
The Power of Suggestion
Nicholas Zerbel

Oregon State University
Corvallis, Oregon, USA
zerbeln@oregonstate.edu

Kagan Tumer
Oregon State University
Corvallis, Oregon, USA

kagan.tumer@oregonstate.edu

ABSTRACT
Multiagent teams have been shown to be effective in many domains
that require coordination among team members. However, find-
ing valuable joint-actions becomes increasingly difficult in tightly-
coupled domains where each agent’s performance depends on the
actions of many other agents. Reward shaping partially addresses
this challenge by deriving more “tuned" rewards to provide agents
with additional feedback, but this approach still relies on agents ran-
domly discovering suitable joint-actions. In this work, we introduce
Counterfactual Agent Suggestions (CAS) as a method for injecting
knowledge into an agent’s learning process within the confines
of existing reward structures. We show that CAS enables agent
teams to converge towards desired behaviors more reliably. We also
show that improvement in team performance in the presence of
suggestions extends to large teams and tightly-coupled domains.

KEYWORDS
Multi-Agent Learning; Evolutionary Algorithms; Co-Evolutionary
Algorithms; Reward Structures for Learning

1 INTRODUCTION
Multiagent teams have been effectively applied to many domains
requiring coordination among team members such as robot soc-
cer [23, 34, 35], the manipulation of large objects (such as boxes)
[10, 38], and joint exploration tasks [4, 15, 17, 30]. However, achiev-
ing coordinated behavior in tightly-coupled domains —defined as
domains requiring agents to take similar actions simultaneously to
achieve a task— is a significantly more challenging learning prob-
lem. For example, in a task involving moving a large table, which
requires at least three agents to move, one agent may try to move
the table before other agents have discovered this action. Lifting
the table is the correct action to take in this scenario; however, the
agent will receive no reward feedback due to missing inputs from
partner agents. In such situations, reward shaping is often used to
tune agent feedback signals to allow agents to gain additional in-
formation from the reward signal [21, 29]. The additional feedback
provided by reward shaping can be beneficial; however, exploration
during the learning process still relies on the random discovery of
actions. This often means that agent teams may not converge to an
ideal behavior since reward shaping cannot tune feedback signals
for actions agents never discover.

Injecting domain knowledge into an agent’s learning process
offers a potential solution to this problem. Potential Based Reward

Proc. of the 19th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2020), B. An, N. Yorke-Smith, A. El Fallah Seghrouchni, G. Sukthankar (eds.),
May 2020, Auckland, New Zealand
© 2020 International Foundation for Autonomous Agents and Multiagent Systems
(www.ifaamas.org). All rights reserved.
https://doi.org/doi

Shaping (PBRS) is a good example of incorporating knowledge
at the reward level as it is a principled and theoretically correct
method of incorporating heuristic knowledge into an agent [7]
which is similar to nonzero Q-table initialization [21]. Although
PBRS provides guarantees about preserving the Nash equilibria of
a system, knowledge injection via the potential function requires
enough knowledge to estimate the value of states in the domain
which is not always available for certain problems.

In this paper we introduce Counterfactual Agent Suggestions
(CAS) as a way to inject knowledge into a learning multiagent
system as a low-level suggestion. These suggestions are provided
to agents periodically during the learning process by a supervisor
agent that is external to the system. The supervisor can be thought
of as a human user guiding each agent’s learning process by provid-
ing suggestions at critical moments when those suggestions may
influence an agent’s policy. The supervisor does not know what
each agent’s policy should be; however, the supervisor does have a
preference for certain joint-actions over others.

CAS works within the framework of existing reward structures
that leverage counterfactuals to produce shaped rewards. For ex-
ample, D++ [28] allows agents to use hypothetical (counterfactual)
partners, which are copies of themselves, to derive “stepping stone"
rewards to reinforce tightly-coupled joint-actions in the absence
of the required number of partners. This setup creates a shaped re-
ward where agents compare a hypothetical state where they were
as capable as n other agents with the actual global state where
they were not. In this work, we explore how a supervisor can pro-
vide suggestions using the counterfactuals already present in D++.
These suggestions encourage agents to take similar exploratory ac-
tions while learning, enabling agent teams to converge to a desired
behavior more reliably without changing the reward function.

The primary contributions of this work are to:
(1) Provide a method for injecting knowledge into the multia-

gent learning process using a low-level suggestion,
(2) Devise strategies for encoding knowledge into suggestions

that induce desired behaviors from a team of agents.
In this work, we test the performance of CAS in a problem where

agents must observe an n-sided polygon to watch for a mobile Point
of Interest (PoI). If one side of the polygon does not have an agent
observing it, a target can hide on the unobserved side; therefore,
an n-sided polygon requires n agents to guarantee full coverage.
Using this tightly-coupled PoI observation problem, we show that,
in the presence of suggestions, agent teams converge to desired
behaviors and joint-actions more reliably than agent teams that
do not receive suggestions even when they use the same objective
function for reward feedback. We also show that team performance
improves in the presence of suggestions, and that this improvement
in performance extends to larger agent teams operating in tightly-
coupled domains.

https://doi.org/doi


2 BACKGROUND
There have been many successful applications of multiagent learn-
ing in coordination problems including search and rescue [37], mine
collection [11], and coverage problems [1, 14, 22]. To address the
coordination challenge in tightly-coupled domains, many works
utilize non-learning methods such as direct agent-to-agent com-
munication [10] or auction based methods [16] to establish coordi-
nation. Although communication based approaches are generally
effective at addressing agent coordination, communication is of-
ten computationally expensive to implement as agents must learn
what to communicate, when to communicate, and how to make use
of the information received. Additionally, communication can be
difficult to maintain across an entire team of agents particularly in
tasks involving exploration and surveillance in remote areas where
communication is limited. To reduce the complexity of learning
with communication, behavior based approaches aim to determine
agents’ fitness based on internal motivators that are related to the
task at hand [25, 26]. In this work, we assume that there is no direct
agent-to-agent transfer of data; however, there is an implied com-
munication between the supervisor and agents when suggestions
are provided. This works focuses on how to utilize the information
contained in suggestions; therefore, we assume that communication
between the supervisor and agents requires only limited resources.

2.1 Reward Shaping
In cooperative multiagent systems, the design of agent reward
functions has a significant impact on agent-to-agent interactions
and the performance of the overall system [12, 33]. The act of
creating these reward functions is known as reward shaping: a
process that aims to provide agents with additional feedback by
tuning reward signals to improve the quality of an agent’s policy
or the convergence speed towards a solution [21, 29]. The process
of reward shaping is often represented as:

Q(s,a) ← Q(s,a) + α[R + F (s, s ′) + γmax
a′

Q(s ′,a′) −Q(s,a)] (1)

where F(s, s’) is a general term representing a shaped reward
which is based on state transitions.

In many multiagent reinforcement learning problems, using
heuristic knowledge has been shown to be effective in improv-
ing solution quality and decreasing solution convergence time
[3, 19, 20, 32]. However, the mechanisms used to inject this knowl-
edge differ. In this work, we discuss one method, Potential Based
Reward Shaping, due to its similarity to the subject of this work.

2.2 Potential Based Reward Shaping
In single agent reinforcement learning problems, Potential Based
Reward Shaping (PBRS) is a principled method for incorporating
heuristic knowledge into an agent’s learning process [21]. PBRS
works by assigning a potential to every state, s , according to a
potential function, Φ(s). The shaped reward is then evaluated by
computing the change in potential due to the transition from state
s to state s ′. This leads to a shaped reward defined by:

F (s, s ′) = γΦ(s ′) − Φ(s) (2)
where F(s, s’) is the same shaped reward used in Equation 1.

In the scope of Q-learning, PBRS has been shown to be equivalent
to initializing the Q-table to Φ(s) [39]. It has also been shown that
receiving the additional potential-based reward does not alter the
optimal policy of an agent; however, it does influence agent explo-
ration which can lead to agents learning different policies [21]. For
applications in multiagent systems, PBRS has similar guarantees to
single agent learning, and it does not affect the Nash equilibria of a
system [5]. By incorporating suitable heuristics, PBRS can increase
the probability that a team’s performance will converge to a higher
global utility while decreasing the overall convergence time [5].

Although knowledge injection via the potential function can
provide agents with hints as to which states are potentially more
beneficial than others, the information contained in these potentials
does not necessarily provide agents with knowledge relating to
specific actions [39]. This type of knowledge injection also works
best in domainswhere the state-space can be discretized in amanner
conducive to reinforcement learning methods such as Q-learning.
It also requires enough domain knowledge to estimate the potential
of states to influence agent exploration in a meaningful way. In
this work, we develop a method for knowledge injection which is
usable with non-reinforcement learning methods and which does
not require state value estimates.

2.3 D++ Rewards
One of the challenges associated with distributed learning in coop-
erative multiagent systems is that agents with no prior knowledge
of a task must randomly search through the joint state-action space,
find actions that accomplish the objective, and learn to coordinate
with teammates before any reward feedback is received. In loosely-
coupled systems, difference rewards [2, 36] (defined in Equation
3) assist agents by comparing the actual team performance, G(z),
with a counterfactual team performance,G(z−i ∪ ci ), where agent
i’s policy is substituted with a different policy or action, ci . Often
times, a null action is used to create a counterfactual global state
where agent i took no actions (or executed a policy which had no
impact on the system). This comparison with a hypothetical global
state provides the agent with individualized feedback on how its
policy affected the team’s performance.

Di = G(z) −G(z−i ∪ ci ) (3)

In tightly-coupled systems, where tasks require complimentary
actions from many agents, difference rewards are less effective be-
cause the reward feedback still relies on agents establishing and
maintaining coordination before feedback is generated. In tightly-
coupled domains, reward feedback is sparse and creates a difficult
learning challenge as it is unlikely that a group of agents will si-
multaneously execute the same correct action when relying on ran-
dom exploration. To address this difficult learning challenge, D++
rewards [28] have been shown to provide agents with “stepping-
stone" rewards which evaluate the effect of introducing multiple
counterfactual partners into the system identical to the agent re-
ceiving the reward. These counterfactual partners are used to create
the hypothetical world state where an agent, i , was as capable as n
other agents. This hypothetical world state is compared with the
actual world state as defined in Equation 4.



Dn
++(i) =

G(z+(∪j=1, . . .,n )i ) −G(z)

n
(4)

In the above equation, G(z+(∪j=1, . . .,n )i ) represents the hypothet-
ical global state where n counterfactual partners were added to the
system, G(z) represents the actual global state without counterfac-
tual partners, and n is used to discount the stepping stone reward
with respect to the number of added counterfactual partners.

Discounting Equation 4 with respect to n allows agents to differ-
entiate between the case where an objective needs only one more
agent to be completed and the case where many more agents are
required. Equation 4 is also formulated such that evaluating the case
where n = −1 will produce the same difference reward as defined
in Equation 3. This formulation is important for tightly-coupled
tasks as difference rewards do not provide any feedback until co-
ordination is established; however, D++ fails to provide gradient
information where a sufficient number of agents have coordinated
[28]. For these reasons, it is ideal to utilize both reward signals
during the learning process. Algorithm 1 further summarizes how
D++ balances difference rewards with stepping stone rewards.

Algorithm 1: Standard D++ Algorithm

1: Calculate D−1++ using Eqn. 4
2: Calculate DNA−1

++ using Eqn. 4
3: if DNA−1

++ ≤ D−1++ then
4: return D−1++
5: else
6: n = 0
7: while n < NA − 1 do
8: n = n + 1
9: Generate n counterfactual partners
10: Calculate D++(n) using Eqn. 4
11: if Dn

++ > Dn−1
++ then

12: Return Dn
++

13: end if
14: end while
15: end if
16: Return D−1++

2.4 Related Works
Perhaps the most similar works to this one are works using PBRS
to inject domain knowledge in the form of the potential function,
Φ(s). Although PBRS can provide agents with hints as to which
states are potentially more beneficial than others, the information
contained in these potentials does not provide agents with specific
insights over actions. To extend PBRS to provide more specific
knowledge to agents, Wiewiora et al. propose a method for provid-
ing generalized advice to reinforcement learning agents known as
Potential-Based Advice [39]. This advice function changes the shap-
ing function to include an additional parameter relating to the policy
an agent is currently evaluating. Essentially, this changes F (s, s ′)
to F (s,a, s ′,a′). Wiewiora et al. demonstrate two applications of
this concept as Look-Ahead Advice and Look-Back Advice. Both

potential-based advice and PBRS require enough domain knowl-
edge to assign potential value estimates to states within a system.
Potential based approaches are also designed to work within the
context of Q-learning or other reinforcement learning methods. In
this work, we define a method for injecting knowledge using CAS
which does not require state value estimates and that is usable in
non-reinforcement learning based approaches.

Similar works have also shown that the idea of counterfactuals
used in difference rewards and D++ can be modified in a variety of
ways to provide more useful reward feedback for agents. Devlin et
al. demonstrated that PBRS and difference rewards can be combined
to use counterfactuals as potential (CaP) [7]. CaP rewards agents
for high-performing global evaluations while simultaneously en-
couraging agents to move towards states where other agents in the
system are performing well. In this application Φ(s) depends on
the state of all the agents in the system; therefore CaP can assign
a different potential for the same local state which makes CaP an
instance of dynamic PBRS [6]. Although this application does not
explicitly deal with injecting knowledge into the multiagent learn-
ing process, it does show that counterfactuals can be augmented to
provide additional insights during the learning process.

In another related work, Dixit et al. show that the counterfac-
tual partners used in D++ can be modified to provide agents with
additional insights in tightly-coupled, heterogeneous multiagent
systems [8]. In standard D++, agents infer counterfactual partners
which are identical to themselves. This is a suitable implementa-
tion for homogeneous multiagent systems but not heterogeneous
systems where agents may have different capabilities. Dixit et al.
show that, if agents know the models for different partner types,
agents can learn which partners to select to receive more insightful
stepping stone rewards in these systems [8]. In this work, we use
the counterfactuals present in D++ to inject knowledge into an
agent’s learning process by encoding that knowledge as a partner.
The partners suggested by the supervisor do not need to represent
a type of agent currently available in the system.

3 COUNTERFACTUAL AGENT SUGGESTIONS
In this work, we introduce Counterfactual Agent Suggestions (CAS)
as a method for injecting knowledge into the multiagent learning
process. These suggestions are delivered to agents periodically by
another agent, referred to as the supervisor, which is external to
the system. Conceptually, the supervisor can be thought of as a
human user guiding a team of learning agents by providing them
with suggestions at critical moments (defined as the discovery a
possible joint-action) where those suggestions may influence an
agent’s policy. The supervisor does not know what an individual
agent’s policy should be, and the supervisor does not have access
to an agent’s internal state. The supervisor also does not need to
know the joint-state of the system to make suggestions. However,
the supervisor does have a preference over which joint-actions
an agent should learn and creates suggestions designed to impart
this knowledge. This enables agent policies to converge towards
specific joint-actions or behaviors without comparing an agent’s
policy with a target policy distinguishing supervisors from critics
in actor-critic methods [18].



CAS is designed to inject knowledge into an agent’s learning
process by using counterfactuals such as those already present in
D++ (described in Section 2.3). In D++, the counterfactual partners
used by agents are generated by introducing multiple identical
agents into the system to generate a hypothetical joint-state. In-
stead of relying on these agent-inferred partners, the supervisor
suggests counterfactual partners to agents periodically throughout
the learning process. These suggestions are delivered in Step 9 of
Algorithm 1 which is the step where agents would typically gen-
erate partners for themselves. Although suggestions influence the
rewards received by an agent, suggesting partners in D++ does not
alter the calculation of the reward as defined by Equation 4.

In this work, we define two partner archetypes that the supervi-
sor can use to encode knowledge within D++: helpful partners and
null partners. Helpful partners are counterfactual partners which
are capable of satisfying the coupling requirements of a preferred
joint-action once it is discovered by an agent. These partners can
be used to provide agents with a positive stepping stone reward
which will encourage agents to select that joint-action in the fu-
ture. Null partners are built upon the concept of null actions which
are often used in difference rewards to compute the hypothetical
global state where an agent took no actions. Conceptually, a null
partner exists within the system but does nothing to contribute
towards the team’s objectives or to detract from the team’s overall
performance. By suggesting null partners to an agent, the agent
receives a stepping stone reward of zero.

To illustrate the application of these counterfactual suggestions,
we use the n-sided polygon coverage problem discussed in Section
1 and illustrated in Figure 1. In the left panel, an agent has found a
hexagonal PoI to observe; however, it is missing the five additional
partners required to fully cover this structure. In the right panel,
an agent has found a triangular PoI, but it is only missing two addi-
tional partners. Relying on standardD++, the agent in the left panel
would discover a positive stepping stone reward after inferring five
counterfactual partners, and the agent in the right panel would
discover a positive stepping stone reward after inferring two addi-
tional partners. It is much less likely that five additional agents will
learn to cover the hexagonal structure compared to the triangular
structure which only needs two additional agents. In this case, the
supervisor can suggest null partners to the agent in the left panel to
inject the knowledge that this action should be ignored. The agent
on the right receives partners that satisfy the joint-action providing
the agent with the knowledge that this action is desirable.

3.1 Cooperative CoEvolutionary Algorithms
To train agent control policies, encoded as neural networks (NNs)

in this work, we use a standard Cooperative CoEvolutionary Al-
gorithm (CCEA) [27]. CCEAs are an extension of Evolutionary
Algorithms which have been shown to perform well in cooperative
multiagent domains [9, 24]. The standard CCEA algorithm is de-
scribed in Algorithm 2. The CCEA starts by creating a population
of k neural networks for the total number of agents, NA, operating
in the system (one population for each agent). Within each genera-
tion, the CCEA generates k successor neural networks by mutating
the weights contained within each existing neural network, bring-
ing the total population of neural networks to a size of 2k . Then,

Figure (1) A supervisor provides counterfactual sugges-
tions (contained within dashed circles) to agents in an n-
sided polygon coverage problem. On the left, an agent dis-
covers a hexagonal PoI but requires five additional partners
for full coverage. On the right, an agent discovers a trian-
gular PoI but only requires two more partners. It is far less
likely that five more partners will learn to fully cover the
hexagonal PoI, so the supervisor suggests null partners to
discourage the agent from taking this action. Similarly, the
supervisor suggests partnerswhich satisfy the requirements
for the triangular PoI to encourage learning this action.

Algorithm 2: Standard CCEA

1: Initialize NA populations of k neural network weights
2: for NGenerations do
3: for Each population do
4: Create k successor NN weights
5: Mutate successors
6: end for
7: for i = 1− > 2k do
8: Select NN weights from each population without

replacement
9: Add agents to team Ti
10: Simulate Ti in domain
11: Evaluate fitness of each agent in Ti using F (z)
12: end for
13: for Each population do
14: Select k solutions using ϵ-greedy selection
15: end for
16: end for

from each population, NNs are selected without replacement and
placed on a team, Ti . Each team is simulated within the domain,
and fitness values are assigned to each member of team Ti using
a fitness function, F (z). In this work, the fitness function, F (z), is
D++ described in Equation 4. Finally, k NNs are selected from the
population of 2k individuals using ϵ-greedy selection to proceed to
the next generation.



4 PROBLEM FORMULATION
In this work, we explore multiagent coordination in a monitor-
ing task similar to the continuous rover problem where a set of
homogeneous rovers are tasked with observing PoI located in a
two-dimensional plane [2]. Rovers have no prior knowledge of the
number of PoI in the region, the locations of the PoI, or the util-
ity associated with observing a given PoI. To make this problem
tightly-coupled, wemodify the problem so that agents must observe
an n-sided polygon to watch for a mobile PoI. A target can hide
along an unobserved side; therefore, an n-sided polygon requires
n agents to guarantee full coverage. The utility function for this
environment is given by Equation 5.

G(z) =
∑
i

(
∏n

j N(i , j))Vi
1
n
∑n
j δ(i , j)

(5)

In Eqn. 5, z refers to the joint state-action of the rover team,
Vi represents the value associated with PoI i , and n refers to the
coupling requirement associated with PoI i . Term N(i , j) is a binary
term which is 1 if rover j is within observational range of PoI i , and
it is 0 otherwise. Term δ(i , j) is the linear distance between PoI i
and rover j. This makes the denominator of the term the averaged
distance between PoI i and the n closest observing rovers.

Each rover is equipped with two sensors which provide it with
a state input. One sensor is used to detect PoI and the other sensor
is used to detect other rovers. Each sensor’s inputs are discretized
into four quadrants, Q , with respect to the body and heading of
the rover. This sensor configuration produces eight state variables
(four for each sensor type). The state variable representing rover
detections is defined below as:

SROV(j ,Q ) =
∑
j′∈Q

1
δ(j , j′)

(6)

where j represents the rover, Q represents the quadrant, and
δ(j , j′) represents the linear distance between rover j and rover j ′
located within quadrant Q . The state variable representing PoI
detections is defined as:

SPoI(j ,Q ) =
∑
i ∈Q

Vi
δ(i , j)

(7)

where Vi represents the value of PoI i , and δ(i , j) represents the
linear distance between PoI i in quadrant Q and rover j.

Each rover on the team is represented as a neural network whose
inputs are the state variables described by equations 6 and 7. Neural
networks are often referred to as universal approximators [13], and
they are selected as the control model for rovers due to their ability
to model continuous state-action control policies with only a rough
estimate of the current state [2, 31].

5 EXPERIMENTAL SETUP
To investigate how CAS influences an agent’s learning process, sev-
eral experiments are presented comparing rover team performance
in the presence of suggestions to rover team performance without
suggestions. At each timestep in a simulation, each rover executes
an action based on a policy encoded within a neural network. The

outputs from this neural network are control signals that deter-
mines each rover’s movement in the x andy directions. Each neural
network is a single hidden layer, feed-forward network with 8 input
nodes, 9 hidden nodes, and 2 output nodes. The network weights
are trained using the CCEA defined by Algorithm 2. For each agent,
there is a population of 40 networks that have weights initialized
using a normal distribution, N(0, 1).

In the first experiment, three rovers must explore a region (size
30x30) with two PoI. Each PoI has a coupling requirement of three,
and each PoI is located on opposite sides of the region. The rovers
only have enough time to explore one PoI. PoI 1 has a value of 10
and is located on the left side of the region, and PoI 2, located on the
right, has value of 4. With the coupling requirement matching the
number of rovers in the system, each rover must choose the same
joint-action to satisfy the objective. Using this world setup, we run
tests using two different suggestions. In one test, the supervisor
encourages rovers to explore PoI 1 by suggesting helpful partners
when a rover discovers PoI 1 and by providing null partners when
a rover discovers PoI 2. A similar setup is used to encourage rovers
to explore PoI 2 instead of PoI 1. In the second experiment, we use
the same PoI setup as experiment 1; however, there are now six
rovers and the coupling requirement of each PoI is now six. The
same two suggestions are tested in this experiment.

In the third experiment, we investigate how rover teams perform
in the presence of suggestions in a more complex system. In this
system, there are six rovers, five PoI, and a coupling requirement
of six. Three of the PoI are lower in value (less than or equal to
5), while the remaining PoI have values greater than 5. The region
containing the rovers and the PoI is of size 40x40. Tight coordination
between all six rovers must be maintained for PoI to be observed
in this world; however, the number of joint-actions to choose from
is much greater making coordination more difficult to establish.

For each experiment, each PoI has an observability radius of 3,
and the data presented is collected over 30 statistical runs. Error
in figures is reported as the standard error of the mean. In each
experiment, it is assumed that the world is fully observable to a
rover’s sensors. With full observability, each rover can detect the
other rovers on the map, and the rovers can detect the presence of a
PoI. However, the rovers cannot observe the PoI to collect rewards
until they are within its observability radius.

6 RESULTS
In the following experiments, we compare the performance of rover
teams that learned without CAS, and those that learned with CAS.
Each experiment compares how two different suggestion types
from the supervisor influence the behaviors of the team.

6.1 Two PoI, Coupling of 3
In experiment 1, three rovers must choose to either explore PoI 1
(worth 10.0) located on the left side of the region, or PoI 2 (worth
4.0) located on the right side of the region. Although there are only
three rovers, each rover must learn the same joint-action to satisfy
the coupling requirement of three for a complete PoI observation.

To encourage exploration of PoI 1, supervisors suggested rover
partners capable of satisfying the PoI’s coupling requirements once
a rover’s policy led them to PoI 1, and the supervisor suggested



(a) S1

(b) S2

Figure (2) Examples of rover teambehaviors induced by su-
pervisor suggestions for a 2 PoI system with a coupling re-
quirement of 3. In (a) suggested partners encouraged rovers
to explore PoI 1 (denoted as S1), and in (b) suggested partners
encouraged rovers to explore PoI 2 (denoted as S2). These be-
haviors are induced by using different suggestions, and the
reward functions used in these tests are the same.

null partners to rovers exploring PoI 2. In the second test, the
supervisor encourages rovers to explore PoI 2 by providing similar
suggestions; rovers received helpful partners when their policies
led them to PoI 2 and null partners if their policy led them to PoI
1. Suggestions encouraging the exploration of PoI 1 are denoted
by S1, and suggestions encouraging the exploration of PoI 2 are
denoted as S2. Examples of rover teams that learned the desired
behaviors using S1 and S2 are illustrated in Figure 2.

Using CAS, the results of this experiment show that rover team
behaviors can be modified even though the reward function re-
mains unchanged. In fact, in the presence of suggestions, rover
teams reliably learn behaviors that converge towards the desired
joint-action (PoI 1 or PoI 2). Figure 3 illustrates the consistency of
these behaviors by comparing the number of times teams learned
a desired behavior with CAS across 30 statistical runs with the
behaviors of rovers learning without CAS. In this figure we see that
rovers learning with the global reward or difference rewards fail to
establish consistent coordination even within this relatively simple
system. The rover teams learning without CAS performed well;
however, the rover teams either failed to learn proper coordination,
or their behaviors always converged towards PoI 1. From a reward
function optimization standpoint, this behavior is optimal; however,
Figure 3 also shows that, with suggestions, the optimal behavior
is learned more consistently using S1. In fact, using S1 allows the
rover team to learn the desired behavior 100% of the time in this
experiment. Figure 3 also shows that rover teams learning with
S2 learn policies that select PoI 2 83% of the time. Although this
behavior is sub-optimal, this behavior can be induced simply by
providing a certain type of suggestion even though the reward func-
tion itself is identical to the one used by the rover teams learning
with D++ and S1.

Figure (3) This figure shows the number of times rover
teams converged to PoI 1, PoI 2, or failed to learn a coordi-
nated behavior by learningwith suggestions and by learning
without suggestions. Each PoI had a coupling requirement
of 3 and the rover team size was 3. The convergence towards
each behavior is counted with respect to the number of sta-
tistical trials (30).

The results of this experiment also demonstrate that rover team
performance also improves when the team learns with suggestions
provided by the supervisor. In Figure 4, we see that the average
team performance converges to the optimal value of 10.0 when the
rover team learns using S1. Although D++ without CAS is capable
of learning this behavior, the rovers converge more readily towards
PoI 1 using S1 creating a more reliable outcome. Figure 4 also shows
that the team score also converges towards the value of PoI 2 (which
is 4.0) when rover teams learn using S2. Note that, although this
behavior produces a sub-optimal outcome compared to D++ and S1,
this behavior is being targeted through S2 and is achieved solely
based on the suggestion as the reward function used to evaluate
stepping stone rewards is the same in D++, S1, and S2.

Although the setup of this experiment is relatively simple, the
influence of suggestions on rover team behavior is clearly illus-
trated. Implementing a supervisor agent which provides agents
with counterfactual agent suggestions enables agent policies to
converge towards a desired outcome more reliably. This behavior
modification occurs without any modification to the reward func-
tion, and it enables rover teams to coordinate more consistently,
particularly in settings where every team member is required to
complete an objective.

6.2 Two PoI, Coupling of Six
In this experiment, the number of rovers in the world is increased to
six, and the coupling requirement of each PoI is also increased to six.
Although the PoI configuration is unchanged, this setup provides
a more difficult learning challenge as tight coordination must be
established and maintained between all six rovers. Once again,
we investigate the performance of the rover teams learning with
two different suggestions provided by the supervisor. Suggestions



Figure (4) Rover team performance for a 2 PoI systemwith
a coupling requirement of 3. Rover teams providedwith sug-
gestions encouraging the exploration of PoI 1 (denoted S1)
learn this behavior more reliably than rover teams learning
with D++. Although sub-optimal, suggestions can be used to
induce a behavior which encourages rovers to explore PoI 2
(denoted S2) even though the same reward function is used.

encouraging the exploration of PoI 1 or PoI 2 are denoted as S1
and S2, respectively. The performance of rover teams learning with
CAS is compared to those learning without CAS.

With the increased learning complexity associated with the
higher agent-to-agent coupling requirement, rover teams havemore
difficulty establishing the tight coordination needed in this system.
However, rover teams learning with suggestions manage to over-
come some of this difficulty, enabling the team to learn coordinated
behaviors more consistently. Figure 5 illustrates the rover teams
which learned the desired behavior of observing PoI 1 or PoI 2 using
S1 or S2, respectively.

Figure 6 further details the difficulty associated with learning a
tightly-coupled task in this system. Rover teams learning with the
global reward or difference rewards fail to establish coordination
100% of the time which is consistent with similar results presented
in [28]. Although the rover team usingD++ does learn to coordinate
some of the time, the performance is extremely unreliable across
all statistical runs. With six rovers and two PoI choices, the team
ends up being divided among the two PoI most of the time. The
rover teams learning with S1 learn the same optimal behavior as
the team learning with D++; however, the team converges towards
this behavior more consistently leading to a more reliable outcome.
In fact, the improved coordination in the presence of suggestions
allows rover teams learning with S2 to achieve an average team
score which is slightly better than the D++ without CAS even
though though the team behavior is converging towards PoI 2
(worth 4.0). This result is illustrated in Figure 7.

Although there are only two options to choose from, establishing
coordination between six agents is difficult when the performance
of any one agent depends on the performance of five others. This
experiment shows that, in the presence of suggestions, agent teams

(a) S1

(b) S2

Figure (5) Examples of rover teambehaviors induced by su-
pervisor suggestions for a 2 PoI system with a coupling re-
quirement of 6. In (a) the supervisor suggested partners to
rovers encouraging them to explore PoI 1 (denoted as S1). In
(b) the supervisor suggested partners to rovers encouraging
them to explore PoI 2 (denoted as S2). These behaviors are
induced by using different suggestions, and the reward func-
tions used in these tests are the same.

Figure (6) This figure shows the number of times rover
teams learned to explore PoI 1, PoI 2, or failed to learn a
coordinated behavior. Each PoI had a coupling requirement
of 6 and the rover team size was 6. The convergence towards
each behavior is counted with respect to the number of sta-
tistical trials (30).



Figure (7) Rover team performance for a 2 PoI systemwith
a coupling requirement of 6. Rovers receiving suggestions to
explore PoI 1 (denoted S1) outperform teams learning with
D++. Although sub-optimal, rover teams provided with sug-
gestions encouraging the exploration of PoI 2 (denoted S2)
also reliably learn this behavior and achieved a better perfor-
mance than the rover teams using D++ resulting from more
consistent coordination.

are able to establish more consistent coordinated behavior even in
this more difficult learning environment. To illustrate this effect
further, the next experiment shows the performance of a six rover
team learning in a larger world where there are five different joint-
actions to choose from.

6.3 Five PoI, Coupling of Six
In the third experiment, we explore the performance of a six rover
team in a world with five PoI scattered across a region that is of
size 40x40. The coupling requirement for each PoI is six; therefore,
rover teams will need to establish strict coordination between all
six individuals to successfully observe a PoI. As was the case in the
previous experiments, two suggestion types are tested using the
supervisor. Using suggestion type 1 (denoted S1) supervisors sug-
gested helpful partners when a rover’s policy led them to observe
a PoI with a value greater than 5, and the supervisor suggested a
null partner when a rover’s policy led them to observe a PoI with
a value less than or equal to 5. Similarly, using suggestion type 2
(denoted S2), supervisors suggested helpful partners when a rover’s
policy led them to explore a PoI with value less than or equal to 5
and null partners for PoI with values greater than 5.

Due to the greater number of joint-actions to choose from in
this system, rover teams using D++ without CAS fail to establish
effective coordination throughout the learning process. However,
rover teams that receive suggestions manage to overcome some
of the difficulty associated with this system. Figure 8 shows that
using either S1 or S2, rovers are able to learn policies which allow
them to establish coordinated behavior among all six individuals.

The performance of rover teams S1 and S2 are extremely similar
even though these suggestions encourage rovers to explore PoI of
different values. The similarity in performance is a symptom of

Figure (8) Rover team performance for a 5 PoI systemwith
a coupling requirement of 6. Rover teams either received
suggestions encouraging the exploration of PoI with values
greater than 5 (denoted S1), or they received suggestions en-
couraging the exploration of PoI with values less than or
equal to 5 (denoted S2). Agents using Global and Difference
rewards did not learn resulting in an average reward of zero.

this learning environment where coordination is difficult to estab-
lish and maintain among six independent rovers. However, these
results show that suggestions inject enough knowledge into each
rover’s learning process to establish some coordinated behavior
whereas rovers relying on D++ alone fail to maintain coordination
throughout the learning process.

7 CONCLUSIONS
In this work, we introduce a method for injecting knowledge into
the multiagent learning process by using Counterfactual Agent
Suggestions (CAS) that are delivered to agents using a supervisor
agent. We showed that the supervisor can encode knowledge in
the form of a counterfactual partner and then deliver those sugges-
tions using existing reward structures such as D++. Furthermore,
we showed that CAS can be used to induce completely different
behaviors in agents without modifying an agent’s reward function.

This work illustrated the effectiveness of counterfactuals as a
mechanism for providing periodic suggestions to agents through-
out the learning process without explicitly modifying the agent’s
reward function or providing extensive examples. In our current
formulation, these counterfactuals are partner agents. In the future,
we will: (i) explore more fine-tuned counterfactuals that are combi-
nations of counterfactual partners and counterfactual actions; ii)
investigate the use of suggestions and agent-generated counter-
factuals to induce more complex team behaviors that can not be
achieved in the absence of suggestions.

8 ACKNOWLEDGEMENTS
This work was partially supported by the National Science Founda-
tion under grant No. IIS-1815886 and by Scientific Systems Com-
pany Inc. under contract No. SC-1656-02. The authors thank Stephane
Airiau for his thoughtful feedback on this paper.



REFERENCES
[1] Adrian Agogino, Chris HolmesParker, and Kagan Tumer. 2012. Evolving large

scale UAV communication system. In Proceedings of the 14th annual conference on
Genetic and evolutionary computation. ACM, Philadelphia, PA, USA, 1023–1030.
https://doi.org/10.1145/2330163.2330306

[2] Adrian Agogino and Kagan Tumer. 2004. Efficient evaluation functions for multi-
rover systems. In Genetic and evolutionary computation conference, Vol. 3102.
Springer, Seattle, WA, USA, 1–11.

[3] Monica Babes, Enrique Munoz De Cote, and Michael L. Littman. 2008. Social
reward shaping in the Prisoner’s dilemma. In Proceedings of the 7th International
Joint Conference on Autonomous Agents and Multiagent Systems, Vol. 3. Inter-
national Foundation for Autonomous Agents and Multiagent Systems, Estoril,
Portugal, 1389–1392.

[4] Mitchell Colby, Logan Yliniemi, and Kagan Tumer. 2016. Autonomous multia-
gent space exploration with high-level human feedback. Journal of Aerospace
Information Systems 13, 8 (2016), 301–315. https://doi.org/10.2514/1.I010379

[5] Sam Devlin and Daniel Kudenko. 2011. Theoretical considerations of potential-
based reward shaping for multi-agent systems. In The 10th International Confer-
ence on Autonomous Agents and Multiagent Systems, Vol. 1. International Founda-
tion for Autonomous Agents and Multiagent Systems, Taipei, Taiwan, 225–232.

[6] Sam Devlin and Daniel Kudenko. 2012. Dynamic potential-based reward shaping.
In Proceedings of the 11th International Conference on Autonomous Agents and
Multiagent Systems, Vol. 1. International Foundation for Autonomous Agents and
Multiagent Systems, Valencia, Spain, 433–440.

[7] Sam Devlin, Logan Yliniemi, Daniel Kudenko, and Kagan Tumer. 2014. Potential-
based difference rewards for multiagent reinforcement learning. In Proceedings of
the 2014 International Conference on Autonomous Agents and Multiagent Systems,
Vol. 1. ACM, Paris, France, 165–172.

[8] Gaurav Dixit, Nicholas Zerbel, and Kagan Tumer. 2019. Dirichlet-Multinomial
Counterfactual Rewards for Heterogeneous Multiagent Systems. In 2019 Inter-
national Symposium on Multi-Robot and Multi-Agent Systems (MRS). IEEE, New
Brunswick, NJ, USA, 209–215.

[9] Sevan G. Ficici, Ofer Melnik, and Jordan B. Pollack. 2005. A game-theoretic and
dynamical-systems analysis of selection methods in coevolution. IEEE Transac-
tions on Evolutionary Computation 9, 6 (2005), 580–602. https://doi.org/10.1109/
TEVC.2005.856203

[10] Brian P Gerkey and Maja J Mataric. 2002. Pusher-watcher: An approach to fault-
tolerant tightly-coupled robot coordination. In Proceedings 2002 IEEE International
Conference on Robotics and Automation. IEEE, Washington, DC, USA, 464–469.

[11] Dani Goldberg andMaja J. Matarić. 2003. Maximizing Reward in a Non-Stationary
Mobile Robot Environment. Autonomous Agents and Multi-Agent Systems 6, 3
(2003), 287–316. https://doi.org/10.1023/A:1022935725296

[12] Pieter Jan’t Hoen, Karl Tuyls, Liviu Panait, Sean Luke, and Johannes A La Poutre.
2005. An overview of cooperative and competitive multiagent learning. In
Proceedings of the First international conference on Learning and Adaption in
Multi-Agent Systems. Springer-Verlag, Utrecht, The Netherlands, 1–46.

[13] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. 1989. Presentation on
Multilayer Feedforward Networks are Universal Approximators. (1989), 359–
366 pages. https://www.sciencedirect.com/science/article/pii/0893608089900208

[14] Andrew Howard, Maja J. Matarić, and Gaurav S. Sukhatme. 2002. An incremental
self-deployment algorithm for mobile sensor networks. Autonomous Robots 13, 2
(2002), 113–126. https://doi.org/10.1023/A:1019625207705

[15] Athanasios Ch Kapoutsis, Savvas A. Chatzichristofis, Lefteris doitsidis,
João Borges de Sousa, Jose Pinto, Jose Braga, and Elias B. Kosmatopoulos.
2016. Real-time adaptive multi-robot exploration with application to under-
water map construction. Autonomous Robots 40, 6 (2016), 987–1015. https:
//doi.org/10.1007/s10514-015-9510-8

[16] Sven Koenig, Pinar Keskinocak, and Craig Tovey. 2010. Progress on agent coor-
dination with cooperative auctions. In Twenty-fourth aaai conference on artificial
intelligence, Vol. 3. Association for the Advancement of Artificial Intelligence,
Atlanta, GA, USA, 1713–1717.

[17] Shih Yun Lo, Shiqi Zhang, and Peter Stone. 2018. PETLON: Planning efficiently for
task-level-optimal navigation. In Proceedings of the 17th International Conference
on Autonomous Agents and MultiAgent Systems, Vol. 1. International Foundation
for Autonomous Agents and Multiagent Systems, Stockholm, Sweden, 220–228.

[18] Ryan Lowe, Yi I Wu, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel, Igor Mor-
datch, Pieter Abbeel, and Igor Mordatch. 2017. Multi-Agent Actor-Critic for
Mixed Cooperative-Competitive Environments. In Advances in Neural Informa-
tion Processing Systems 30, I Guyon, U V Luxburg, S Bengio, H Wallach, R Fergus,
S Vishwanathan, and R Garnett (Eds.). Curran Associates, Inc., Long Beach, CA,
USA, 6379–6390. https://doi.org/10.1007/BF01744832

[19] Bhaskara Marthi. 2007. Automatic Shaping and Decomposition of Reward Func-
tions. In Proceedings of the 24th International Conference on Machine Learning
(ICML ’07). Association for Computing Machinery, New York, NY, USA, 601–608.

https://doi.org/10.1145/1273496.1273572
[20] Maja J. Matariundefined. 1997. Reinforcement Learning in the Multi-Robot

Domain. In Robot Colonies. Vol. 4. Kluwer Academic Publishers, USA, 73–83.
https://doi.org/10.1023/A:1008819414322

[21] Andrew Y. Ng, Daishi Harada, and Stuart J. Russell. 1999. Policy Invariance
Under Reward Transformations: Theory and Application to Reward Shaping. In
Proceedings of the Sixteenth International Conference on Machine Learning (ICML
’99). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 278–287.

[22] Mohammad Javad Noroozoliaee, Bechir Hamdaoui, and Kagan Tumer. 2013.
Efficient objective functions for coordinated learning in large-scale distributed
OSA systems. IEEE Transactions on Mobile Computing 12, 5 (2013), 931–944.
https://doi.org/10.1109/TMC.2012.67

[23] Enrico Pagello, Antonio D’Angelo, Federico Montesello, Francesco Garelli, and
Carlo Ferrari. 1999. Cooperative behaviors in multi-robot systems through
implicit communication. Robotics and Autonomous Systems 29, 1 (1999), 65–77.
https://doi.org/10.1016/S0921-8890(99)00039-1

[24] Liviu Panait and Sean Luke. 2005. Cooperative Multi-Agent Learning: The State
of the Art. Autonomous Agents and Multi-Agent Systems 11, 3 (2005), 387–434.
https://doi.org/10.3109/00365529108998595

[25] Lynne E. Parker. 1998. ALLIANCE: An architecture for fault tolerant multirobot
cooperation. IEEE Transactions on Robotics and Automation 14, 2 (1998), 220–240.
https://doi.org/10.1109/70.681242

[26] Lynne E. Parker. 2000. Lifelong adaptation in heterogeneous multi-robot teams:
response to continual variation in individual robot performance. Autonomous
Robots 8, 3 (2000), 239–267. https://doi.org/10.1023/A:1008977508664

[27] Mitchell A. Potter and Kenneth A. De Jong. 1994. A cooperative coevolutionary
approach to function optimization. In Proceedings of the International Conference
on Evolutionary Computation. The Third Conference on Parallel Problem Solv-
ing from Nature: Parallel Problem Solving from Nature. Springer-Verlag, Berlin,
Heidelberg, 249–257.

[28] Aida Rahmattalabi, Jen Jen Chung, Mitchell Colby, and Kagan Tumer. 2016. D++:
Structural credit assignment in tightly coupled multiagent domains. In 2016
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE,
Daejeon, South Korea, 4424–4429. https://doi.org/10.1109/IROS.2016.7759651

[29] Jette Randløv and Preben Alstrøm. 1998. Learning to Drive a Bicycle Using
Reinforcement Learning and Shaping. In Proceedings of the Fifteenth International
Conference on Machine Learning (ICML ’98). Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 463–471.

[30] João Machado Santos, Tomáš Krajník, and Tom Duckett. 2017. Spatio-temporal
exploration strategies for long-term autonomy of mobile robots. Robotics and
Autonomous Systems 88 (2017), 116–126. https://doi.org/10.1016/j.robot.2016.11.
016

[31] Jack F. Shepherd and Kagan Turner. 2010. Robust neuro-control for a micro
quadrotor. In Proceedings of the 12th Annual Conference on Genetic and Evolution-
ary Computation. ACM, New York, NY, USA, 1131–1138. https://doi.org/10.1145/
1830483.1830693

[32] Peter Stone and Manuela Veloso. 1999. Team-partitioned, opaque-transition
reinforcement learning. In In Proceedings of the Third Annual Conference on
Autonomous Agents, Vol. 1604. Springer-Verlag, Berlin, Heidelberg, 261–272. https:
//doi.org/10.1145/301136.301195

[33] Peter Stone and Manuela Veloso. 2000. Multiagent systems: a survey from a
machine learning perspective. Autonomous Robots 8, 3 (2000), 345–383. https:
//doi.org/10.1023/A:1008942012299

[34] Matthew E. Taylor, Peter Stone, and Yaxin Liu. 2007. Transfer learning via inter-
task mappings for temporal difference learning. Journal of Machine Learning
Research 8 (2007), 2125–2167.

[35] Lisa Torrey, Trevor Walker, Jude Shavlik, and Richard Maclin. 2005. Using advice
to transfer knowledge acquired in one reinforcement learning task to another. In
European Conference on Machine Learning. Springer, Berlin, Heidelberg, 412–424.

[36] Kagan Tumer and Adrian Agogino. 2009. Improving air traffic management
with a learning multiagent system. IEEE Intelligent Systems 24, 1 (2009), 18–21.
https://doi.org/10.1109/MIS.2009.10

[37] J Wang, M Lewis, and P Scerri. 2004. Cooperating Robots for Search and Rescue.
In Proceedings of the AAMAS 1st International Workshop on Agent Technology for
Disaster Management. ACM, Hakodate, Japan, 92–99. https://doi.org/10.1.1.119.
8181

[38] YingWang, Clarence W De Silva, and Fellow Ieee. 2006. Multi-robot Box-pushing
: Single-Agent Q-Learning vs. Team Q-Learning. In 2006 IEEE/RSJ International
Conference on Intelligent Robots and Systems. IEEE, Beijing, China, 3694–3699.

[39] EricWiewiora, Garrison Cottrell, and Charles Elkan. 2003. PrincipledMethods for
Advising Reinforcement Learning Agents. In Proceedings, Twentieth International
Conference on Machine Learning, Vol. 2. AAAI Press, Washington, DC, USA,
792–799.

https://doi.org/10.1145/2330163.2330306
https://doi.org/10.2514/1.I010379
https://doi.org/10.1109/TEVC.2005.856203
https://doi.org/10.1109/TEVC.2005.856203
https://doi.org/10.1023/A:1022935725296
https://www.sciencedirect.com/science/article/pii/0893608089900208
https://doi.org/10.1023/A:1019625207705
https://doi.org/10.1007/s10514-015-9510-8
https://doi.org/10.1007/s10514-015-9510-8
https://doi.org/10.1007/BF01744832
https://doi.org/10.1145/1273496.1273572
https://doi.org/10.1023/A:1008819414322
https://doi.org/10.1109/TMC.2012.67
https://doi.org/10.1016/S0921-8890(99)00039-1
https://doi.org/10.3109/00365529108998595
https://doi.org/10.1109/70.681242
https://doi.org/10.1023/A:1008977508664
https://doi.org/10.1109/IROS.2016.7759651
https://doi.org/10.1016/j.robot.2016.11.016
https://doi.org/10.1016/j.robot.2016.11.016
https://doi.org/10.1145/1830483.1830693
https://doi.org/10.1145/1830483.1830693
https://doi.org/10.1145/301136.301195
https://doi.org/10.1145/301136.301195
https://doi.org/10.1023/A:1008942012299
https://doi.org/10.1023/A:1008942012299
https://doi.org/10.1109/MIS.2009.10
https://doi.org/10.1.1.119.8181
https://doi.org/10.1.1.119.8181

	Abstract
	1 Introduction
	2 Background
	2.1 Reward Shaping
	2.2 Potential Based Reward Shaping
	2.3 D++ Rewards
	2.4 Related Works

	3 Counterfactual Agent Suggestions
	3.1 Cooperative CoEvolutionary Algorithms

	4 Problem Formulation
	5 Experimental Setup
	6 Results
	6.1 Two PoI, Coupling of 3
	6.2 Two PoI, Coupling of Six
	6.3 Five PoI, Coupling of Six

	7 Conclusions
	8 Acknowledgements
	References

