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Abstract

Geographic location is a powerful property for or-
ganizing large-scale photo collections, but only a small
fraction of online photos are geo-tagged. Most work in
automatically estimating geo-tags from image content is
based on comparison against models of buildings or land-
marks, or on matching to large reference collections of geo-
tagged images. These approaches work well for frequently-
photographed places like major cities and tourist destina-
tions, but fail for photos taken in sparsely photographed
places where few reference photos exist. Here we consider
how to recognize general geo-informative attributes of a
photo, e.g. the elevation gradient, population density, de-
mographics, etc. of where it was taken, instead of trying
to estimate a precise geo-tag. We learn models for these
attributes using a large (noisy) set of geo-tagged images
from Flickr by training deep convolutional neural networks
(CNNs). We evaluate on over a dozen attributes, showing
that while automatically recognizing some attributes is very
difficult, others can be automatically estimated with about
the same accuracy as a human.

1. Introduction
Automatically organizing image collections is an impor-

tant problem, especially with the recent explosive growth
of online social photo-sharing websites — there are hun-
dreds of billions of images on Facebook alone [3]. A natural
way of organizing photos is based on the geospatial loca-
tion of where they were taken. In fact, most modern online
and offline photo organization tools, including Google’s Pi-
cassa, Apple’s iPhoto, and Yahoo’s Flickr support browsing
and search based on geo-tags. Of course, these features re-
quire photos to be geo-tagged; while GPS receivers are in-
creasingly common on modern cameras (especially smart-
phones), for now only a small percentage of photos on the
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Figure 1: You probably can’t identify exactly where these
photos were taken, but you probably can estimate properties
of the places, and then narrow down the possible locations
accordingly based on your prior knowledge of the world.
In this paper we estimate geo-informative attributes of im-
ages using deep classification networks trained on noisy
but automatically-labeled datasets generated by combining
public GIS maps and geo-tagged Flickr images.

web are geo-tagged (e.g. less than 5% of Flickr [14]). We
thus need content-based techniques to estimate geospatial
annotations for unlabeled images.

Most recent work on geolocalizing consumer images
takes one of two general approaches. The first is to build
discrete models for a set of specific places, like buildings
and other landmarks, and then to match unlabeled images
against these models. The models vary in complexity from
full 3D [6, 23, 36], to bags of feature points [22, 45], to



hybrid approaches that use geometric verification of fea-
ture points [13, 21, 29, 30]. These approaches can produce
precise geo-tags but require many training images for each
place, and thus are only practical for major cities and land-
marks. The second approach views geo-localization as an
image matching problem: compare a query image to a large
set of reference images having known GPS coordinates, and
estimate a geo-tag based on the visual matches [15, 18].
These approaches avoid building discrete models and thus
handle photos from a larger portion of the world, but re-
quire expensive searches against huge image libraries and
the geo-tags they estimate are less precise.

These two types of techniques work well for photos of
distinctive and highly-photographed places for which many
reference images are available online. However, the geo-
spatial distribution of online consumer photos follows a
long-tailed distribution, such that a surprisingly large per-
centage of photos are taken in a few popular places, but the
majority of photos are taken in places that are not often pho-
tographed [22]. Thus most images cannot be geo-located
by either approach — there are simply not enough training
images to densely cover the surface of the world. More-
over, many photos simply do not have enough information;
a photo of a corn field could be taken almost anywhere in
the midwest U.S., for instance. It is not practical to estimate
a precise geo-tag for these images, and simply inferring the
properties of the place where a photo was taken may be suf-
ficient (e.g. rural, temperate, flat, not affluent, agricultural).

In this paper, we introduce the problem of classifying
geo-informative attributes of where a photo was taken, in-
cluding geographic properties like elevation and land type
as well as demographics like wealth and population. These
classifiers produce useful information about any image,
even one taken in a place that has never been photographed
before. The estimated geo-informative attributes could be
used to add tags to photos, or they could (coarsely) estimate
geolocation: once an image’s attributes are recognized, a
GIS map could be consulted to identify the set of places
matching that specific combination of attributes. This use
of mid-level features that are both visually distinctive and
semantically meaningful in order to overcome insufficient
training data is similar to the use of attributes in fine-grained
object classification [2, 10, 27].

We learn classification models for over a dozen geo-
informative attributes using millions of geo-tagged Flickr
images, referencing the geo-tags against GIS maps to auto-
matically produce (noisy) ground truth attribute labels. We
apply deep convolutional neural networks (CNNs) to this
problem, and compare their performance to standard tech-
niques including both scene-level (e.g. GIST [25]) as well as
local (vector-quantized HOG [7]) image features. We find
that despite the large amount of noise in our training and
test sets, the geo-spatial attribute classifiers perform nearly

as well as humans on some attributes. Moreover, the CNNs
perform significantly better than any of the other methods.

While some have considered specific scene classification
tasks that could be considered geo-informative, including
land use type [20], elevation gradient [15], and urbanic-
ity [16], we believe ours is the first paper to propose general
geospatial attribute recognition as an important task, and
to evaluate the feasibility of geospatial attribute recognition
on over a dozen attributes on a worldwide scale. Moreover
while deep learning has been found to give impressive re-
sults on other classification problems, we are not aware of
other work that has applied it to image geolocation.

To summarize our contributions, in this paper we:
1. propose attribute recognition as a means of estimating

geo-informative annotations, even for photos taken in
geographic areas with very sparse training data;

2. apply convolutional neural networks to recognize geo-
informative attributes;

3. characterize and compare the effectiveness of classifi-
cation techniques on this difficult new problem; and

4. introduce large-scale labeled datasets for geospatial at-
tributes.

2. Related work
Our work connects to several lines of recent research.

Visual geo-localization. Recent papers have studied image
geo-localization, typically using geo-tagged photos from
photo-sharing sites like Flickr as (noisy) reference im-
ages [13,15,21–23,29,30,36,45]. Among those most related
to ours, Hays and Efros [15] geo-locate photos by matching
against a huge collection of geo-tagged images, and also
infer population and elevation by looking up the estimated
geo-tag on a GIS map. In this paper, we also estimate pop-
ulation and elevation (in addition to many other attributes),
but by classifying attributes directly instead of geo-locating
and then looking up the corresponding attribute values.

Model-based techniques like Li et al [22] avoid the high
cost of explicit image matching by building models for
each of thousands of discrete highly-photographed places
on Earth. These techniques work well for popular land-
marks, but cannot infer geo-tags for photos taken outside
these places. Other work computes full 3D models of land-
marks [36] which allow photos to be very precisely geo-
tagged, sometimes within centimeters [6]. But these ap-
proaches require thousands of training images per place so
are only feasible around popular landmarks, and 3d models
cannot be built reliably for highly dynamic scenes.

Geo-informative attributes. Work in scene classification
has considered categories that could be geo-informative,
like urban versus rural [40]. Similarly, recent work by
Zhou et al. [46] learns a suite of hand-selected scene clas-
sifiers as composites of many categories from the SUN at-



tribute dataset [28]. The attributes capture different facets
of a city including architecture, greenery, and transporta-
tion. They apply these classifiers on a dense corpus of so-
cial geotagged images to analyze the role of different at-
tributes in city recognition and similarity tasks. These ap-
proaches and others like them use hand-selected categories
and carefully-labeled training data, whereas we take a data-
driven approach, learning over a dozen attribute classifiers
using social images annotated with noisy training labels.

Leung and Newsam [20] and Xie and Newsam [41] re-
construct maps of land use type and “scenicness” by pool-
ing visual features from images taken in a particular loca-
tion, while Zhang et al. [44] similarly try to infer maps of
weather patterns. We study a related but distinct problem:
we try to classify geo-informative properties of individual
images to help determine where they were taken, whereas
they try to classify sets of images with known geo-tags to
estimate land use properties of the physical world. Our
scope is also broader: we test over a dozen attributes at a
worldwide scale, whereas they study one attribute for part
of the United Kingdom. Doersch et al. [9] discover local
image patches characteristic of the architecture of particular
cities by mining Google Streetview data. These patches can
be thought of as a specific type of geo-informative feature,
but are only applicable to street scenes in cities. Finally,
identifying land features from aerial imagery is studied ex-
tensively in remote sensing [33]; we study the distinct (and
arguably more difficult) problem of detecting attributes in
unconstrained ground-based consumer images.

Visual attributes. Our challenge of training data sparsity is
similar to that of fine-grained object recognition, like clas-
sifying between different bird species. Attributes, or mid-
level features that are visually discriminative yet have se-
mantic meanings (like “red beak” or “cluttered space”) [2,
10,27], can alleviate problems of limited training data by al-
lowing human experts to specify at least some portion of an
object model, providing a connective “language” between
computational models and human semantics. We propose a
similar technique here: our goal is to produce a connection
between worldwide GIS maps and visual features of indi-
vidual images, through mid-level geo-informative attributes
(elevation gradient, population density, etc.). In our context,
an advantage of learning mid-level attributes (as opposed
to directly learning low-level visual features to distinguish
between places [9]) is that the estimated attributes may be
useful for automatic annotation applications, even if precise
geolocations cannot be estimated.

Convolutional neural networks. Following the amazing
success of deep convolutional neural networks in the 2012
ImageNet [8] visual recognition challenge [19], CNNs have
been applied to a variety of computer vision tasks with
similar improvements over the state of the art [26, 37, 38].

The resurgence of neural networks in computer vision is
thanks in no small part to powerful GPUs and large anno-
tated datasets. The capability to process hundreds of thou-
sands of images has been shown to be crucial to these net-
works. However, recent work suggests that training CNNs
on large-scale supervised problems produces networks ca-
pable of richly modeling generic imagery [12,26,32,35,43].
It has been shown that starting from these pretrained models
allows CNN-based techniques to be applied to a diverse set
of target domains without the need for massive training sets.
In this paper, we follow this methodology by beginning with
a network trained on ImageNet and then specializing it for
our attribute recognition on our own large-scale dataset.

3. Geo-informative attributes
Our main goal in this paper is to recognize geo-

informative attributes, especially for photos without distinc-
tive geo-spatial features or taken in sparsely-photographed
places, where there is little hope of estimating an accurate
geo-tag. We propose to learn classifiers for these attributes
with large sets of geo-tagged image data from Flickr, gener-
ating ground truth labels automatically through GIS maps.

3.1. Datasets

Image data. We assembled a large collection of about 40
million geo-tagged images from Flickr, downloaded using
the public API. From this set, we filtered out photos having
imprecise geo-tags (with Flickr precision value less than 13,
implying less accurate than about a city block). This col-
lection of course exhibits the long-tailed spatial distribution
discussed in Section 1, such that a large fraction of images
come from a relatively small number of places. If we simply
use the whole collection (or sample uniformly from it), we
risk producing classifiers that simply memorize the appear-
ance of a few key landmarks without abstracting general
visual properties of places that exhibit various attributes.

We thus attempt to bias the sampling as if we were draw-
ing uniformly at random over the surface of the globe, in-
stead of sampling directly from the geo-spatial distribution
of Flickr photos. To do this, we discretize the world into
0.01�⇥0.01� latitude-longitude bins (roughly 1 km ⇥ 1 km
at the middle latitudes). We randomly sample photos one-
by-one, but ignore samples from bins from which we al-
ready have 100 photos. To prevent individual highly-active
users from introducing bias, we avoid sampling more than
five photos from any single user. Finally, we partition the
data into training and testing sets; to help prevent (nearly)
identical photos from leaking across the partitions, we di-
vide on a per-user basis (so that all photos from a single
photographer are placed in one set or the other).

Geospatial attributes. In order to test geospatial attribute
recognition, we collected public gridded GIS data for 15 at-
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Figure 2: Correlations between attributes estimated from
100,000 samples. Color intensity is proportional to magni-
tude, with positive correlation in blue and negative in pink.

tributes including geographic features (e.g. elevation, eleva-
tion gradient and land-use) and demographic features (e.g.
population density, wealth, ethnic composition). The data
came from a variety of public sources including NASA and
USGS, and the granularity of the gridded data ranged from
about 30 arc-seconds to up to about 15 arc-minutes (see Ta-
ble 1 for details). We used global data when available, al-
though some of the attributes were available only for the
U.S. We avoided time-varying attributes (e.g. temporal cli-
matic attributes like daily temperature or rainfall); these at-
tributes could be useful if accurate timestamps are known
but we do not assume that here. Many of these attributes
are correlated to some degree, as visualized in Figure 2, and
thus we can expect some structure in the recognition accu-
racies across different attributes.

Automatically labeled datasets. We automatically pro-
duce labeled datasets for each attribute, by simply exam-
ining each photo’s geo-tag, looking up the value of the at-
tribute at that location in the gridded GIS map, and then
assigning that label to the photo. Of course, this process
is noisy: many geo-tags on Flickr are incorrect [14], and
our worldwide attribute maps are coarse enough (about 1–
10km square) that attribute values may vary dramatically
even within a single bin. Attribute values are most geo-
informative if they are relatively extreme — i.e. quite high
or quite low. Thus we consider a restricted classification
problem in which the goal is to label an image as having a
high or low value for an attribute (e.g. high population or
low population). We label images as high or low by thresh-
olding at the highest and lowest quartile (25% and 75%) of
the worldwide value of each attribute.

We partitioned the data into training, validation, and test
sets (about 60%, 10%, 30% respectively) on a per-user basis
to prevent leakage between the sets. We also ensured the
class distribution in the test sets remained equal such that
the random baselines are 50% for ease of interpretation.

3.2. Attribute classifiers
Inspired by the impressive results of convolutional deep

learning on a variety of recognition problems (e.g. [19,
26, 37, 38] among others), we apply them to our problem
of geo-informative attribute recognition. We start from
the neural network architecture proposed by Krizhevsky et
al. [19], with five convolutional layers (C1 to C5) followed
by three fully connected layers (FC6 to FC8), and the same
mechanisms for contrast normalization and max pooling.
In total, this model has about 60 million parameters. Our
training dataset is not sufficiently large to train such a large
number of parameters from scratch, so we follow Oquab et
al. [26] and others and initialize from a model pretrained on
ImageNet. We modify the final fully connected layer (FC8)
for each of our attribute classification problems such that it
has two outputs (rather than the 1,000 of the original model)
to account for our binary classification problem (estimating
whether the attribute value is high or low). Additionally,
the initial weights for FC8 are randomly sampled from a
zero-mean normal distribution.

We used Caffe [1] for training and testing our net-
works, using the pretrained ImageNet network packaged
with Caffe as initialization. The network for each classifier
was trained independently using stochastic gradient descent
with a batch size of 128 images. The learning rate was set at
0.001 and decreased by an order of magnitude every 2500
batches. The training process was allowed to continue for a
maximum of 25,000 batches, but generally converged much
earlier for our problems. To avoid overfitting, the validation
set was evaluated every 500 batches and the weights with
the lowest validation error were used for testing.

To put the CNN results in context, we also tested clas-
sifiers using several other recognition approaches. We con-
structed a bag-of-words vocabulary using Histogram of Ori-
ented Gradients (HOG) [7]; our hypothesis was that local
evidence such as particular types of objects might be helpful
to predict geospatial attributes. Given an image, we sample
5⇥5 blocks of HOG cells to produce local feature vectors in
overlapping square sub-images. We use the 31-dimensional
variant of HOG [11], so that the feature dimensionality of
each patch is 5 ⇥ 5 ⇥ 31 = 775. We represent the image
in the standard bag-of-words fashion as a histogram over
these features quantized to a vocabulary. In this case, we
constructed a 100,000 codeword vocabulary by clustering
(with k-means) over 10 million HOG features sampled from
random Flickr images. We then learned a linear SVM [17]
for each of our 15 attributes, to predict high/low labels.

We also tested simpler global scene-level features, under
the hypothesis that some geo-informative attributes could
be inferred based on the overall appearance of a scene.
We specifically used GIST [25] and spatially-pooled color
histograms. For the histograms, we computed 8-bin his-
tograms over each RGB plane within spatial regions of dif-



Attribute Source Year(s) Grid size Area Description
Elevation USGS GTOPO30 [39] 1996 30 arcsec Global Elevation according to USGS’s global digital elevation model.
Elevation gradient USGS GTOPO30 [39] 1996 30 arcsec Global Elevation gradient according to USGS’s global digital elevation model.
GDP 1990 NASA SEDAC [42] 1990 15 arcmin Global GDP in millions of USD.
GDP 2025 (predicted) NASA SEDAC [42] 2025 15 arcmin Global GDP in millions of USD.
Infant mortality rate NASA SEDAC [4] 2000 2.5 arcmin Global Infant mortality rate.
Night light intensity NOAA NGDC [24] 2009 30 arcsec Global Nighttime lights as seen from space, composited across the year.
Population density (2000) NASA SEDAC [5] 2000 2.5 arcmin Global Population density.
Population density (2010) NASA SEDAC [5] 2010 2.5 arcmin Global Population density.
% Underweight children NASA SEDAC [4] 1990-2002 2.5 arcmin Global Percentage of children who are underweight.
% Pasture land NASA SEDAC [31] 2000 0.5 arcmin Global Proportion of land areas used as pasture land.
% African American households NASA SEDAC [34] 2000 30 arcsec U.S. Percentage of households identifying as African-American.
% Asian households NASA SEDAC [34] 2000 30 arcsec U.S. Percentage of households identifying as Asian.
% Hispanic households NASA SEDAC [34] 2000 30 arcsec U.S. Percentage of households identifying as Hispanic.
U.S. household income NASA SEDAC [42] 2000 30 arcsec U.S. Aggregated household income in 2000, according to U.S. census.
U.S. population NASA SEDAC [42] 2000 30 arcsec U.S. U.S. population according to 2000 census.

Table 1: Details of the 15 attributes, showing data sources and year(s), GIS grid size, and area covered. (There are 60
arc-minutes or 3600 arc-seconds in a degree, so 30 arc-seconds correspond to about 1 km at the middle latitudes.)

# images CNN HOG Color GIST
Global attributes
Elevation 14,230 61.11 56.50 53.34 52.92
Elevation gradient 13,266 60.63 55.86 53.76 52.44
GDP, 1990 actual 14,940 71.33 64.83 60.45 58.02
GDP, 2025 predicted 14,906 73.58 66.05 61.79 59.26
Infant mortality 14,634 55.88 52.88 52.63 50.92
Night light intensity 15,004 73.61 68.03 62.58 59.98
Population density, 2010 14,840 74.43 67.48 62.05 60.11
Population density, 2000 14,892 72.38 65.75 61.62 58.71
Underweight children 1,896 62.88 51.72 51.72 51.55
% Pasture land 14,972 58.50 54.62 54.54 52.99

U.S.-only attributes
% African American 7,190 65.42 62.17 57.79 57.79
% Asian 7,006 63.02 58.99 57.48 56.54
% Hispanic 6,898 65.65 60.88 58.56 56.92
U.S. household income 6,900 67.60 64.55 58.12 57.61
U.S. population 6,866 68.10 64.76 61.17 59.22
Average 66.27 61.00 57.84 56.33

Table 2: Classification accuracies for geo-spatial attributes.
Random baseline is 50%; see text for human baselines.

ferent sizes (in a spatial pyramid with three levels of 1⇥ 1,
2⇥ 2, and 4⇥ 4, yielding 502 dimensional feature vectors).
As with HOG features, we then learned linear binary SVMs.

4. Experimental results
We tested our attribute classification techniques on the

large-scale image and attribute datasets described in Sec-
tion 3.1, using Convolutional Neural Networks as well as
the baseline techniques discussed in Section 3.2.

4.1. Automatic attribute classification
The results of applying our classifiers on the 15 geospa-

tial attributes are shown in Table 2, where again the task
is to determine whether each image was taken in a place
with a high or low value of the attribute — e.g. for the
first row of the table, whether a given photo was taken at a
low or high elevation. For each attribute, we normalized the

test dataset such that a random baseline achieves 50% accu-
racy. We find that the correct classification rates vary signif-
icantly, from close to random guessing for infant mortality
to nearly 75% correct classification for population density.
This range reflects the difficulty of the geo-informative at-
tribute tasks we have proposed: a photo full of buildings
and people is obviously probably taken in a high-population
area, whereas inferring infant mortality (which is a good
correlate for poverty rate) requires more subtle analysis (e.g.
examining architectural features, or the clothes people are
wearing). Some of these attributes are correlated and thus
show similar performance, although we do see interesting
differences amongst them: we can predict estimated GDP
for 2025 more accurately than in 1990, presumably because
Flickr images were mostly taken in the last 5 years, whereas
the worldwide wealth distribution has changed dramatically
since 1990 (e.g. China’s GDP has increased by an order of
magnitude). Figure 3 shows randomly-sampled correctly
and incorrectly classified images for each attribute.

For all of the attributes, we found that the deep learn-
ing CNNs beat the other techniques by a decisive margin.
GIST and color features had an average accuracy of 56.33%
and 57.84%, respectively, compared to a 50% random base-
line. This confirms the hypothesis that some attributes can
be (weakly) estimated based only on the overall properties
of the scene. Using HOG features improved results signif-
icantly to 61.0%, suggesting that local object-level features
help, while the CNNs yielded a substantial further improve-
ment to 66.3%. Our results thus add to the growing evi-
dence that deep learning can yield large improvements over
traditional techniques on many vision problems.

We are not aware of other work that has studied geo-
informative attribute classification, so we cannot compare
against published results. Perhaps the closest paper is Le-
ung et al [20], who try to reconstruct land use maps by an-
alyzing pools of geo-tagged photos from Flickr — a very
different task than our goal of labeling images. Though not
directly comparable, as a weak comparison we note that we
achieve greater accuracy relative to our baseline: they report



Elevation Elevation Gradient Night light intensity

High Low High Low High Low High Low High Low High Low

Population Density (2010) Population Density (2000) Infant mortality

High Low High Low High Low High Low High Low High Low

Underweight Children Estimated GDP (2025) GDP (1990)

High Low High Low High Low High Low High Low High Low

% Pasture land African American Pop. Aggregate Household Income

High Low High Low High Low High Low High Low High Low

Asian American Pop. Hispanic American Pop. Population

High Low High Low High Low High Low High Low High Low

Figure 3: Some correctly- and incorrectly-classified images. For each attribute, we show a correctly-predicted high- and
low-valued image inside the box, and an incorrectly-predicted high- and low-valued image outside the box to the right.

64% accuracy versus a 61.1% random baseline for urban de-
velopment classification, while we achieve 73.6% accuracy
on our similar “night light intensity” attribute versus 50%.
Again, our tasks are very different so a direct comparison is
not meaningful, but this at least suggests that our improve-
ment over baseline is state-of-the-art.

4.2. Human baselines

Although the automatic classifiers beat the random base-
line by substantial margins, our accuracies are not near the
100% performance we might aspire to. However it is im-
portant to note that our test dataset is extremely difficult,
consisting of a raw set of Flickr photos; we have deliber-
ately made no attempt to filter out difficult or noisy images
(because doing so could inevitably inject biases into the
dataset). Thus many of our test set photos, including indoor
images and close-ups of objects, are difficult or impossible
to geo-locate because there is simply not enough visual ev-
idence to detect any geo-informative attributes. Moreover,
the ground truth labels themselves are noisy, as a significant

fraction of Flickr geo-tags are wrong [14].

The sample of correctly and incorrectly classified images
for each attribute shown in Figure 3 gives a sense for the
difficulty of our dataset, and the limited amount of evidence
that some images contain. For instance, in the upper right
of the figure, the classifier correctly estimates that the photo
of a concert probably occurs in a city and the photo of a
mountain is in a rural area. But it decides that the fencers
are in the country and the art is in the city. These are very
reasonable decisions based on the visual evidence at hand,
but turn out to be incorrect.

To try to quantify the fraction of these difficult images,
we collected hand-labeled annotations for 3 attributes (pop-
ulation, income, and elevation gradient) to measure hu-
man performance on these classification tasks. We chose
these attributes because they were the easiest to describe to
users. For each attribute, we sampled 1,000 images from
our dataset such that half had a high value of the attribute
(e.g. high population density) and the other half had a low
value according to the automatic labeling. We presented



each image to two users on Mechanical Turk (restricting to
“Masters” who have a long track record of quality work),
asking them to classify the image into the low or high cate-
gory and to provide some additional feedback.

We found that human performance ranged from 52.9%
for poverty, to 60.0% for elevation gradient, to nearly 81%
for population density. Our automatic classifiers actually
beat human performance on poverty (taken as a proxy for
infant mortality — 55.9% versus 52.9%), while achieving
about the same performance on elevation gradient (60.6%
versus 60.0%). However the human users performed signif-
icantly better on population density (80.8% versus 73.61%).
Thus while our automatic classifiers do not get near 100%
accuracy, neither do humans. One reason for this is that
about 28% of our dataset is indoor images, which typically
have very little evidence about geo-spatial attributes.

4.3. Discussion

The geo-informative attributes we detect could have a
variety of uses in automatic image organization. For in-
stance, instead of using geospatial organization techniques
that require absolute GPS coordinates, consumer software
like Picasa and iPhoto could arrange photos according to
relative geo-spatial attributes, separating urban from rural
images, mountains from plains, and so on. Another possi-
bility would be to use the attributes to narrow down where
on Earth a particular photo was taken by consulting GIS
maps. For instance, knowing that a photo was taken in a
high-population, low-income, high-elevation place already
restricts the set of possible GPS locations dramatically, and
using GIS maps we can determine this set even if we have
no photos from the specific place in our training dataset.
For instance, we have calculated that if our attribute classi-
fiers could give 80% classification accuracy, then we could
correctly narrow the geotag of about 10% of images in our
dataset to a 100⇥ 100 km range, or about 65% of photos to
within about a 500⇥ 500 km range.

We have so far posed our task as classifying whether an
image has a high or low attribute value in order to avoid
trying to draw precise boundaries between bins. However,
this has the disadvantage that we are not able to predict at-
tributes for images in about 50% of locations — the mid-
dle 50% of a given attribute. Using the same automati-
cally collected dataset, we also trained versions of our clas-
sifiers modified to treat the problem as a ternary classifi-
cation task, predicting an image as either low, average, or
high (i.e. in the lower, middle two, or upper quartile). This
is a much harder problem because images with 24th- and
26th-percentile attribute values have different ground truth
labels, despite the fact that they could be taken in virtu-
ally identical places. On this ternary task, average accuracy
across the 15 attributes was 44.08% relative to a 33.33%
baseline. Despite this being a more difficult task, average

accuracy relative to random chance remained the same as
in the binary experiments (both having accuracies approxi-
mately 1.32 times baseline). Interestingly, simple binary ex-
periments which split at the median performed well below
either the binary or ternary experiments discussed, leading
us to believe that a vast majority of images have similar
characteristics until they reach the extreme values.

As discussed in Section 3.1, many of our attributes are
correlated — areas with high infant mortality typically also
have a high rate of underweight children, for example. An
interesting question is whether these correlated attributes
are predicted from similar visual features. To begin to form
an answer, we trained a single Convolutional Neural Net-
work (instead of 15 separate networks) to predict all 15 bi-
nary responses as a multi-label framework. Performance for
this design was nearly identical to the independent classi-
fiers despite the possibility for the network to learn and use
these correlations. We take this as a weak indication that
perhaps each attribute is identifying different visual cues de-
spite being correlated geospatially. From a practical stand-
point, using a single network has the advantage of requiring
less computation during image classification.

5. Summary and Conclusion
We have proposed the problem of estimating geo-spatial

attributes of the place where a photo was taken, based only
on its visual content. We learned convolutional neural net-
work classifiers for a wide variety of geo-spatial attributes
by building large (albeit noisy) datasets by combining geo-
tagged Flickr photos with attribute values from GIS maps.
We evaluated the performance of the CNNs against more
traditional scene-level and local features. While the CNNs
give the best performance, we find that the local features
outperform the simpler scene-level features by a significant
degree, suggesting that the classifiers have discovered lo-
cal features (like objects) that are predictive of attribute val-
ues. We believe that this is the first paper to propose gen-
eral geo-spatial attribute recognition as an important task, to
apply deep learning techniques to problems related to geo-
localization, and to evaluate the feasibility of geo-spatial
attribute recognition on over a dozen attributes and on a
worldwide scale. We hope that this paper and our dataset
will spark interest among other researchers into the prob-
lem of geo-spatial attribute classification.
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