Current (I or i)

- The time rate of change of charge is known as electric current
 - Units of current are amperes (A) \(1 \text{ A} = 1 \text{ C/s} \)

\[
i(t) = \frac{dq}{dt} \quad \text{(A)}
\]

- Conventional current flow is the movement of positive charge
- For all circuit elements \(i_{\text{in}} = i_{\text{out}} \)
- Charge transferred between time \(t_0 \) and \(t \)

\[
q(t) = \int_{t_0}^{t} i(t) dt \quad \text{(C)}
\]
Water Flow Analogy (Current)

- Consider the flow of water in a pipe
 - flow of water ⇔ flow of charge
 - flow rate ⇔ current

Water Flow Analogy (Voltage)

- The higher tank results in more water flow
Water Flow Analogy

- A pump forces water to a height h above the reference level \leftrightarrow potential energy

Voltage (Potential Difference)

- The voltage V_{ab} between two points in an electric circuit is the energy (or work) needed to move a unit positive charge from b to a
- The units of voltage are Volts (V)
 - $1 \text{ V} = 1 \text{ J}/1 \text{ C}$
 - $v_{ab} = \frac{dW}{dq}$
- Electrical system would do 12 J of work to move 1 C from b to a
- V_{ab} is the voltage (potential difference) between a and b
 - a is at a potential V_{ab} higher than b
 - the potential at a w.r.t. b is V_{ab}
 - the potential at b is V_{ab} lower than a
Voltage

- A voltage drop from a to b is equivalent to a voltage rise from b to a
 \[V_{ab} = -V_{ba} \]

- a is 12 V above b
- b is 12 V below a
- 12 V voltage rise from b to a
- 12 V voltage drop from a to b
Electrical/Mechanical/Fluid/Thermal Analogs

<table>
<thead>
<tr>
<th>General Description</th>
<th>Electrical</th>
<th>Mechanical</th>
<th>Fluid</th>
<th>Thermal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motion (flow) “through” variable</td>
<td>Current, I</td>
<td>Velocity</td>
<td>Flow rate</td>
<td>Heat flow</td>
</tr>
<tr>
<td>Push (effort) “across” variable</td>
<td>Voltage, V</td>
<td>Force</td>
<td>Pressure</td>
<td>Temperature</td>
</tr>
</tbody>
</table>

Measuring Voltage and Current

Measurement Instruments

- **Voltmeter**
 - Measures voltage (potential difference) in Volts (V)
 - Connected in parallel (voltage is an “across” variable)
 - Ideally does not draw current

- **Ammeter**
 - Measures current in Amperes (A)
 - Connected in series (current is a “through” variable)
 - **Current must flow through the instrument**
 - Ideally does not drop voltage
Independent Voltage and Current Sources

Independent Sources

<table>
<thead>
<tr>
<th>Source Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ideal Voltage Source</td>
<td>Provides a specified voltage completely independent of the circuit elements connected to it</td>
</tr>
<tr>
<td>Battery</td>
<td>or</td>
</tr>
<tr>
<td>dc source</td>
<td>Any source*</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Source Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ideal Current Source</td>
<td>Provides a specified current completely independent of the circuit elements connected to it</td>
</tr>
<tr>
<td>dc source</td>
<td>Any source</td>
</tr>
</tbody>
</table>

Example

- **Circuit 1**
 - 2 V
 - 1 A

- **Circuit 2**
 - 2 V
 - 1 A
Reference direction for current

\[\rightarrow 2A \]

Power and Energy

Useful for electric circuits
- Light bulbs: 60W, 100W power ratings
- Electric bills: kW-h based on energy consumed

Power
- Work done per unit time
- Rate of expending or absorbing energy
\[P = \frac{dw}{dt} \]

\[1W = 1J/s \]

\[P = \frac{dw}{dt} = \frac{dw}{dq} \frac{dq}{dt} = \vec{v} \cdot \vec{i} \quad (W = V \cdot A) \]

Power is a time varying quantity (in general) and at a given instance of time you measure instantaneous power.

An element can either absorb (or dissipate) power or it can supply power.

Passive element
- Element that dissipates power, e.g., bulb.

Active element
- Element that supplies power, e.g., battery, generator.

Passive sign convention
- Current enters into the positive terminal
\[P = VI \]
\[p > 0 \implies \text{power absorbed} \]
\[p < 0 \implies \text{power supplied} \]

\[p = 4 \times 3 = 12 \text{W} \]

Absorbed

Power absorbed = - Power supplied

\[E = \int_{t_0}^{t} p(t) \, dt \]

\[W = \int_{t_0}^{t} p(t) \, dt \]

is the energy absorbed or supplied by an element from time \(t_0 \) to \(t \)

Electric bill measures energy in kWh (kilo watt hour)

\[1 \text{ kWh} = \left(10^3 \text{ W}\right) \left(1 \text{ h}\right) = 1000 \text{ Wh} \]

\[1 \text{ W} = 1 \text{ J/s} \]

\[1000 \text{ W} \times 3600 \text{ s} = 3.6 \times 10^6 \text{ J} = 3.6 \text{ MJ} \]