ENGR 201 Winter 2020

Instructional Resources

- Instructor:
 - Karti Mayaram (email: karti@oregonstate.edu)
 - Office KEC 4095 (phone: 737-2972)
 - Office Hours: Mon 5-6pm, Tue 11am-noon

- TA office hours:
 - Posted on Canvas

- Class website
 - http://web.engr.oregonstate.edu/~karti/engr201.html

- Anonymous feedback on class webpage
 (http://web.engr.oregonstate.edu/~karti/engr201.html)
Organization and Policies

• ENGR 201:
 – Lecture Tu/Th 10-10:50am
 – Recitation/Lab sections during the week
 • Problem solving sessions + 3 labs
• All emails should have [ENGR201] in subject line
• Cheating is unacceptable
 – Swift disciplinary action will be taken
• No laptops allowed in class
• No late assignments accepted
• No makeup exam
 – Exception: medical emergency

Grading

• Exams will be closed book
 – Reference note sheet will be provided
 – Calculators will not be allowed
• Midterm Exams (2): 40%
 – Thu Jan. 30: 10am-10:50am (50 minutes)
 – Thu Feb. 20: 10am-10:50am (50 minutes)
• Comprehensive Final Exam: 25%
 – Mon Mar. 16: 9:30am-11:20am (110 minutes)
• Assignments: 15%
• Recitation Quizzes + Lab Reports: 20%
• Grades: A ≥ 90, B 80-<90, C 70-<80, D 60-<70, F < 60
Recitation/Lab Sections

- Attendance required
 - Recitations start this week
- Labs start Week 4 (Lab kit to be purchased)
 - Lab #1 (Week 4), Lab #2 (Week 7), Lab #3 (Week 9)
- Week 3 Monday (Jan 20) MLK holiday
 - Monday sections - please attend another section during that week
- In a recitation week if you cannot attend your regular section
 - Please inform your section TAs about missing the recitation
 - Also, inform the TAs for the section you will attend

Assignments (Total #7)

- Weekly assignments:
 - Assigned Tue and due on Tue following week
 - No new assignment during midterm week
 - Assignments from Etextbook
 - Regular Assignments
 - Multiple attempts
 - Hints provided in most problems
 - Adaptive followup (extra credit)
Textbook (Etext of Electric Circuits)

• The instructions for purchasing the book are on Canvas
 – Textbook is required
 – Purchase Etext from OSU Bookstore
 – Follow instructions in Canvas to link Canvas and Etext
 • Direct link from Canvas to Etext and Assignments
 – Assignment #0 – Due Thu Jan. 9
 • Introduction to Etext usage

Optional Resources

• Univ. of California Video Course
 – http://cad.eecs.umich.edu/berkeley_videos.html

• Univ. of Utah Video Course
 – https://utah.instructure.com/courses/473597

• Khan Academy

• All About Circuits
 – https://www.allaboutcircuits.com/textbook/direct-current/

• Wikiversity
 – https://en.wikiversity.org/wiki/Electric_Circuit_Analysis
What is this Course About?

Analysis of Circuits or Networks

- What is a circuit?
 - An interconnection of electrical components
 - Example: battery and bulb in a flash light

- The interconnection can be complex

Why do All Engineering Students Need this Course?

- Encounter electric circuits in day-to-day life
 - Household power, appliances, autos, ...
- Engineering is a very interdisciplinary field
 - Micro electromechanical systems (MEMS)
 - Electrical and mechanical systems
 - Bio MEMS
 - Chemical, biological, fluid mechanics, electrical systems
- Interdisciplinary projects/teams need to have an understanding of interactions between disciplines
- Knowledge of electric circuits can be used to analyze other systems
 - Mechanical
 - Heat flow
 - Fluid flow
 - ...
- A fundamental course for ALL engineering students
What does one Learn in this Course?

• Circuit variables
 – Current, Voltage, Charge, Power
• Circuit components
 – R, C, L, independent sources, dependent (controlled) sources
• Basic laws
 – Ohm’s Law
 – Kirchhoff’s Laws: KCL (current law), KVL (voltage law)
• Analysis
 – DC sources and resistors
 – Nodal analysis
 – Mesh analysis
 – Opamp circuits
• Useful tools
 – Series/parallel combinations
 – Superposition
 – Thevenin/Norton equivalent circuits
 – Source transformation

Electric Charge

• An electrical property of materials measured in coulombs (C) and is denoted by the symbol q

- Charge of an electron (denoted by e) is negative and of magnitude 1.6×10^{-19} C ($|q_e| = 1.6 \times 10^{-19}$ C)
 - -1 C of charge = charge of 6.25×10^{18} electrons ($1/1.6 \times 10^{-19}$)
• Charge of a proton is positive of value 1.6×10^{-19} C
• Like charges repel, charges of opposite polarity attract
• Law of conservation of charge: the net charge in a closed region can neither be created or destroyed (only transferred)
Conductors/Insulators

- In a metal or conducting material electrons are free to move around under the application of an electric field
 - Aluminum, copper, gold, silver
 - Good conductor of electricity
- In an insulator all electrons are tightly bound to the nucleus and are not free to move
 - Plastic, glass, rubber
 - Do not conduct electricity

Current

- The flow of charge (time rate of change) is known as electric current
 - Symbol I or i
 - Units of current are amperes (A)
 - 1 A = 1 C/1 s (rate of flow of one coulomb of charge per second)
- Conventional current flow is the movement of positive charge (i.e., opposite to the flow of electrons)
- All circuit elements are electrically neutral, i.e., $i_{in} = i_{out}$

- Direct Current (dc) – current that is constant with time
- Alternating Current (ac) – current varies as a sinusoid with time
Current and Charge

• Typical scales for current:
 – integrated circuit (IC, chip) μA to A
 – flashlight 100 mA - 1A
 – space heater 10A (110VAC outlets are 15A - 20A rating)
 – automobile starter motor 100 - 400A
 – power distribution 200A - 1 kA
 – lightning bolt > 10 kA

• Charge transferred between time t_0 and t
 $$q(t) = \int_{t_0}^{t} i(t) dt$$ (C)

Water Flow Analogy

• Consider the flow of water in a pipe
 – flow of water \Leftrightarrow flow of charge
 – flow rate \Leftrightarrow current
Electric Circuit

- Wires in electric circuits are similar to pipes that carry water.
Ex1: How much charge is associated with 5000 electrons?

Charge on an electron = \(-1.6 \times 10^{-19}\) C

\[5000 \text{ electrons} = 5000 \times (-1.6 \times 10^{-19}) \text{ C} = -8 \times 10^{-16} \text{ C}\]

Ex2: Find if charge flow is given by

\[q(t) = 5t^2 + 4t - 3 \text{ C}\]

\[i = \frac{dq}{dt} = 10t + 4 \text{ A}\]

\[i(t = 1) = 10 \times 1 + 4 = 14 \text{ A}\]

Ex 3:

For \(0 < t \leq 2\) ms

\[i(t) = \frac{80 \text{ mA}}{2 \text{ ms}} = 40 \text{ A}\]

For \(8 < t \leq 12\) ms

\[i(t) = -\frac{80}{4} = -20 \text{ A}\]

Ex 4: Total charge flow for \(0 < t < 2\) s when

\[i(t) = e^{-2t} \text{ mA}\]

\[q(t) = \int_{t_0}^{t} i(t) \, dt = \int_{0}^{2} e^{-2t} \, dt \text{ mC}\]

\[= 0.49 \times 10^{-3} \text{ C} = 490 \mu\text{C}\]