Circuit components

- **R** (resistor) \(\frac{V}{I} \) (Ohm's Law)
 - Units: ohms \(\Omega \)

- **G** (conductance) \(\frac{I}{V} \) (Conductance)
 - Units: mhos \(\Omega^{-1} \)
 - Slope = \(\frac{I}{V} \)

- **C** (capacitor) \(\frac{V}{I} \) (Linear capacitor)
 - Units: farads \(F \)
 - \(I = \frac{dQ}{dt} = C \frac{dV}{dt} \)

- **L** (inductor) \(\frac{V}{I} \) (Linear inductor)
 - Units: henrys \(H \)
 - \(V = L \frac{dI}{dt} \)

Independent sources

1) **Voltage source**
 - \(V_s \) (Ideal)

2) **Current source**
 - \(I_s \) (Ideal)

Dependent sources (Controlled Sources)

- **VCCS** (Voltage Controlled Voltage Source)
 - \(v_2 = A \cdot v_1 \)

- **CCVS** (Current Controlled Voltage Source)

- **CCCS** (Current Controlled Current Source)
KCL algebraic sum of currents flowing into a node is 0

\[l_1 + l_2 - l_3 - l_4 - l_5 = 0 \]
\[-l_1 - l_2 + l_3 + l_4 + l_5 = 0 \]
\[l_1 + l_2 = l_3 + l_4 + l_5 \]

KVL algebraic sum of voltage drops around a loop is zero

\[v_2 + v_3 - v_1 = 0 \]

Analysis methods
- nodal analysis
- mesh analysis

1) Identify meshes (identify nodes)

2) The mesh current is the unknown quantity (KCL) (node voltage)

3) Write KVL for each mesh

Mesh 1: \[v_1 + v_2 - 5 = 0 \]

Mesh 2: \[v_3 + v_4 - v_2 = 0 \]

4) Use Ohm's law to write \(v_1, v_2, v_3, v_4 \) in terms of \(l_1 \) and \(l_2 \) (the mesh currents)

\[2l_1 + 6(l_1 - l_2) - 5 = 0 \]
\[2l_2 + 4l_2 - 6(l_1 - l_2) = 0 \]
\[+ 6(l_2 - l_1) \]
Source transformations

\[V_s \quad \frac{V_s}{R_s} \quad \frac{V_s}{R_s} \]

Superposition Theorem (applies to linear circuits only)

Thevenin’s Equivalent

\[V_{in} = V_{th} \]

\[R_{th} = \frac{V_{in}}{I_t} \]

\[R_{th} = \frac{6}{8} \]

\[= 2Ω + (2Ω || 6Ω) \]