ENGR 201 Lecture #16 MARCH 5, 2020

\[i = C \frac{dv}{dt} \]
\[v = \frac{1}{C} \int i \, dt + v(t_0) \]
\[i(t) = \frac{1}{L} \int v \, dt + i(t_0) \]

At dc: \(i = 0 \Rightarrow \) open circuit
At dc: \(v = 0 \Rightarrow \) short circuit

Voltage across a capacitor cannot change abruptly
Current through an inductor cannot change abruptly

\[L \]
\[v = \frac{1}{L} \int i \, dt \]
\[v = \frac{1}{L} \int i \, dt \]

\[\text{Ex} \]
Find \(i_L \) and \(v_c \)
(\(dc \))

For \(dc \): Inductor \(\Rightarrow \) short circuit
Capacitor \(\Rightarrow \) open circuit

\[i_L = \frac{3}{3+1} \times 4 = 3 \text{A} \]
Current division

\[v_c = \text{voltage drop across } 1 \Omega \text{ resistor} \]
\[= 3 \times 1 = 3 \text{V} \]

Power and Energy for Inductor

\[P = \frac{1}{2} L \frac{dv}{dt} = \frac{1}{2} L i^2 \]

Energy: \(W = \int_{-\infty}^{t} P \, dt = \frac{1}{2} L i^2 \)
Series Combination of Inductors

\[L_{eq} = L_1 + L_2 + \cdots + L_n \]

Inductors in Parallel

\[\frac{1}{L_{eq}} = \frac{1}{L_1} + \frac{1}{L_2} + \cdots + \frac{1}{L_n} \]

For 2 inductors in parallel

\[L_{eq} = \frac{L_1 L_2}{L_1 + L_2} \]

Ex:

\[L_{eq} = \frac{30 \times 60}{30 + 60} = 20 \text{ H} \]

\[\begin{align*}
\begin{array}{c}
\text{At } t = 0^- \\
5V \\
\text{open circuit for } C
\end{array}
\end{align*} \]

\[\begin{align*}
\begin{array}{c}
\text{At } t = 0^+ \\
5V \\
\text{closed circuit for } C
\end{array}
\end{align*} \]

\[L_{eq} \]

\[\begin{align*}
\begin{array}{c}
\text{At } t = 0^- \\
5V \\
\text{short circuit for } L
\end{array}
\end{align*} \]

\[\begin{align*}
\begin{array}{c}
\text{At } t = 0^+ \\
5V \\
\text{closed circuit for } L
\end{array}
\end{align*} \]

KCL:

\[i_C + i_R = 0 \]

\[\frac{di_C}{dt} \frac{V}{R} + i_C - \frac{V}{R} = 0 \]

\[L \frac{di}{dt} + Ri = 0 \]

\[\frac{di}{dt} + i = 0 \]

\[L_{eq} \]

\[\begin{align*}
\begin{array}{c}
\text{At } t = 0^- \\
5V \\
\text{short circuit for } L
\end{array}
\end{align*} \]

\[\begin{align*}
\begin{array}{c}
\text{At } t = 0^+ \\
5V \\
\text{closed circuit for } L
\end{array}
\end{align*} \]

KCL:

\[i_C + i_R = 0 \]

\[\frac{di_C}{dt} \frac{V}{R} + i_C - \frac{V}{R} = 0 \]

\[L \frac{di}{dt} + Ri = 0 \]

\[\frac{di}{dt} + i = 0 \]

\[L_{eq} \]
Generic equation: \(\frac{dx}{dt} + x = 0 \) where \(x = v \) or \(i \)

First-order differential equation (source free)

Solution of the differential equation is

\[x(t) = X_0 e^{-\frac{t}{\tau}} \]

where \(X_0 = x(0) \) initial condition

For the RC circuit: \(v(t) = V_0 e^{-\frac{t}{\tau}} \)

where \(V_0 = 5V \); \(\tau = RC \)

For the RL circuit: \(i(t) = I_0 e^{-\frac{t}{\tau}} \)

where \(I_0 = 5A \); \(\tau = LR \)

For the RC circuit:

\[v(t) = 5e^{-\frac{t}{\tau}} = 5e^{-\frac{t}{0.37}} \]

\(\tau = \text{time constant (seconds)} \)

it is the time required for the response to decay by a factor of \(\frac{1}{e} \) or 0.37 of its initial value

\[5\tau < 1\% \text{ of the initial value} \]

\(\tau = \frac{RC}{1} \)

Ex

At \(t = 0^- \)

\(v_c(0^-) = \text{voltage drop across 9Ω resistor} \)

voltage division: \(v_c(0) = \frac{9}{3+9} \times 20 = 15V = v_c(0) \)

For \(t > 0 \) \(\tau = 9Ω + 1Ω = 10Ω \)

\(\tau = \text{RL} C = 10 \times 20 \times 10^{-3} \text{ s} \)

\[v_c(t) = 15e^{-\frac{t}{0.2}} = 15e^{-5t} \text{ V} \]
\[V_1 \quad 0 \quad V_2 \quad R \quad C \]