Assignment #6 Due Today 11:59 PM

No assignment this week.

Midterm 2: Thu 10-10:50 AM MLM 026
- Chapter 3
 Sections 3.1 - 3.7
 + Section 2.3 (source transformation)
- Closed book/notes
 Reference notesheet will be provided (posted)
- NO CALCULATORS
- Sample exam posted (more details later today)

Help Session Today 6-7 pm WNGR 153

Opamps
In a negative feedback arrangement \(v_n = v_p \)

KCL @ input nodes ONLY
NO KCL at the output node

Difference Amplifier
\(V_p = V_n \)

KCL @ \(V_p \)
\[\frac{V_2 - V_p}{R_1} = \frac{V_p}{R_2} \]
\[V_p = \frac{R_2}{R_1 + R_2} V_2 \]
(voltage division)
\[
KCL @ v_n: \quad \frac{v_1 - v_n}{R_1} = \frac{v_n - v_o}{R_2}
\]

\[
v_o = -\frac{R_2}{R_1} v_1 + \left(\frac{R_2}{R_1} + 1 \right) v_n
\]

\[
= -\frac{R_2}{R_1} v_1 + \left(\frac{R_2 + R_1}{R_1} \right) v_n
\]

Since \(v_n = v_o = \frac{R_2}{R_1 + R_2} v_2 \)

\[
v_o = -\frac{R_2}{R_1} v_1 + \left(\frac{R_2 + R_1}{R_1} \right) \frac{R_2}{R_1 + R_2} v_2
\]

\[
v_o = \frac{R_2}{R_1} (v_2 - v_1)
\]

Example

\[
\frac{v_o}{v_i} = -\frac{R_1}{R_1} = -\frac{50}{10} = -5
\]

\[
v_o = -\frac{60}{20} v_1 - \frac{60}{30} (-5 v_2)
\]

\[
= -3 v_1 + 10 v_2
\]
Review

- **Nodal analysis (node voltage analysis)**
 1) identify all nodes
 2) define a reference (ground) node
 specified for the exam
 3) KCL at each node in terms of node voltages
 4) Solve the equations for unknown node
 convention: current leaving a node is positive
 voltage sources:
 1) one terminal is grounded
 2) connected between two non-ground nodes

\[V_A - V_B = V_s \]

Mesh current analysis

- Identify mesh currents
 convention: clockwise direction
- Write KVL in terms of mesh currents for each mesh
- Solve equations for mesh currents

Current sources:
 1) part of a single mesh fixes the mesh current
 2) common to two meshes

KVL for a supermesh

Superposition principle

Analyze circuit with only one independent source (repeat for each independent source)
Zero out other independent sources
\[V_s \rightarrow \text{Short circuit (wire)} \]
\[I_s \rightarrow \text{open circuit (break)} \]

Solve a set of simpler problems

Sum up contributions from all sources to get the final result

Source transformation:

\[V_s \]
\[R \quad \Leftrightarrow \quad I_s \]
\[V_s = I_s R \]
\[I_s = V_s / R \]

Thevenin/Norton Equivalent Circuits

Thevenin

Norton

\[V_{Th} = V_{\text{open-circuit across terminals } a \text{ and } b} \]

Use a circuit analysis method

Determining \[R_{Th} \]

If there is no dependent source then can use the equivalent resistance method

Zero out (deactivate) all independent sources

Then use series/parallel conversions to find Req

With dependent sources

1. Short circuit method
2. External source method

1). Short terminals \(a \) and \(b \) and calculate the short circuit current \(I_{sc} \)
\[R_{Th} = \frac{V_{Th}}{I_{SC}} \]

2) **External source method**

Zero out (deactivate) all independent sources

Dependent sources remain intact

Apply an external voltage \(V_{ex} \) and measure the external current \(I_{ex} \)

\[R_{Th} = \frac{V_{ex}}{I_{ex}} \]

For Norton Equivalent \(R_N = R_{Th} \); \(I_N = \frac{V_{Th}}{R_{Th}} \)

Maximum power transfer

\[R_L = R_S \]

\[P_{max} = \frac{V_S^2}{4R_S} \]