Problem 1 (Work on this problem after the Lecture/Recitation on Convolution)

Find \(y(t) = x(t) * h(t) \) for each paired \(x(t) \) and \(h(t) \) in the figure below.

Problem 2.

Determine \(i_o(t) \) in the circuit shown below.
Problem 3.

Find $v_x(s)$ in the circuit shown below.

![Circuit Diagram](image1)

Problem 4.

When the input to a system is a unit step function, the response is $10 \cos 2t$. Obtain the transfer function of the system.

Problem 5.

Obtain the transfer function $H(s) = V_o/V_s$ for the circuit shown below.

![Circuit Diagram](image2)

Problem 6.

For the circuit shown below, find:

(a) I_1/V_s
(b) I_2/V_x

![Circuit Diagram](image3)
Problem 7.

A parallel RL circuit has $R = 4 \, \Omega$ and $L = 1 \, \text{H}$. The input to the circuit is $i_u(t) = 2e^{-t}u(t) \, \text{A}$. Find the inductor current $i_L(t)$ for all $t > 0$ and assume that $i_L(0) = -2 \, \text{A}$.

Problem 8.

A circuit has a transfer function

$$H(s) = \frac{s + 4}{(s + 1)(s + 2)^2}$$

Find the impulse response.

Problem 9.

Show that the parallel RLC circuit shown below is stable.

![RLC Circuit Diagram]

Problem 10.

It is desired to realize the transfer function

$$\frac{v_2(s)}{v_1(s)} = \frac{2s}{s^2 + 2s + 6}$$

using the circuit shown below. Choose $R = 1 \, \text{k}\Omega$ and find L and C.

![Circuit Diagram]
Problem 11.

Design an op amp circuit shown below, that will realize the following transfer function,

\[\frac{V_o(s)}{V_i(s)} = -\frac{s + 1000}{2(s + 4000)} \]

Choose \(C_1 = 10 \, \mu F \), determine \(R_1, R_2, \) and \(C_2 \).