ENGR 203 Spring 2018

Please work on Quiz 0
Action Items

- **Timesheet for office hours and help sessions**
 - Please mark ‘x’ if not available

- **Anonymous feedback on class webpage**
 (http://web.engr.oregonstate.edu/~karti/engr203.html)

- **HW#0 posted on class webpage**

- **Review**
 - Complex numbers
 - Circuit analysis: ENGR 201/202
Organization and Policies

• ENGR 203: Tu/Th 10-11:50am
 – Lecture Tu/Th 10-11am; Break 11-11:10am
 – Recitation Tu/Th 11:10-11:50am
 • Problem solving sessions
• Class website (lecture notes, HW, etc.)
 – http://web.engr.oregonstate.edu/~karti/engr203.html
• You can work on HWs from HW#1 onwards individually or in groups of 2 (Form groups by Thursday April 5)
• No laptops allowed in class
• No late HWs accepted
• No makeup exam/quiz
 – Exception: medical emergency
ENGR 201

• Circuit variables
 – Current, Voltage, Charge, Power
• Basic laws
 – KCL, KVL
• Circuit components
 – R, C, L, independent sources, dependent (controlled) sources
• Linear circuits
 – Ohm’s law V = IR
• Analysis
 – DC sources
 – Nodal, mesh
• Useful tools
 – Series/parallel combinations
 – Superposition
 – Thevenin/Norton equivalent circuits
 – Source transformation
ENGR 202

- AC sources
 - Sinusoidal sources: $\cos(\omega t)$, $\sin(\omega t)$
- Phasor analysis
 - Complex algebra
- Circuit components
 - R, C, L, independent sources, dependent (controlled) sources
- Linear circuits
 - Ohm’s law $V = IR$
- Analysis techniques from ENGR 201
 - Nodal, mesh
 - Series/parallel combinations
 - Superposition
 - Thevenin/Norton equivalent circuits
 - Source transformation
ENGR 203

• Time-domain response of circuits for any input signal
 – Generalize solution techniques and connections with AC analysis (ENGR 202)

• Circuit components
 – R, C, L, independent sources, dependent (controlled) sources

• Linear circuits
 – Ohm’s law $V = IR$

• Analysis techniques from ENGR 201
 – Nodal, mesh
 – Series/parallel combinations
 – Superposition
 – Thevenin/Norton equivalent circuits
 – Source transformation
Sampling is Key to Digitized Analog Information (CD, DVD, …)

Digitized music on a Compact Disc (CD)

From: Prof. Mark Fowler
Sampling Important for Many Applications

- Any sensing and control application
 - Analog sensor (continuous time information)
 - Digitize analog information using an Analog to Digital Converter (ADC)
 - Process signal in digital domain using a processor (DSP)
 - Convert back to analog domain using a Digital to Analog Converter (DAC) for control