-

HACHTEL et al. : SPARSE TABLEAU APPROACH TO ANALYSIS AND DESIGN 105

ward differentiation formulas (5) of order k(1 I k< 6) tive starting value. Experience shows that this prediction
satisfy these requirements. Using the Nordsieck vector 1121, step, if efficiently executed, is usually worthwhile. The kth-
Gear [8] has demonstrated their advantage in providing a order prediction formula
variable-order variable-time-step approach to minimizing
the number of time steps subject to specified allowable kfl

integration errors. In the present context of simulation and
x;+1 E - izl Yixn+l-i (18)

optimization such an approach is especially necessary be-
cause the computation of &D/ap (cf., discussion of Theorem

has the same order of accuracy as (17). Again, the yi are

2) requires storage of all arguments of the nonlinearities at
chosen to annihilate polynomials of degree <k. The coeffi-

every time step.
cients yi are also used in computing the truncation error

Gear’s basic strategy, with minor modifications, of step h(G n+l)true - (-%+l)amxoximate) 3 Ek t o(hk+2) (I91
size and order selection based on prediction and control of
truncation error have been incorporated into the tableau where CC,+ lhpproximate denotes the value given by (14). E, is

approach. However, the Nordsieck vector has been replaced obtained by expanding the terms x,+ r-i, i = 0, 1, . . . , k, in

with stored backward differences to reduce operations (14) in a Taylor series around t,, 1. Using the fact that (18)

counts when integrating a large number of equations. This and (14) annihilate polynomials of degree I k, one can show
Al.,+

replacement gives rise to new difference formulas for pre- LlldL

diction and truncation error, and these will be presented E = H hkf ’ dCk+ ‘)x,+ 1
along with the description of the discretization of the d/dt k. kk+l dtk+’
operator. Since this operator can act on true charges (q), k+l
the objector (a), or parametors (p), we state the develop- + C Yixn+l-i w-9
ment in terms of a generic vector x. Thus restated (5) reads i=l

(14)

where x,+l-i~x(t,+l-i), h;zti+,-ti, and h=h,. Note the
hi depend on i in a variable-step method. The coefficients ai
are determined by the requirement that (14) annihilate
polynomials of degree Sk. In particular, this means that
(14) must be satisfied for each of the k + 1 substitutions
xi=(tn+l-tn+l-i)j,j=O, l,**., k,thus yielding k+l equa-
tions in the k-t- 1 unknowns CZ~, CI~, . . *, elk These can be
solved in closed form, yielding an efficient method for
computing the Cli. Since in practice one solves for the vector
Axi instead of xi, higher precision is obtained by expressing
(14) in terms of the Axi. To this end, let

where
1 k

Hk =j&gocri
tn+l-i- tn+i k+i

h >

=L fi ttn+l - tn+l-i)

k! i=l (tn+l - tn)

and where the extra coefficient 6, is determined by requiring
the right-hand equation of (20) to be satisfied identically for
polynomials of degree k+ 1. As in Gear’s work on auto-
matic step size and order control [7], the new time step h and
order k are chosen so that h is maximum, consistent with

(21)

X n+l-i E x,ei + Ax,vi, i = 0, 1,k where T is the total integration time and ET a specified total
and absolute. error. In practice, to reduce roundoff error, the

prediction and truncation error formulas (18) and (20) are

(15) rewritten in terms of the AXi of (16), just as (17) was obtained
from (14).

Then (14) becomes The Lemma presented demonstrates that it is unnecessary
to predict any components of the w vector (cf., (7)) other

k-l

izo P&n-i + hi-,+1 = 0. (16)
than those which cause the tableau matrix Fdl to vary with w.
In the Lemma u,+ 1 represents the subset of w,+ r, on which

Thus in (7) the effect of d/dt operating on q in forming fd is
depend the nonlinear components of the tableau error

given by
vector f(w, t). (For the example of Fig. 4, u = co1 (ug, u2, is)
=d (w12, Wll, WI&

da,+ 1 -=
dt - $%I.+1 - 4.1 - k y$’ B&n-i* (17) Lemma

I 1 Let w%: I be the result of predicting (cf., (18)) all com-
‘Correspondingly, the d/dt elements in Fl are replaced by ponents of w,+ i, and WC: I be the result of predicting only
-PO/h to obtain Fdl (note PO = CI,,). the subset u,,+~ of w,+ i. Then w::(i) (obtained from the

In (7), one has the option of starting the Newton iteration first Newton iteration step of (7) with wiy 1 = wf: J is equal
with wlpl i = w,, or of predicting from past history an alterna- to w::(j) (obtained from (7) with wlp! I = wff r).

106

Thus in contrast to Gear’s method [7], it is not necessary
to predict all quantities operated upon by d/dt. Since u is
generally a very small subset of w (3 components of 20 in
Fig. (4) the computational advantage of predicting u instead
of predicting either 1) all the variables, or 2) all the non-
linearities plus all the charges [13] is substantial. The proof
of the Lemma, which will be omitted here, is based on the
fact that the tableau matrix is identical for the two modes of
prediction, i.e.,

In summary, three difference operators are used, one each
for kc-,+ 1 (as in (17)) xIp! 1 (as in (18)), and ZZ,#Z~+~/(~+ 1))
.(d(k+UX ,,+ l/dtk+l) (as in (20)). Each of these formulas use
stored backward differences Ax,,+iFi. The coefficients cli,
yi, 6,, are computed at each time step. The time step and
order (k, 1 I k I 6) are determined as recommended by Gear
using the inequality (21). Prediction is only done for the
variables U, + I which cause Fdl to vary.

IV. SPARSE MATRIXMETHODS

There are basically two sparse matrix programs used.
The first program OPTORD deals with finding an optimal
pivot order, i.e., an order of elimination of rows and col-
umns so that “fill-in” and “operations count” are mini-
mized at the same time numerical stability is retained. Quali-
tatively, in terms of reducing fill-in, the program OPTORD
uses a strategy due to Markowitz [4]. Similar techniques
can be found in Tinney-Walker [3] and Dantzig et al. [4].
OPTORD is novel, however, in its introduction of variability
type to identify and avoid redundant operations in cyclic
computations. The use of a numerical test in OPTORD is
also not usually incorporated in these methods.

The second program 1-2-j GNSO takes the permutation
generated by OPTORD and, taking into account the variabil-
ity types of the matrix elements, writes five machine code
programs (called C-SOLVE, T-SOLVE, X-SOLVE, B-SOLVE, and
A-SOLVE) which execute only the nontrivial arithmetic
operations necessary in the Crout factorization algorithm
for Gaussian elimination [15]. This program is based on a
similar program GNSO [l 1, which generated only a single
FORTRAN program, and did not recognize variability type.

We discuss in turn OPTORLI and t-2-3 GNSO, both of which
recognize three basic properties of the nz nonzero elements
of the ns x ns matrix S, namely, 1) location Z, .Z; 2) numerical
value S[Z, J] ; and 3) variability type VZ’[Z, J]. The six
variability types are listed in Table I.

These types are represented in the example of the matrix
FL of Fig. 6. In this example, the 1, 5 and 5, 11 elements of Fl
are the topological type (I/T[l, 5]=1, I/T[5, 11]=2), the
12, 5 element is p type (I/T[12, 5]=4), the 17, 17 element is
t type (because dldt is replaced in Fdl by -cl,/h, which
changes with time in a variable-step method, I/T[17, 171
= 5), and element 15, 7 is of x type (I/T[15, 7]= 6). Note
that in a time-domain optimization, topological-type ele-
ments are invariant, p-type elements change every optimiza-
tion step, t-type elements every time step, and x-type ele-
ments every Newton iteration (cf. (7)).

Ideally, an arithmetic operation is done only when and
if it must be done. Thus multinlication of a t-type element bv

IEEE TRANSACTIONS ON CIRCUIT THEORY, JANUARY 1971

TABLE I

Type 1 elements which are + 1
Type 2 elements which are - 1

called topological type

Type 3 elements which never change, called c type
Type 4 elements which change with design parameters, called p type
Type 5 elements which change with time, called t type
Type 6 elements which change with the unknown, called x type

a p-type element should properly be executed in the time
loop of’(7) but not in the inner Newton loop. To this end
there is associated with each multiplication of the term
S[k, L]*S[K, L], a variability type

VTM = max [VT[k, L], VT[K, L]]

which identifies when the multiplication must be done.
In order that OPTORD may reduce the total operations

count in a given design problem, a set of weights wt[i],
i= 1, . . ,6, are specified, one for each of the six variability
types. Thus the weight wt [i] can be an estimate of relatively
how often i-type operations must be executed during an
optimization run.

The permutation vectors rp and cp are used to specify the
pivoting order. Thus the ith pivot is in row rp[i] E Z and
column cp [i] = J. The task of OPTORD is to select Z and J so
as to minimize the ith weighted pivot cost

PC[Z, J] = pM[Z, J] + vR[Z, J] (22)

where ,u, v 2 0 are specified input parameters, M is a weighted
multiplication count, and R is a roundoff error factor. We
define

M[Z, J] = c wtj (23)
j=l

with wcj standing for the weight associated with the highest
variability type involved in thejth of the m,, multiplications
required in eliminating row Z and column J. Also,

1 C NM
R[zy Jl = ij js[z, J]l (24)

where j runs over the rI nonzero column indices in row I.
The ith of the n formally identical steps in the process of

selecting rp and cp is described by the following algorithm.

OPTORD Algorithm

At the end of the (i- 1) step, i- 1 eliminations have been
carried out. Thus in the ith step the (n + 1 - i) x (n + 1 - i)
matrix S@) is to be considered (note S(‘)=S) in which the
nonzero locations, the values, and the variability types of
its elements are known.

1) For each row K determine the subset Z[i],j= 1, . . . , i,
of the rK nonzero columns of the Kth row of SC’) for which

T 0 L. R[K, l[j]] 51 (25)

where 0 I T 0 L I 1 is a threshold factor. The remaining
rK - P, elements in row K have numerical values which are
considered too small to be candidate pivots.

2) Determine the P, values of M[K, lb]] (cf., (23)), j= 1,
3,, associated with the elimination of row K and column
2Til (element K, lfil is the candidate pivot). In Gaussian

HACHTEL et al. : SPARSE TABLEAU APPROACH TO ANALYSIS AND DESIGN 107

elimination a multiple of the pivot row K is added to each
row k in Sci), which has a nonzero element in column lb], in
such a way that the k, Z[i] element becomes zero. Thus for
each such row k we compute

S(‘)[k, L] - S(‘)[k, l[j]]*(S@‘[K, L]]/S”‘[K, l[j]]) (26)

where L runs over the union of column indices in rows k and
K. Associate with each nontrivial multiplication (repre-
sented by * in (26)) its variability type

VTM[k, L]

= max {J’T[k, lb]], JJ’T[K, l[j]], VT[K, L]} -
0, if S”‘[K, L] = 0. (27)

If there are cj nonzero elements in the pivot column lb] of
Sti), then (cj- l)(rK- 1) such multiplications would be re-
quired to use element K, lb] as the next pivot. The weighted
multiplication count for each of the 0, pivots K, Z[i],
j= 1,2,. * .) BK, is therefore given by3

M[K l[j]] = wt[VT[K,$]]]
w@‘TM[k L-j]

>
(28)

where k runs over the nonzero row indices in column Z[i],
and L runs over the union of column indices in rows k and
K. The first term accounts for the computation of
(S”‘[K, Z[i]])-’ and for k=K; the sum accounts for the
multiplications (S”‘[K, l[i]])-‘*S(“[K, L].

3) Compute PC[K, lb]], j= 1, . . . , P,, using (24) and find
the minimum pivot cost column JC[K] for each row
K, K = 1, 2, * * . , n + 1 - i, i.e.,

PC[K, JC[K]] = mjn {PC[K $I]>.

4) Find the minimum operations-count row I, i.e.,

M[Z, JC[Z]] = m$ {M[K, JC[K]]}.

(29)

(30)

5) Execute the numerical Gaussian elimination of row
ZE rp(i) and column J= JC(Z)? q(i), creating the (n-i)
x (n - i) matrix S@+ I).

6) Update the variability types of each nonzero element
in Sci+ ‘) (cf., (26)), according to

VT[k, L] = max { VTM[K, L], VT[k, L]}.

Note that if the operation count weight is set to zero
(i.e., ZJ = 0 in (22)), step 3 selects the largest pivot element in
row K. Thus partial pivoting [17] is effected in each row,
and the row is chosen (cf., (30)) to minimize the weighted
multiplication count. The decision to have OPTORD mini-
mize only the number of multiplications required at each
‘step of Gaussian elimination was made on the basis of some
comparison with other methods. Roughly, the result of this
comparison was that it was important to base the next pivot
choice on the result of executing the previous pivot. How-
ever, how one then chose the best pivot was not so critical
and many methods seemed to give the same benefits. These
conclusions are in agreement with those reported in [15].

3 We define wt [0] = 0 since V TM can be zero (cf., (27)).

The choice of minimizing multiplications was in keeping
with minimizing the length of the SOLVE code and maximiz-
ing executi’on speed.

l-2-3 GNSO

l-2-3 GNSO creates an executable nonlooping program
for solving both b=Sx=LUx=Ly and 6’=1z’S-FLU
=yU. 1-2-s GNSO differs from GNSO [l] mainly in its use of
variability type in creating five distinct lists of machine in-
structions : C-SOLVE ; T-SOLVE ; X-SOLVE ; B-SOLVE ; and
A-soLvn (GNSO creates a single list of FORTRAN instructions).
C-SOLVE, T-SOLVE, and X-SOLVE compute the factorization of
S into the product of upper and lower triangular matrices L
and U. C-SOLVE, T-SOLVE, and X-SOLVE need be executed only
once per optimization step, time step, and Newton step,
respectively (cf. (7)). B-SOLVE carries out the back substitu-
tions Ly= b, Ux=y required in simulation (cf., (7)).
A-SOLVE carries out the adjoint back substitution 6’ = jj’U,
jY = YL required in the sensitivity computation (11) or (13).

The logic of l-2-3 GNSO is based on the Crout method of
factorizing S into LU. For purposes of presentation here it
will be assumed that S has been rearranged so that the
Pivots S[rpKl, cp[K]] appear on the diagonal of S. Thus
the Crout formulas are for K= 1, 2, . . . , n,

X-l

LIK = SIK - c LIJUJK ’
J=l ,>

Z = K;..,n

K-l

&I = &I - c
.I=1

Z = K + 1,. . , n. (31)

(Note U,,= 1.) The index ordering indicates how the Kth
column of L and Kth row of U are to be computed se-
quently and assures that all right-hand-side terms of (31)
are known.

As in OPTORD the variability type of each new L,, or U,,
term is equated to the highest type of any term in (31).
Similarly, each product in (3 1) is given the highest type of its
two factors. These variability types are used to decide to
which lists, C-SOLVE, T-SOLVE, or X-SOLVE, the instructions
created to compute each L,, (or U,,) are to be added. For a
multiplication, this is done by placing the required machine
instructions (LOAD, MULTIPLY, ADD) at the end of the
appropriate list. For example, instructions for x-type
multiplications are added to X-SOLVE. If a multiplication
involves a topological type factor (+ l), the LOAD and MULTI-
PLY instructions are suppressed. If a number of topological
type terms are to be added, the result must be topological
(f 1 or 0) (zero if the number of such terms is even).” In this

4 That the sum of two or more terms of topological type in a Crout
formula is also of topological type (f 1 or 0) is due to the fact that the
tableau with all nontopological type elements replaced by zero is a totally
unimodular matrix [18]. This is because in the tableau we have made the
restriction that not more than one topological element may appear in a
branch-constitutive-relation row. Therefore, since the incidence matrix
A is totally unimodular and any totally unimodular matrix augmented by
rows or columns of the identity matrix is totally unimodular, it follows
that the topological part of the tableau matrix is also totally unimodular.
The result then follows from the fact that the elements of L and U can be
expressed in terms of subdeterminants of the tableau matrix.

108 IEEE TRANSACTIONS ON CIRCUIT THEORY, JANUARY 1971

case the only instruction generated is a LOAD of & 1 (or no
instruction if the result is 0).

If a given formula (31) involves multiplications of various
types, we have

L,, (or UK,) = TC(IC) + TT(ZT) + TX (32)

where TC(IC) is a temporary storage location for the sum
of terms of f 1 p type or c type and TT(IT) a temporary

vector s is used to store the nonzero nontopological values
in the (row-wise) order in which they appear in E;. A vector
SP, which points to s, and a column index vector CZ are as-
sociated with the nonzero elements of l$. Finally, a row
pointer vector RP is used to identify which column indices
belong to a given row. For the example of Figs. 1-5, the
arrays and the components of SP, CI, and RP, belonging to
rows 11-17 of E; (cf., Fig. 5), are

SP(21-36) = (1, 3, 2, 4, 5, 6, 2, 1, 2, 7, 2, 8, 1, 2, 1, 9)
t t t tt tt

C1(21-36) = (11, 6, 17, 20, 12, 13, 18, 14, 19, 7, 9, 20, 16, 20, 12, 17)
t t t

RP(ll-17) = (21,22, 25,

location for the sum of t-type terms. TX represents the sum
of the remaining terms, but no temporary storage location
is required. The instructions required for computing
TC(ZC), TT(IT), and TX are placed at the end of the
C-SOLVE, T-SOLVE, and X-SOLVE lists, respectively. The de-
tailed procedure for TT[ZT] (the procedure is similar for
TC and TX) is given in the following list. We add the follow-
ing instructions to the T-SOLVE list.

1) LOAD, ADD S,, (if S,, is t type and nonzero)
2) LOAD, MULTIPLY, ADD (for each t-type product in (3 1))
3) ADD TC(ZT) (if present in (32))
4) STORE L,, (if TX absent)
5) STORE TT(ZT) (if TX present).

A development similar to that based on (3 1) and (32) de-
scribes the creation of the instruction lists for the back solve
programs B-SOLVE (for solving Sx=b) and A-SOLVE (for
solving R’S=&). Like X-SOLVE, B-SOLVE (or A-SOLVE) is
executed within the Newton iteration since the right-hand-
side vector b and the auxiliary vector y change whenever the
unknown variable x changes.

Thus by creating the five lists of instructions to be exe-
cuted in the appropriate loops of the computation, l-2-3
GNSO achieves near-ultimate efficiency : multiplications are
performed only if they are absolutely necessary.

V. AN INPUT LANGUAGE FOR THE TABLEAU APPROACH
An automated network design program (NDP) has been

written, incorporating the approach to automated network
optimization previously described. NDP interfaces the
sparse matrix, implicit integration, and adjoint sensitivity
routines through a simple SCEPTRE-like [9] input language.
As described in the following paragraphs, the input lan-
guage processor passes a complete description of the
tableau matrix 4, which is identified as the S matrix of
OPTORD and l-2-3 ~~~0.1-2-3 GNSO then produces a machine
code program, SOLVE (cf., Section IV). To conserve storage,
the SOLVE code is designed to work only on the nonzero
nontopological entries of E;.

Before describing the input language in detail, the
threaded list structure used to compact E; is described. A

tt tt
28, 30, 33, 35, 1. (33)

The row pointers point to the first nonzero column index
in a given row. Thus RP and CI combine to define a unique
I, J location in Fl for each component of the pointer SP. This
pointer in turn identifies the component of s to be associated
with (F,),.

1-z-3 GNSO requires knowledge of SP, CI, and RP, as well
as a similarly compacted variability-type array VT. Never-
theless, the SOLVE code generated refers only to the com-
pacted s array (which thus replaces the S elements in (31)).
Thus, although in the present example, location, value, and
variability type must be known for 41 of the 400 elements in
F,, only 10 quantities need be in core during the simulation-
optimization phase of NDP. Note also (cf. Fig. 4) that in
(33) only 4 quantities, v3, i,, v2, and i,, need be stored on
disk for the purpose of recreating s (i.e., E;) for the back-
ward time adjoint integration (11).

In the NDP language the input description of the time-
domain network optimization problem of Figs. l-5 is
shown in Table II. The first data card defines the reference
node (to be node 0 of Fig. 3). The next nb cards, one for
each branch in the network, are free format with successive
data fields giving the branch label, the start node, the finish
node, the element type, and the name and argument list of a
user defined function subprogram. The fifth card gives the
name of the subprogram which defines the objective func-
tion to appear as integrand in (1) and signals NDP to add
the objector and parametor to the network. The sixth and
seventh cards state that there is one designable parameter
and that in the constrained optimization problem (1) the
parameter labeled 1 has a lower bound of 0.01, a starting
value of 1, and an upper bound of 100. The eighth card
identifies the unknown variables required to recreate the
matrix E; in (11). According to the Lemma of Section III,
those are also the variables which are predicted in the for-
ward time integration (7). Note NDP translates bracketed
function arguments into unknown vector components. In
the example, /!‘2+i,-tx(6), /A3/+v,+x(13), and /Pl/
-‘pl +x(20). Other examples of notation are Nl (voltage of
node 1) and Q3 (charge on the capacitor in branch 3).

Given the card input of Table II, NDP creates a sub-
routine VARQ and input to two permanent subroutines

HACHTEL et d. : SPARSE TABLEAU APPROACH TO ANALYSIS AND DESIGN 109

TABLE II

NETWORK DESCRIPTION, NREF= 0
1, l-0, 3 = E(t)
2, 1-2, 12 = QL(IT2IPlIt)
3,2X)), 11 = PSI (lA2/A3/)
OPTIMIZE PHI (/73/Pl/)
DESIGN PARAMETERS, NP = 1
Pl (0.01, 1, 100)
NONLINEARITIES /A3/A2/T3/T2/

TABLE III

f(l1) = x(11) - FTIME(t)
fV2) = QW(f9, s(3), x(201, s(4), t) -x(17)
f(13) = PWx(l2), 4% x(13), ~(6))
f(l5) = PHW(7), s(7), x(201, ~(8)) -x(9)

TABLE IV

FUNCTION QL(X1, il, X2, S2, T)
Sl = FL(X2, s3, q

QL = Xl * Sl (zi,*L)

s2 = Xl * S3

RETURN
END

aL (> =i2*-
aPI

FTOP and QTVARQ. These subroutines compute the tableau
error vector f and the compacted version s of the tableau
matrix E;. The input to FTOP is the (suitably compacted)
incidence matrix A. Note there is a + 1 (- 1) in the column
of A corresponding to the start (finish) node. Thus A is essen-
tially read directly from the input cards. The result of FTOP
is the evaluation of the first nn + nb components off.

The generated subprogram VARQ for the present example
comprises the list of FORTRAN instructions shown in Table
III. There is a one-to-one correspondence between these
FORTRAN instructions an4 input cards 2-5 of Table II, except
that the argument lists in the user-defined function sub-
programs, QL, PSI, and PHI, differ from those on the input
cards. This difference is for user convenience. The conven-
tion is that given the unknown vector x the subprograms
must return not only the function value (e.g., QL) needed
for computingf, but also the partial derivatives (needed for
evaluating 4) of the function value with respect to members
of the argument list which are components of the unknown
vector x, e.g., s(3) = dQL/ax(6) = L, s(4) = 8QL/ax(20) s
iz(8L/8p,). Thus unknown vector components in the argu-
ment list are always followed by a component of the com-
pacted tableau matrix array s. For user convenience these
extra arguments are left out of the input cards.

The user-specified FORTRAN function subprogram QL is
described as an example in Table IV. In this function sub-
program, another FORTRAN function subprogram FL is called
to evaluate the inductance L-FL (dummy argument SI)
as a function of the time T and the design parameter p1
(dummy argument X2). The value of L is stored in S(3)
(cf., Table III). The magnetic flux for this linear time-

varying inductor is then computed and stored in QL. Then
the derivative aQL/c?p, (dummy argument S2) is computed
in terms of aL/ap, (dummy argument S3) and stored in S(4).

The third executable program QTVARQ creates the Ea-4
(cf. (8)) rows of the tableau vector f and the d/dt elements of
the tableau matrix. QTVARQ computes Ea-4 by replacing 4 by
a summation as described by (17).

Note that FTOP, VARQ, and QTVARQ operate directly on
the input data of Table II with a minimum of intervening
data processing. There are no instructions in NDP which
refer to excess or link capacitors or tree inductors. Thus the
tableau approach imposes no topological restrictions what-
soever on the type or connectivity of the network elements.

Note also that functions like those in Table IV are entirely
user defined. Any function of any group of variables may
thus be defined by the user so that there is no restriction on
the type of elements treatable by the tableau approach.

VI. RELATIONBETWBENPIVOTINGORDERAND
NETWORK METHODSOFANALYSIS

When the time discretization procedure (cf., Section III)
is carried out before any reduction is made on the network
equations, the only constraint on pivoting order is that the
numerical value of the pivot element should not be too
small. From the point of view of pivot order selection, we
examine two of the principal methods of network analysis :
nodal analysis and state-variable analysis. For ease of
illustration consider the tableau of Fig. 9 which describes a
network of only capacitances and other admittance-type
elements but no forcing terms. Using the pivoting order
(4,6), (2,4), (3,5), (5, 3), (6,2) we obtain the nodal equations

A;YA,+A;CA,; (34)

where the matrix operating on node voltages I/ is known as
the nodal admittance matrix.

The state equations are more difficult to describe in terms
of a pivoting order since it requires finer groupings to be
made on the variables. Thus a proper tree must be obtained,5
the tree variables separated from the link variables, and all
variables except the capacitor voltages in the proper tree
and the inductor currents in its links eliminated. For a
simple example, it is now assumed that the capacitor
branches of Fig. 9 form a tree ; hence this is a proper tree.
Thus for the tableau of Fig. 9, the pivoting order (2, l),

' To illustrate that in the general case the state-variable method corre-
sponds to a particular set of pivots and this set gives rise to a proper tree,
consider the following constraints on the pivot order.

1) Select the first nb (number of branches) pivots from A V- Iv=0
rows of Fd, (Fig. 6). If possible, let the kth pivot fall in the first nonzero
column in the kth row of A. In this case, which will occur nn (number of
independent nodes) times, the kth branch is in the tree. If after k- 1
pivots, the kth row of A has been annihilated, then pivot on
Ikk=(FdJ”“+k,nn+“b+k. In this case the kth branch is a link.

2) Select the next nn pivots to fall in locations in the A’i=O rows which
are the transpose of the nn pivot locations in A.

These constraints cause a tree to be selected whose identity depends on
the ord& of branches on the input cards. A proper tree [lo] can be ob-
tained by rearranging the tableau so that voltage sources come first in the
list of branches followed by capacitors, conductors, resistors, inductors,
and current sources.

110 IEEE TRANSACTIONS ON CIRCUIT THEORY, JANUARY 1911

-

AT, AT2

9
-I

I! !-I 1

:;I
m1

Fig. 9. Simplified tableau.

(3,5),(1,2), (4,6), ($3) yields the equations

c% = - (A;)-lA;YA,A;'?l, (35)

which are the state equations in this case.
In both nodal and state-variable analysis the equations

are reduced to their standard form and then the dldt
operator is replaced by a difference operator by some pro-
cedure analogous to that described in Section III. The dif-
ference equations thus obtained are identical to the differ-
ence equations obtained by first replacing the d/dt operator
and then pivoting in the same sequence as was done to
obtain the state-variable or nodal-variable equations.

Both cases (34) and (35) represent a reduced form of the
original tableau matrix FL. Thus the classical network
methods may be regarded as special cases of the tableau
approach. From this point of view the particular methods
are identified by the constraints they impose on the pivoting
order in Gaussian elimination. Since these constraints on
the pivoting order are not in general consistent with objec-
tives of minimizing operations count, it follows that these
classical network methods, being primarily motivated by
analytical simplicity, are intrinsically slower than the sparse
tableau approach.6 The sparse tableau approach also has
an advantage in terms of the possibility for higher precision
answers. To illustrate this, consider the following system of
linear equations

(2 I)(;) = (ii). (36)

Let this represent the unreduced tableau and the system

(D - CA-lB)y = b, - CA-lb, (37)

represent the reduced equations, e.g., these would corre-
spond to state-variable or nodal analysis. Since the unre-
duced tableau is taken directly from the input data, the
matrices A, B, C, D and vectors b,, b, can be assumed to be
precise. The matrix S-D- CA- ’ B and the the vector
b2 = b,- CA-’ b, are the result of some arithmetic opera-

6 It can be seen that the symbolic elimination of topological equations
is formally equivalent to the l-2-3 GNSO process of converting multiplica-
tions by + 1 into additions or subtractions.

tions on the input data and therefore are not precise. Let E
be the error in S and E be the error in b2. Thus in the machine
the reduced problem is represented by

(S + E)y = b”, + 1. (38)

To solve (36) or (38) precisely (to the accuracy of the
machine) one can use iterative refinement [17]. For (36) this
means the iteration

Y (k+ 1) = yW + Ay’W.

For (38) this iteration is

(S + E)Ayck’ = & + E - (S + E)ytk’

Y (k + 1) = y’k’ + Ay’W.

According to Wilkinson [17], in the iterative refinement of
the problem Mz= b, if the matrix M being inverted can be
factored into LU, where LU= M(I+F), with

IFIlm 5 3 (39)

and if the error vector b - Mzck’ is computed with accumula-
tion, then [Iz(~)-- z*II m <2-’ for k large enough. (Here z* is
the true solution and t is the number ofdigits in the machine.)
Thus to within the accuracy of the machine and subject to
(39), equations (36) and (38) can be solved exactly. In the
case of equation (36) we then have an accurate answer.
However, in the case of (38) we only have an accurate answer
to equation (38) but not necessarily equation (36) which was
our original purpose. Thus the initial errors E and E made in
manipulating the input data to form the reduced equations
cannot be recovered.

VII. NUMERICAL RESULTS FOR A PRACTICALEXAMPLE

The current switch-emitter follower logic chain of Fig.
,lO is used to demonstrate optimal design and large-scale
application capabilities of the tableau approach and to
compare its computational efficiency with competitive
methods. Each five-terminal stored model in Fig. 10(c)
represents one logic stage (Fig. 10(b)) in the chain. Each of
these logic circuit models use three transistors, which in turn
are represented by the high-speed transistor model of
Fig. 10(a).

The automated design problem selected has eight logic
stages and is characterized by the parameter set p’ = (R,, R,,
R,) (for the lower and upper parameter bounds we use
pk-(0.05, 0.05, 0.05) and ph-(0.15, 0.15, 0.15)). The design
objective is to realize a specified output voltage waveform
Qt(t) for a given input voltage waveform Q(t) (Fig. 11). The
specified output is characterized by delay, rise time, and
up and down levels. Thus the objective instantaneous func-
tion 4 = 3(I/realized - I/specified)’ vanishes when the shaded
area of Fig. 11 vanishes. For an eight-circuit logic chain the
result of six Fletcher-Powell optimization steps (bottom of
Fig. 11) is that Q(p) decreases from 0.7 to 0.0003.

HACHTEL et cd. : SPARSE TABLEAU APPROACH TO ANALYSIS AND DESIGN

E RG

(b)

. . .

. . .

. . .

“OUT

Fig. 10. Current switch-emitter follower circuit logic chain. (a) Two-
dimensional transistor model. (b) Current switch-emitter follower
logic stage. (c) Logic chain.

Various aspects of problem complexity are given in
Table 4. Note that for this example, p-type elements
(variability type = 4) of the tableau matrix F1 varied 36 times
and t- and x-type elements varied 30 000 and 85 000 times,
respectively.

To show how code length varies with problem size, we
give in Table V the results of applying OPTORD/I-2-3 GNSO
to logic chains of 1, 8, and 22 circuits.

For the data given in Table VI we made no attempt to try
to minimize the length of the code but chose partial pivoting
(p= 0, v= 1 in (22)) to insure accurate answers. The data
indicate that for the one-circuit case, I;; has 462 nonzero
elements, of which 92 are stored in the threaded list (33).
The L/U factorization adds another 450 fill-ins so that there
are 912 nonzero elements in L/U, of which 360 must be
stored during execution of the generated SOLVE code. The
sum of the lengths of the data, and of the c-, T-, x-, B-, and
A-SOLVE codes is 27 316 bytes. The central processing unit
IBM Model 91 times required for function evaluation
(time-domain simulation of 24 ODE) and gradient compu-
tation are 5 s and 3 s, respectively. Note that the various
data in Table VI (in particular note the total code length)
increase approximately linearly with the number of circuits
analyzed and, therefore, with the order of l$. (Such linear
growth may be typical for network tableau matrices.) How-
ever, the growth of simulation time (@D(p) column of Table
VI) is supralinear. This is because both the number of time
steps and the number of Newton iterations per time step
generally increase with problem size.

The results of Table VII illustrate the effects of varying
the ordering strategy to minimize the length of x-type code
(X-SOLVE and B-SOLVE). The data are for the one-circuit case
of Fig. IO(b) (this time without objectors and parametors

I ‘RISE 1

m(p) RI R2 R3

INITIAL .7 75n loon 150a
FINAL .3x10-3 II451 loon Illa

Fig. 11. Three-parameter optimization of eight-stage logic chain

TABLE V

Problem complexity (8 circuit optimization)
nodes 180
branches 460
nonlinear elements 112
differential equations 192
total equations 1300

Optimization (Fletcher-Powell with quadratic search)
designable parameters 3
gradient computations (&D/lap) 6
function evaluations (@(JI)) 36
time steps 30 000
newton iterations 85 000

so the original tableau has only 446 nonzero elements) and
serve to quantify the comparison of the tableau approach
using unconstrained OPTORD with OPTORD constrained to
correspond to competitive network analysis methods given
in Section VI. In each case the ordering parameters T 0 L, p,
v, and wt[i], i= 1, 2, . . . , 6, (cf., (22)-(26)) were chosen by
trial and error to minimize code length irrespective of ac-
curacy considerations and are tabulated in Table VIII.

For the nodal-analysis method, the last nn ‘(number of
independent nodes) pivots were constrained to come from
the upper-left-hand partition of Fl (originally zero in Figs. 6
and 9). For the state-variable method, the last ns (number of
state variables is ns = 21) pivots were constrained to be in the
state-variable columns and in the corresponding d/dt rows.
Within these constraints, the full OPTORD algorithm was
used to select the pivots.

One basis for comparing the performance of the gen-
erated codes is the sum of the X-SOLVE and B-SOLVE code
lengths7 since these are executed in the innermost loop of the
program (85 000 times in the example of Table V). In Table
VII the data (compare cases 1 and 2 to 5 and 6) demonstrate
our general experience that the pivot order constraint im-
posed by the nodal-analysis method did not significantly in-
crease SOLVE code lengths over unconstrained OPTORD. The
pivot order constraint (cases 3 and 4) imposed by the state-
variable analysis method caused a more substantial increase
in code length. In all cases observed to date, unconstrained
OPTORD has given the best performance, with nodal analysis
a fairly close second. (An explanation of this phenomenon
will be given in a subsequent paper.)

’ Since the generated codes are relatively homogeneous and have no
loops, the code length is roughly proportional to execution time.

112 IEEE TRANSACTIONS ON CIRCUIT THEORY,JANUARY 1971

TABLE VI
PARTIAL PIVOTING (p=O, U=~)OPTORD/I-z-3 GNSO FOR LOGIC CHAIN OF 1 CIRCUIT, 8 CIRCUITS,

~~CIRCUITS(PARAMETORSAND OBJECTORINCLUDED)

Nodes/Branches

4

Nonzero Stored

-Vu Model 91 Time(s)
Total Code Number of

Fill Stored in Bytes WP) amp ODE

16/61 462 92 450 360 27 316 5 3 24
180/460 3472 680 3735 3430 276 404 120 30 192
49211260 8632 1736 9332 8617 713 504 900 500 928

TABLE VII
COMPARISONOF SPARSETABLEAU APPROACH(NDP)

WITH CLASSICAL NETWORK METHODS

OPTORD/I-2-3 GNSOOUtpUt

Case
Analysis

Mode

LIU Code Length (bytes)”

Fill Stored T-SOL X-SOL B-SOL

1 Nodal
-0PTORD

215

2 Nodal
-0PTORD

194

3 S-V 472
-0PTORD

4 s-v 500
-0PToRD

5 NDP
-0PTORD

191

6 NDP 204
-0PTORD

a Upper number in bracketed pairs represents output of current
1-1-3 GNSO compiler. Lower number represents estimates based on hypo-
thetical optimum compiler.

Note in Table VII a correlation between generated code
lengths and the number of stored quantities in L/U. This
suggests that minimizing the fill in of non f 1 quantities
may be the best criterion for optimizing code lengths.

When circuits become much larger, as in the example of
Table V, accuracy requirements rather than code length
can become the dominating factor in selecting ordering
parameters. The nodal and state-variable column con-
straints on the pivoting order prevent the implementation of
a true partial pivoting strategy (p=O, v= 1) and thus con-
tribute to a reduction in the accuracy of the answers. This
consideration may be the cause of problems observed in
NODAL OPTORD code for large values of the time step h and
with s-v OPTORD for small values of h. Another accuracy
consideration is the fact that the number of Newton itera-
tions per time step increases with problem size for large net-
works. The evidence suggests that the Newton iteration is
not only solving the nonlinear difference equations in (7),
but also serving to refine the solutions of the linear equa-
tions. This consideration has thus far prevented successful
runs on very large networks with parameters set for other
than partial pivoting. This aspect of the accuracy problem
may also prevent extensive exploitation of possible sparsity
of the right-hand-side vector. One might think that for linear

TABLE VIII
ORDERINGPARAMETERSFORCASESOFTABLEVII

OPTORD/I-?-3GNS0 Input

Case TOL /I u ~(1) ~(2) ~(3) wt(4) ~(5) it

1 0 0.5 1 100 100 500 400 450 1500
2 0 1 0 100 100 150 200 150 300
3 0 0.5 1 100 100 500 400 450 1500
4 0 1 1 100 100 500 600 450 900
5 0 1 0.5 100 100 90 101 90 150
6 0 1 0 100 100 102 101 102 150

time invariant rows of the tableau vectorf(e.g., the first 11
rows in Fig. (4), the right-hand side would stay zero if started
at zero. This is not the case. Instead it has been found neces-
sary to evaluate the full right-hand side at every Newton
iteration to obtain rapid convergence.

The preceding results and discussion, combined with the
error discussion of Section VI, suggest that nodal or state-
variable constraints on the pivoting order offer no appreci-
able storage or execution speed advantages and create the
possibility of accuracy problems.

VIII. CONCLUSIONS

The advantages claimed for the tableau approach are
1) generality, 2) simplicity, 3) speed, and 4) problem size.

Generality is claimed because any system of differential
and algebraic equations can be handled. In particular, for
electrical networks no topological restrictions are necessary
and there are no restrictions on the type of elements allowed.
This allows, for example, the inclusion of the objective
function in the tableau by introducing the objector element.

Simplicity is achieved with the tableau approach by
basing the main computational task of the program on
Gaussian elimination. All other computations have a simple
direct relation to the input data for the program. Although
the programs OPTORD and 1-2-3 GNSO are not simple, they
are general in nature and relate to the more general problem
of solving fix, a)=0 by Newton’s method for different
values c1 where LJf/ax is sparse and has elements with different
variability types. It therefore seems wise to develop such
programs to a high degree and base more special programs
(such as network design programs) around these develop-
ments.

The claim of speed is based on the fact that operations
count in the basic Newton loop has been minimized so
that only necessary operations are executed. This has been
done by using variability type and near-optimal ordering
algorithms in OPTORD. In addition, the number of time steps

HACHTEL et al. : SPARSE TABLEAU APPROACH TO ANALYSIS AND DESIGN

required for integration has been made small by using im-
plicit methods and Gear’s error control algorithms.

Large problems can be handled under this program be-
cause storage is saved by not storing O’s and 1’s. In addition,
OPTORD saves space by causing little fill in. Since the SOLVE
code contains no loops, it can be stored in auxiliary storage
and executed as it is brought into core thus requiring no
storage. (However, for maximum speed, it should remain
in core.)

As was shown in Section VII, the s-v OPTORD and NODAL-
OPTORD methods offer no advantages over the uncon-
strained OPTORD methods. In fact, possibly serious ac-
curacy problems may occur. Note that the NODAL-• PTORD
column constraints cause differencing errors in the back
substitution which may be serious when arguments of non-
linearities are branch voltages. Thus if such a branch voltage
is small in comparison with its terminal node voltages, it will
be computed to fewer significant digits.

Note that some speed and storage advantages may accrue
to the nodal or state-variable methods if the elimination
leading to the appropriate final variable set is done sym-
bolically at the input processor level. Since variables which
enter linearly and are neither energy storage nor involved
in output can be eliminated, the amount of B-SOLVE code can
be reduced. However, the excess B-SOLVE code (which
corresponds roughly to solving Ax= (6, -By) in (36))
could, with some programming effort, be removed from the
output of l-2-3 GNSO. Thus this excess code is a deficiency of
the implementation but not of the sparse tableau approach.
Note that a priori symbolic reduction introduces topolog-
ical matrix-vector operations and complicates the forming
of the Jacobian matrix and right-hand side vector. (These
additional operations correspond roughly to the forming of
D-AC’B and b2- CAplb, in equation (37).) In con-
trast, the analogous operations for OPTORD analysis are
executed by the highly efficient SOLVE code.

In NDP we have chosen to emphasize speed at some cost
to problem size by ‘keeping the SOLVE code in core. On a
large machine such as 360191 with 2 x lo6 bytes of memory,
this turns out to be a good choice. On this machine the
capacity limitation of NDP seems to be about 2500
branches. A transient analysis of a network with 1200
branches took about 20 min. An entire optimization in-
volving three parameters of a 460 branch network and re-
quiring 36 function evaluations and 6 gradient evaluations
took 1 h. Extrapolating linearly, we calculate that optimiza-
tion for a 2500 branch network would require 7 h. However,
this is low since larger networks usually require more time
steps per transient integration and more Newton iterations
per time step. Further, for a large circuit more than three
parameters will normally be used which surely will increase
the number of function and gradient evaluations required.
Thus all indications are that 7 h is a very rough lower bound
for optimization of a 2500 branch network. It would not be
surprising if as many as 20-60 h were required. On the
other hand, no serious attempt has been made yet to op-
timize the various parameter settings in NDP to cut down
the number of time steps, Newton iterations, etc., so that
this figure may be cut down.

113

If transient analyses for even larger networks are desired,
the l-2-3 GNSO SOLVE code could be buffered into core. This
would save a factor of 2-3 in storage, but cause an unknown
degradation in execution speed. An alternative approach
would be to not generate the SOLVE code but to use a scheme
similar to that suggested by Chang [9]. This would save a
factor of 3 in storage, and perhaps a factor of 2 in speed
would be lost. (However, with this method, variability type
cannot be exploited.) Thus a 7500 branch network transient
analysis would be possible and a rough lower bound on
execution time would be about 4 h on the 360/91.

ACKNOWLEDGMENT

The authors would like to thank T. E. Grapes, who was
responsible for programming the compiler which converts
GNSO to l-2-3 GNSO, and D. A. Calahan, for extensive dis-
cussions and the interchange of ideas.

REFERENCES
[l] F. G. Gustavson, W. Liniger, and R. A. Willoughby, “Symbolic

generation of an optimal Crout algorithm for sparse systems of
linear equations,” J. Ass. Comput. Mach., vol. 17, pp. 87-109,
January 1970.

[2] R. K. Brayton, F. G. Gustavson, and R. A. Willoyghby, “Some
results on sparse matrices,” to be published in Math. Comput.

[3] W. F. Tinney and J. W. Walker, “Direct solutions of sparse network
equations by optimally ordered triangular factorization,” Proc.
IEEE, vol. 55, pp. 1801-1809, November 1967.

141 Proc. Sparse Matrix Symp., IBM Rep. RA-1, March 1969.
i5j G. D. Hachtel and R. k. Rohrer, “Techniques for the optimal design

and synthesis of switching circuits,” Proc. IEEE, vol. 55, pp. 1864
1877, November 1967.

[6] F. H. Branin, Jr., “Computer methods of network analysis,” Proc.
IEEE, vol. 55, pp. 1787-1801, November 1967.

[7] C. W. Gear, “The automatic integration of stiff O.D.E.‘s,” Proc.
1968 IFIPS Congr., pp. A81-A85.

[S] -, “The control of parameters in the automatic integration of
ordinary differential equations, ” J. Ass. Comput. Mach.; Department
of Computer Science, University of Illinois, Urbana, Internal Rep.,

[91

1101

[Ill

[I21

u31

[I41

u51

[I61

[I71

VI

p. 14, May 1968.
S. Sedore et al., “SCEPTRE-an automated digital computer pro-
gram for determining the response of electronic systems to transient
nuclear radiation.” vol. 11. IBM Snace Guidance Center, Oswego,
N. Y., Tech. Rep: AFWL-TR-66-li6.
E. S. Kuh and R. A. Rohrer, “The state-variable approach to network
analvsis. Proc. IEEE, vol. 53, pp. 672486, July 1965.
R. Fletcher and M. J. D. Pdwell, “A rapidly convergent descent
method for minimization.” Comaut. J., vol. 6, pp. 163-168, 1965.
A. Nordsieck, “On num&ical integration of o&nary differential
equations,” Math. Comput. vol. 16, pp. 22-49, 1962.
D. A. Calahan, “Optimization of switching circuits,” presented at
the 2nd Biennial Cornell Conf. Engineering Applications of Elec-
tronic Phenomena, 1969.
H. M. Markowitz. “The elimination form of the inverse and its
application to linear programming,” Management Sci., vol. 3, pp.
255-269, April 1957.
G. B. Dantzig, R. P. Harvey, R. D. McKnight, and S. S. Smith,
“Sparse matrix techniques in two mathematical programming
codes,” Proc. Sparse Matrix Symp., IBM Rep. RA-1, pp. 85-99,
March 1969.
P. D. Grout, “A short method for evaluating determinants and
solving svstems of linear equations with real or complex coefficients,”
AIEE-Tians. (Supplementj, vol. 60, pp. 1235-1240,-December 1941.
J. H. Wilkinson, The Algebraic Eigenvulue Problem. New York:
Oxford University Press, 1965.
__ Rounding Errors in Algebraic Processes. Englewood Cliffs,
N. J.‘: Prentice-Hall, 1963, pp. 121-126.

[19] S. Seshu, “Topological considerations in the design ot driving pomt
functions,” Proc. AMS, pp. 1068~1073, October 1965.

[20] A. Chang, “Applications of sparse matrix methods in electric power
system analysis,” Proc. Sparse Matrix Symp., IBM Rep. RA-1,
pp. 113-121, March 1969.

