The **charge** on an electron is -1.6×10^{-19} C

Current (A) is the time rate of change of charge: $i = \frac{dq}{dt}$

Voltage (V) is the work done to move 1 C of charge from point a to b: $v = \frac{dw}{dq}$

Power (W) is the work done per unit time: $P = \frac{dw}{dt} = \frac{dq \, dq}{dt} = v \times i$

Ohm’s Law: $v = R \times i$

$i = \frac{v}{R}$; \hspace{10pt} $R = \frac{v}{i}$

Power Dissipated in a Resistor: $P = v \times i = \frac{v^2}{R} = i^2 R$

KCL: (algebraic) $\sum_{\text{node}} i = 0 \quad \text{or} \quad \sum_{\text{node}} i_{\text{entering}} = \sum_{\text{node}} i_{\text{leaving}}$

KVL: (algebraic) $\sum_{\text{loop}} v = 0 \quad \text{or} \quad \sum_{\text{loop}} v_{\text{rise}} = \sum_{\text{loop}} v_{\text{drop}}$

Resistances in Series: $R_{eq} = R_1 + R_2 + \cdots + R_N$

For $R_1 = R_2 = \cdots = R_N = R$, $R_{eq} = N \times R$

Voltage Division: $v_j = \frac{R_j}{R_1 + R_2 + \cdots + R_N} v_s \quad 1 \leq j \leq N$

Resistances in Parallel: $\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \cdots + \frac{1}{R_N}$

For $R_1 = R_2 = \cdots = R_N = R$, $R_{eq} = \frac{R}{N}$

Current Division: $i_j = \frac{1/R_j}{\frac{1}{R_1} + \frac{1}{R_2} + \cdots + \frac{1}{R_N}} i_s \quad 1 \leq j \leq N$

Two Resistances in Parallel: $R_{eq} = \frac{R_1 R_2}{R_1 + R_2}$ \quad For $R_1 = R_2 = R$, $R_{eq} = \frac{R}{2}$

Current Division for Two Resistances in Parallel: $i_1 = \frac{R_2}{R_1 + R_2} i_s$; \hspace{5pt} $i_2 = \frac{R_1}{R_1 + R_2} i_s$

Wye-Delta (Y-Δ) Conversion:

Δ→Y:

$R_1 = \frac{R_b R_c}{R_a + R_b + R_c}$; \hspace{10pt} $R_2 = \frac{R_c R_a}{R_a + R_b + R_c}$; \hspace{10pt} $R_3 = \frac{R_a R_b}{R_a + R_b + R_c}$

For $R_a = R_b = R_c = R$, \hspace{10pt} $R_1 = R_2 = R_3 = \frac{R}{3}$

Y→Δ:

$R_a = \frac{R_1 R_2 + R_2 R_3 + R_3 R_1}{R_1}$; \hspace{10pt} $R_b = \frac{R_1 R_2 + R_2 R_3 + R_3 R_1}{R_2}$; \hspace{10pt} $R_c = \frac{R_1 R_2 + R_2 R_3 + R_3 R_1}{R_3}$

For $R_1 = R_2 = R_3 = R$, \hspace{10pt} $R_a = R_b = R_c = 3R$
Node-voltage (nodal) Analysis: For each node (or supernode) other than the ground node, write KCL in terms of the unknown node voltages. Solve for the unknown node voltages.

Convention – currents leaving a node are taken to be positive.

Mesh-current (mesh) Analysis: For each mesh (or supermesh), write KVL in terms of the unknown mesh currents. Solve for the unknown mesh currents.

Convention – mesh currents are defined in a clockwise direction.

Source Superposition:

1. **Step 1:** Set all independent sources to zero except for one. A zero-value independent voltage source is a short circuit and a zero-value independent current source is an open circuit.
2. **Step 2:** Apply an analysis method to solve for the unknown voltage/current of interest.
3. **Step 3:** Repeat **Step 1** and **Step 2** for all the other independent sources.
4. **Step 4:** Add all the voltages/currents calculated in **Step 2** to find the final answer.

Source Transformation:

Thevenin Equivalent Circuit:

\[V_{Th} = v_{ab} \text{ (open circuit voltage across terminals a and b)} \]
\[R_{Th} = R_{ab} \text{ (resistance between terminals a and b)} \]

Calculation of \(R_{Th} \) (\(R_{ab} \))

- Short-circuit method: Short terminals a and b. Calculate the short circuit current \(i_{sc} \). \(R_{Th} = V_{Th}/i_{sc} \) (at least one independent source)
- Equivalent-resistance method: Set all independent sources to zero and calculate \(R_{ab} = R_{Th} \) (series/parallel/Y-Δ conversions; NO dependent sources)
- External-source method: Set all independent sources to zero. Apply an external voltage (current) \(v_{ex} (i_{ex}) \) and solve for the current (voltage) \(i_{ex} (v_{ex}) \). \(R_{Th} = v_{ex}/i_{ex} \)

Norton Equivalent Circuit:

\[I_{N} = i_{sc} \text{ (short circuit current)} = V_{Th}/R_{Th} \]
\[R_{N} = R_{Th} = R_{ab} \text{ (resistance between terminals a and b)} \]

Maximum Power Transfer:

Maximum power is transferred to \(R_L \) when \(R_L = R_s \)

\[P_{max} = \frac{V_s^2}{4R_L} \]