
Adversarial Examples Detection in Deep Networks with Convolutional Filter
Statistics

Xin Li, Fuxin Li
School of Electrical Engineering and Computer Science

Oregon State University
urumican@gmail.com, lif@eecs.oregonstate.edu

Abstract

Deep learning has greatly improved visual recognition
in recent years. However, recent research has shown that
there exist many adversarial examples that can negatively
impact the performance of such an architecture. This paper
focuses on detecting those adversarial examples by analyz-
ing whether they come from the same distribution as the
normal examples. Instead of directly training a deep neural
network to detect adversarials, a much simpler approach
was proposed based on statistics on outputs from convo-
lutional layers. A cascade classifier was designed to effi-
ciently detect adversarials. Furthermore, trained from one
particular adversarial generating mechanism, the resulting
classifier can successfully detect adversarials from a com-
pletely different mechanism as well. The resulting classifier
is non-subdifferentiable, hence creates a difficulty for ad-
versaries to attack by using the gradient of the classifier.
After detecting adversarial examples, we show that many of
them can be recovered by simply performing a small aver-
age filter on the image. Those findings should lead to more
insights about the classification mechanisms in deep convo-
lutional neural networks.

1. Introduction

Recent advances in deep learning have greatly improved
the capability to recognize visual objects [13, 26, 7]. State-
of-the-art neural networks perform better than human on
difficult, large-scale image classification tasks. However, an
interesting discovery has been that those networks, albeit re-
sistant to overfitting, would have completely failed if some
of the pixels in the image were perturbed via an adversarial
optimization algorithm [28, 4] . An image indistinguish-
able from the original for a human observer could lead to
significantly different results from a deep network(Fig. 1).

Those adversarial examples are dangerous if a deep net-
work is utilized in any crucial real application, be it au-

Goldfish (95.15% confidence)

Shark (93.89% confidence)

=

=

+0.03

+0.03

Giant Panda (99.32% confidence)

𝐼

Δ𝐼

Δ𝐼

Figure 1. An optimization algorithm finds adversarial examples
which, with almost negligible perturbations to human eyes, com-
pletely distort the prediction result of a deep neural network [28].
Such algorithms have been found to be universal to different deep
networks. This paper studies their properties and seeks a defense.

tonomous driving, robotics, or any automatic identification
(face, iris, speech, etc.). If the result of the network can
be hacked at the will of a hacker, wrong authentications
and other devastating effects would be unavoidable. There-
fore, there are ample reasons to believe that it is important
to identify whether an example comes from a normal or an
adversarial distribution. A reliable procedure can prevent
robots from behaving in undesirable manners because of the
false perceptions it made about the environment.

The understanding of whether an example belongs to the
training distribution has deep roots in statistical machine
learning. The i.i.d. assumption was commonly used in
learning theory, so that the testing examples were assumed
to be drawn independently from the same distribution of the
training examples. This is because machine learning is only
good at performing interpolation, where some training ex-
amples surround a testing example. Extrapolation is known
to be difficult, since it is extremely difficult to estimate data
labels or statistics if the data is extremely different from any
known or learned observations. Many current approaches
deal with adversarial examples by adding them back to the
training set and re-train. However in their experiments, new
adversarials can almost always be found from the re-trained
classifier. This is because that the space of extrapolation is
significantly larger than the area a machine learning algo-

1



rithm can interpolate, and the ways to find vulnerabilities of
a deep learning system are almost endless.

A more conservative approach is to refrain from making
a prediction if the system does not feel comfortable about
it. Such an approach seeks to build a wall to fence all test-
ing examples in the extrapolation area out of the predictor,
and only predict in the small interpolation area. Work such
as [16] provides basic theoretical frameworks of classifica-
tion with an abstain option.

Although these concepts are well-known, the difficulties
lie in the high-dimensional spaces that are routinely used
in machine learning and especially deep learning. Is it even
possible to define interpolation vs. extrapolation in a 4, 000-
dimensional or 40, 000-dimensional space? It looks like
almost everything is extrapolation since the data is inher-
ently sparse in such a high-dimensional space [9, 6], a phe-
nomenon well-known as the curse of dimensionality. The
enforcement of the i.i.d. assumption seems impossible in
such a high-dimensional space, because the inverse problem
of estimating the joint distribution requires an exponential
number of examples to be solved efficiently. Some recent
work on generative adversarial networks proposes using a
deep network to train this discriminative classifier [3, 22],
where a generative approach is required to generate those
samples, but it is largely confined to unsupervised settings
and may not be applicable for every domain convolutional
networks (CNNs) have been applied to.

In this work we propose a discriminative approach to
identify adversarial examples, which trains on simple fea-
tures and can approach good accuracy with limited training
examples. The main difference between our approach and
previous outlier detection/adversarial detection algorithms
(e.g. [2]) is that their approaches usually treat deep learning
as a black box and only works at the final output layer, while
we believe that the learned filters in the intermediate layers
efficiently reduce the dimensionality and are useful for de-
tecting adversarial examples. We make a number of empir-
ical visualizations that show how the adversarial examples
change the prediction of a deep network. From those intu-
itions, we extract simple statistics from convolutional filter
outputs of various layers in the CNN. A cascade classifier is
proposed that utilizes features from many layers to discrim-
inate between normal and adversarial examples.

Experiments show that our features from convolutional
filter output statistics can separate between normal and ad-
versarial examples very well. Trained with one particu-
lar adversarial generation method, it is robust enough to
generalize to adversarials produced from another genera-
tion approach [20] without any special adaptation or addi-
tional training. Those confidence estimates may improve
the safety of applying these deep networks, and hopefully
provide insights for further research on self-aware learning.
As a simple extension, the results from visualizations of the

features prompted us to perform an average filter on cor-
rupted images, and found out that many correct predictions
can be recovered from this simple filtering.

2. Deep Convolutional Neural Networks
A deep convolutional neural network consists of

many convolutional layers which are connected to spa-
tially/temporally adjacent nodes in the next layer:

Zm+1 = [T (W1 ∗ Zm), T (W2 ∗ Zm), . . . , T (Wk ∗ Zm)]
(1)

where Zm is the input features at layer m, W1, . . .WK

are filters that could be much smaller than the size of Zm
(e.g. 3× 3, 5× 5, 7× 7), ∗ is the convolution operator, and
T is a nonlinear transformation function such as the rec-
tified linear unit (ReLU) T (x) = max(0, x). Other com-
monly used layers in a CNN include max-pooling layers,
or other normalization layers [13] such as batch normaliza-
tion layers [10]. Most deep networks adopt similar princi-
ples while adding more structural complexity in the system
such as more layers and smaller filters in each layer [26],
multi-layered network within each layer [27], residual net-
work [7], etc. A convolutional neural network makes sense
in structured data because it naturally exploits the locality
structure in data. In an image, pixels that are located close
to each other are naturally more correlated than pixels that
are far away [17]. The same holds for temporal data (video,
speech) where objects (frames, utterances) that are tempo-
rally close can be assumed to be more correlated.

3. Understanding the Trained Deep Classifier
Under Adversarial Optimization

3.1. Adversarial Optimization

The famous result that deep networks can be broken eas-
ily [28] is an important motivation of this work. The idea
is to start from an existing example (image) and optimize
to obtain an example that will be classified to another cate-
gory while being close to the original example. Namely, the
following optimization problem is solved:

min
r

c‖r‖1 + L(fθ(x0 + r, y))

s.t. x0 + r ∈ [0, 1]d (2)

where x0 is a known example and y is an arbitrary cate-
gory label, d is the input dimensionality. c is a parame-
ter that can be tuned for trading off between proximity to
the original example x0 and the classification loss on the
other category y. It has been shown, to the astound of many,
that one can choose an r with very small norm while com-
pletely change the output of the algorithm (e.g. Fig. 1),
this can even be done universally for almost all networks,
datasets and categories [28, 4]. Besides, adversarials trained



from one network may even fool a related one trained from
the same dataset [18]. This has led many people to ques-
tion whether deep networks are really learning the “proper”
rules for classifying those images.

3.2. Adversarial Behavior

In order to gain a deeper understanding of the behavior of
a deep network and illustrate the difference between adver-
sarial and normal example distributions, we utilize spectral
analysis. As a starting point, we perform principal com-
ponent analysis (PCA) [11] at the 14-th layer of a VGG
network trained on the ImageNet dataset (the first fully-
connected layer). The rationale behind using PCA is that
each deep learning layer is a nonlinear activation function
on a linear transformation, hence a large part of the learn-
ing process lies within the linear transformation, for which
PCA is a standard tool to analyze.

A linear PCA is performed on the entire collection of
50, 000 images from the ImageNet validation set, as well as
4, 000 adversarials collected using the approach in (2), start-
ing from random images in the collection. The result shows
very interesting findings (Fig. 2) and sheds more light on
the internal mechanics of those adversarial examples. In
Fig. 2(a), we show the PCA projection onto the first two
eigenvectors. This cannot separate normal and adversarial
examples, as one could possibly imagine. The adversarial
examples seem to exactly belong to the same distribution
as normal ones. However, it does seem that the adversar-
ial examples reside mostly in the center while the normal
examples occupy a bigger chunk of space.

Interestingly, as we move to the tail of the PCA pro-
jection space, the picture starts to change significantly. In
Fig. 2(b), we can see that there are a significant amount of
adversarial examples that has extremely large values w.r.t.
to the normal examples in the tail of the distribution. We
chose to print the projection on the 3, 547-th and 3, 844-th
eigenvector, but similar distributions can be found all over
the tail. As one can see, at such a far end on the tail, the
projections of normal examples are very similar to random
samples under a Gaussian distribution. An explanation for
that could be that under these “uninformative” directions,
most of the weighted features are nearly independent w.r.t.
each other, hence the distribution of their sum is similar to
Gaussian, according to the central limit theorem1. How-
ever, although normal examples behave similarly to a Gaus-
sian, some adversarial examples are having projections with
a deviation as large as 5 or 10 times the standard deviation,
which are extremely unlikely to occur under a Gaussian dis-
tribution.

1Note this is without a ReLU transformation. ReLU would destroy the
negative part of the data distribution so that it no longer looks like a Gaus-
sian. However, some tail effects can be observed even in the distribution
after ReLU.

Fig. 2(c) and Fig. 2(d) show that there are two distinct
phenomena:

• The extremal values and standard deviations on the
projections onto the first 500 − 700 eigenvectors are
decidedly lower in adversarial examples than in nor-
mal ones.
• The extremal values and standard deviations on the

projections onto the last 1, 000 − 1, 500 eigenvectors
are decidedly higher in the adversarial examples than
the normal ones.

It is interesting to reflect about the causes and conse-
quences of those properties. One deciding property is that
there is a strong regularization effect in adversarial exam-
ples on almost all the informative directions. Hence, the
predictions in adversarial examples are lower than those
in normal examples, rather than the confidence values may
have indicated (Fig. 1). In Fig. 3, we show the number of
categories with a prediction higher than a threshold, before
the final softmax transformation

pi(x) =
exp(fi(x))∑
i exp(fi(x))

(3)

that converts raw predictions fi(x) into probabilities. The
result shows that normal examples have on average one cat-
egory with a raw prediction value more than 20, however
adversarial examples have only 0.01 category with raw pre-
dictions more than 20. The reason that those adversarial ex-
amples appear more confident after softmax is because that
the predictions on all the other categories are regularized
even more. Hence the normalization component of softmax
has decided that the single prediction, although much less
strong, should be assigned a probability of more than 90%.
We note that this issue was also pointed out by [2] in a dif-
ferent manner and they proposed a solution in the OpenMax
classifier, which we compare against in the experiments.

But besides that, it seems that such extremal and stan-
dard deviation statistics are evident features that could help
discriminating normal and adversarial examples. Unfortu-
nately, they only occur as a statistic from a large sample, as
any single point in Fig. 2(a) looks similar to a single point
in the normal distribution. We have tried to utilize the tail
distributions (Fig. 2(b)) to create a classifier which easily
achieved 99% accuracy separating adversarials from nor-
mals, however we subsequently found out that since the tail
almost do not contribute to the classification, knowing this
defense, the adversarial example can easily optimize to re-
move their footprints on the tail distributions.

This leads us to think about an approach that would turn
a single image into a distribution, so that we can use statis-
tics as detectors for adversarial examples. An image is a
distribution of pixels. Especially, the output of each filter
from each convolutional layer is an image which could be



-6 -4 -2 0 2

Eigenvector Number 1

-4

-3

-2

-1

0

1

2

3

4

E
ig

e
n

v
e

c
to

r 
N

u
m

b
e

r 
2

Head Distribution

Normal examples

Adversarial Examples

-10 -5 0 5

Eigenvector Number 3547

-6

-4

-2

0

2

4

6

8

10

12

E
ig

e
n

v
e

c
to

r 
N

u
m

b
e

r 
3

9
8

4

Tail Distribution

Normal examples

Adversarial Examples

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Eigenvector Number

2

4

6

8

10

12

E
x
tr

e
m

a
l 
V

a
lu

e

Eigenvector Number vs. Extremal Value

Normal examples

Adversarial Examples

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Eigenvector Number

0.6

0.8

1

1.2

1.4

1.6

N
o

rm
a

liz
e

d
 S

ta
n

d
a

rd
 D

e
v
ia

ti
o

n

Normalized Standard Deviation

Normal examples

Adversarial Examples

(a) (b) (c) (d)
Figure 2. Blue indicates normal examples and red/orange indicate adversarial examples. Projections are normalized by dividing the standard
deviation of all normal examples projected on the corresponding dimension. (a) The projection of the data at layer 14 onto the 2 most
prominent directions; Adversarial example cannot be identified from normal ones. (b) Projection of the same data to the 3, 547-th and
3, 844-th PCA projections, some adversarial examples are having significantly higher deviation to the mean; (c) The absolute normalized
extremal value in the projection to each eigenvector; (d) The average normalized standard deviation of normal and adversarial examples on
each projection. Standard deviations of normal examples stand at 1 because of the normalization.

treated as a distribution where the samples are the pixels.
Therefore, in the following section we aim to build a classi-
fier based on collecting statistics from such distributions.

4. Identifying Adversarial Examples
4.1. Feature Collection

Suppose the output at a convolutional layer m is an
W × H × K tensor, where W and H represent the width
and height of the image at that stage (smaller than orig-
inal after max-pooling), and K represents the number of
convolutional filters. Such a tensor can be considered as a
K-channel image where each pixel has a K-dimensional
feature. We consider the feature on every pixel to be a
random vector drawn from the distribution Dm of convo-
lutional pixel outputs, a K-dimensional distribution.

0 10 20 30 40 50

Network Prediction Threshold before SoftMax

10
-4

10
-2

10
0

10
2

A
v
e
ra

g
e
 N

u
m

b
e
r 

o
f 
C

a
te

g
o
ri
e
s

Average Number of Categories per Example 

with Prediction Larger than Threshold

Normal examples

Adversarial Examples

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Network Prediction Threshold After SoftMax

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
v
e
ra

g
e
 N

u
m

b
e
r 

o
f 
C

a
te

g
o
ri
e
s
 

A
b
o
v
e
 T

h
re

s
h
o
ld

Average Number of Categories per 

Example with Prediction Above Threshold

Normal examples

Adversarial Examples

(a) (b)
Figure 3. Average number of categories per example with predic-
tions higher than a threshold. (a) Before softmax; (b) After soft-
max. As one can see, in normal examples, there are on average
about 1 category with a prediction score of more than 20 (before
softmax), while with adversarial ones, only 1% examples have a
category with a prediction score more than 20. However, since
prediction values on all categories have dropped, after softmax ad-
versarial examples obtain much higher likelihood on one category.

The list of statistics we collect is:

• Normalized PCA coefficients

• Minimal and Maximal values

• 25-th, 50-th and 75-th percentile values

on each of the K-dimensional features. Normalized PCA
coefficients are collected via Algorithm 1. Extremal and
percentile statistics are straightforward to understand.

The features we collect are non-subdifferentiable, hence
essentially preventing adversaries to use gradient-based at-
tacks to counter the classifier. Although we are inter-
ested in a generative adversarial network-type adversary
which would learn to avoid our detector, such adversaries
would have to resort to derivative-free optimization meth-
ods, which currently do not scale to the size of a realistic im-
age. The best derivative-free approach we have tried scales
up to several hundreds of variables. The genetic algorithm
in [20] scales better, but as we will soon show, their low-
level feature statistics are so different from natural images,
making them very easy to be detected, even without training
on any data from their adversarial generation algorithm.

Algorithm 1 PCA Statistics Extraction
1: INPUT: Image I , layer m.
2: For all normal images in a training set, compute their

CNN filter output of layer m to form an example matrix
Zm.

3: Compute the mean e and PCA projection matrix W of
Zm.

4: Compute the standard deviation s on each dimension in
the PCA projection W>(Zm − e1>).

5: For each image I , project its CNN filter output of layer
m ZmI using PCA: zmI = W>(ZmI − e1>), and
normalize them by dividing the standard deviation s on
each respective dimension.

6: Collect the statistic for each image as xI = 1
n‖zmI‖1,

where L1 norm is the vector L1 norm. The resulting
statistic is K-dimensional.

4.2. Classifier Cascade

[29] proposed a famous strategy for face detection by us-
ing a cascaded boosting classifier composed by a sequence



of base classifiers. A cascade classifier is ideal when it is
easy to identify many of the examples from a category but
some important cases can be difficult. In Fig. 4, SC N
represents the classifier at each stage. X is the input of the
cascade classifier. The negatives in a cascade classifier from
each stage will be outputted directly, while the positives will
go to the next stage.

In our case, the normal category is much easier to detect
than the adversarial category (see e.g. Fig. 6). In our initial
experiments with VGGNet, we found that more than 80%
of normal examples can be determined from the first con-
volutional layer with 100% precision. Therefore, we con-
structed a cascade classifier based on convolutional layers:
the first stage works with features collected from the outputs
of the first convolutional layer, the second with the second
layer, etc. (Fig. 4). The base classifiers will not solely con-
sider statistics from their own stage, instead, after one stage
of training, the remaining positive examples will be con-
catenated to the corresponding features on the next stage.

Figure 4. A cascade classifier is defined on each of the convolu-
tional layers in a convolutional network (SC i represents the i-th
convolutional layer)

The operations that are represented by Fig. 4 can also be
summarized as Algorithm 2.

Algorithm 2 Training Process of a cascade of Classifier
1: Npool ← Normal example pool, Ptrain ← Training set

of Np perturbed examples, L ← Number Of convolu-
tional layers

2: while current layer ≤ L Or Npool 6= ∅ do
3: Draw Np sized subset Pnormal from Npool

4: T ← Pnormal ∪ Ptrain
5: Train SVM on T
6: Predict SVM on Npool, eliminate those predicted as

normal above a threshold (described in text)
7: end while

The overall false positive rate of a K stage cascade clas-
sifier can be represented as: F =

∏K
i=1 fi, where fi is the

false positive rate at each layer. And similarly the true posi-
tive rate can be represented in the same form: T =

∏K
i=1 ti

where ti is the true positive rate at each stage. In order to
maximize recall, we maintain a high true positive rate and
select a classification threshold which corresponds to a high
true positive rate (97% in AlexNet and 98% in VGG).

5. Related Work

Szegedy et al. [28] proposes the adversarial optimiza-
tion formulation in eq. (2). [4] proposes an explanation
of the adversarial mechanism, and proposed a simpler ad-
versarial optimization mechanism that only corrupts based
on the signs of gradient of the network. The fact that such
examples can be generated so easily with the gradient sign
method shows that adversarial examples come from attack-
ing the magnifying effect coming from the linearities in the
network. [20] proposes another mechanism to generate ad-
versarials using evolutionary optimization. The result of
these do not resemble natural images but still can be clas-
sified by deep networks with high confidence(Fig. 5). [19]
proposes another efficient approach. [23] proposes an ap-
proach to generate adversarials that match the convolutional
filter outputs as well as perturbing the data. [25, 8] propose
approaches to sample adversaries or minimax optimization
for making learning more robust. While most of the work
are done on standard benchmarks such as MNIST, CIFAR
and ImageNet, [14] is an interesting work on projecting the
adversaries in physical world.

Recently, there have been a lot of focus on training ad-
versarial generation networks to create Generative Adver-
sarial Networks (GANs) [3, 22, 32, 24]. These networks
play a two-player game where a generator network aims to
generate adversarials that will not be correctly classified by
another discriminator network, and the goal is to generate
images more and more similar to natural images. It has been
shown that these networks generate images that resemble
natural images. However, this generative approach is dif-
ferent from our goal, where we aim to create discriminative
networks that discriminates from images that are already in-
distinguishable from natural images (e.g. Fig.1).

Mechanisms for detecting and countering adversarial ex-
amples have also been proposed [5, 21]. [18] proposes to
use the foveation mechanism to alleviate adversarial exam-
ples when it is already known to be adversarial, but did not
attempt to detect adversarials. The open-set deep networks
proposed by [2] seek to alleviate concerns from a soft-max
classification by creating an abstain option. The univer-
sum classifier [31] is similar but with more theoretical ar-
guments.

Self-aware learning (classification with an abstain op-
tion) had been proposed in e.g. [12, 16]. It is relevant to
robust learning (e.g. [15]), however robust learning usually
seek to directly optimize the minimax loss under adversarial
conditions, instead of outputting an abstain option. [1, 30]
also focuses on classification with an abstain option.

6. Experiments

Our algorithm is tested on 2 approaches to generate ad-
versaries. The main one is data generated using the L-BFGS



Figure 5. Evolved Adversarial Images Unrecognizable to Humans

algorithm by [28]. We generated 4, 000 adversarials from
a random subset of the ILSVRC-2012 validation set (total
of 50, 000 images). In order to test the out-of-sample gen-
eralization capability, we included another dataset, which
includes 5, 000 EA-adversarial images generated using the
algorithm in [20]. These datasets are tested with 2 dif-
ferent network structures, VGG-16 [26] and AlexNet [13].
All input images had been normalized and re-shaped into
224× 224 for VGG-16 model and 227× 227 for AlexNet.
The MatConvNet toolbox is used for the deep networks.
Features are extracted from the statistics of interest, men-
tioned in section 4.1, in the lower 9 convolutional layers
from the VGG-16 network, and in all 5 convolutional layers
from AlexNet.

All the classifiers were trained with a subset of 2, 000
L-BFGS adversarials and a randomly selected subset of
45, 000 normal images in the ILSVRC-2012 dataset. Test-
ing was done on a random held-out dataset with the other
5, 000 normal images and 2, 000 L-BFGS adversarials for
the L-BFGS experiments, and on a randomly selected 5, 000
normal images and 5, 000 EA-adversarials for the EA ex-
periments. The training and testing sets do not overlap in
any means: for all the testing LBFGS adversarials, the cor-
responding normal images were not seen in the training set.
EA experiments are only conducted with AlexNet since we
found out that EA-adversarials did not succeed fooling the
VGG-16 network. We have also tried some other fast ad-
versarial generation approaches such as [4], but they gener-
ally do not generate adversarials that fool classifiers as com-
pletely (with more than 90% confidence) or as universally
(on 100% of the images) as the L-BFGS algorithm.

Additional experiment results using DeepFool and on
ResNet can be found in the supplementary material.

6.1. Single-Layer Results

The first experiments we did were by extracting statistics
on each single convolutional layer output, instead of using
the cascade classifier. From Tables 1 and 2, one can see that
the statistics from a single layer have some discriminative
power to distinguish normal examples from adversarials,
but are not extremely effective. However, EA-adversarials

were much easier to distinguish, even though our classi-
fier was trained only on L-BFGS adversarials instead of EA
ones (Table 3). We only need the first three convolutional
layers to reach an overall 97.34% classification accuracy.
We believe the reason is that our features capture natural
image statistics, and because EA-adversarials look so un-
natural, their statistics are vastly different than natural im-
ages (see Sec. 6.3 for more discussions).

Table 1. Classification Result with AlexNet for Normal vs.
LBFGS-adversarials

Network Layer 2nd 3rd 4th
Accuracy 57.5± 0.7 67.3± 0.7 70.9± 0.6

Network Layer 5th 6th
Accuracy 74.9± 0.9 78.95± 0.6

Table 2. Classification Result with VGG-16 for Normal vs.
LBFGS-Adersarials

Network Layer 2nd 3rd 4th
Accuracy 72.1± 0.7 84.1± 0.7 80.3± 0.6

Network Layer 5th 6th 7th
Accuracy 81.4± 0.9 74.3± 0.6 73.9± 0.6

Network Layer 8th 9th 10th
Accuracy 74.2± 0.7 71.2± 0.7 74.3± 0.8

Table 3. Classification Result for Normal vs. EA-Adversarials
Layer 2nd 3rd 4th

Accuracy 93.45± 0.69 98.3± 0.73 97.9± 0.57

6.2. Experiment for LBFGS-Adversarials Detection

Next we test the cascade classifier on both AlexNet and
VGG-16. The parameter C is set to 0.005. On AlexNet,
the average accuracy of the cascade classifier reaches 83.4%
over 20 random trials, and the AUC (area-under-curve) met-
ric is 90.7%. We compared against the recently published
OpenMax method [2]. To learn the Weibull distribution
required for OpenMax, the EVT was applied on the same
training set as the algorithm. Figure 6(a) shows the results,
where we were able to outperform OpenMax by over 9% in
area-under-curve (AUC) and 11% in terms of accuracy.

In VGG-16, the results were even better. The accuracy
of the classifier was on average 90.665% over 20 random
trials. Fig.6(b) shows the ROC curve. We believe the fact
that VGG has a lot more layers than AlexNet helps setting
more constraints on the layer statistics, and is subsequently
helpful for detecting adversarial examples.

Finally, the cascade classifier was tested on EA-
adversarials. We obtained more than 96% accuracy with 0
false positive rate, with a final accuracy of 97.3% and AUC
of 98.2% (Fig.6(c)). In other words, our algorithm is rarely
fooled by EA-adversarials, even without training on them.



(a) (b) (c)
Figure 6. (a) Comparison Between OpenMax detection Methods and Cascade Classifier: The blue curve represents the performace of
OpenMax Method, and green curve represents the perfornace for Cascade Classifier.(b) Overall ROC Performance Curve of Cascade
Classifier Trained on VGG-16 Network. (c) Overall ROC of data generated from EA-adversarials dataset on AlexNet.

6.3. Visualization of Statistics

Our experiment results show that EA-adversarials are
easy to detect with our detector. To gain more insight
into this result, we made a few comparisons between the
statistics of interest extracted from normal images, LBFGS-
adversarials and EA-adversarials.

We visualized the average of the statistics that are used
for the detection task from the first layer of the AlexNet
on all its dimensions. As can be seen in Fig.7(a), the differ-
ence on the PCA projection statistics on extracted from EA-
adversarials and that of the normal images is very dramatic.
Meanwhile, compared to the EA-adversarials, the statistics
from LBFGS-adversarial have much less difference from
the normal data and the difference does not change very
much across different dimensions.

From Fig. 7(b), one can see that LBFGS-adversarials
have smaller extremal values than normal images. This
might imply that the LBFGS optimization worked to di-
minish strong signals from the original image by introduc-
ing small pixel perturbations, and that helped our classifiers
separating them from normal images. From Fig. 7(c), we
see the EA-adversarials evidently differ from normal im-
ages. Those results illustrate why EA-adversarials are easier
to detect. We suspect it would be easy to reach 100% accu-
racy, had we actually trained on some EA-adversarials. The
capability to generalize to EA-adversarials without training
on them showed the general capability of our cascade classi-
fiers to capture natural image statistics and distinguish nat-
ural images from unnatural ones.

7. Discussions
7.1. Self-Aware Learning with an Abstain Option

The framework of self-aware learning [16, 2, 31] con-
siders the case where the learning algorithm has an abstain
option of saying “I don’t know”, instead of always making
an actual prediction. We define a framework that is slightly

different than [16], avoiding the requirement in some frame-
works of never making a mistake.

We assume that the training input is drawn i.i.d. from a
distribution P (x, y), where x is the input and y is the out-
put. Assume that the testing input is drawn from a mixture
distribution between P (x, y) and Q(x, y):

Pm = ΩP (x, y) + (1− Ω)Q(x, y) (4)

, where Ω ∈ {0, 1} is an unknown mixture weight, and
Q(x, y) is an adversarial distribution. Assume that we have
a classifier that includes a function f(x), and a boolean
strategy ai between predict and abstain that can be
chosen for each individual xi. Assume that the expected er-
ror from our classifier on the adversarial distribution is eq
(which could be assumed, if no other prior is present, as
the random guessing error of C−1

C for a C-class classifica-
tion problem). Further assume that abstaining always incur
a fixed cost ea. As long as ea < eq , abstaining would be
better than predicting on the example drawn from the ad-
versarial distribution, however, ea should be set sufficiently
large so that the classifier would still make predictions when
confident, instead of abstaining everything.

For each testing input, the testing of the self-aware clas-
sifier is then trying to optimize minaEPm

La(x, y) where

La(xi, yi) =


P (yi 6= f(xi)), if ai = predict,

(xi, yi) ∼ P (x, y)
eq if ai = predict

, (xi, yi) ∼ Q(x, y)
ea if ai = abstain

(5)
hence the classifier needs to select between making a pre-
diction using its function f(x) and risk paying eq versus
abstaining. It is easy to derive the optimal strategy:

ai = predict, if P (Ω = 1|xi)P (yi 6= f(xi)) (6)
+P (Ω = 0|xi)eq < ea

ai = abstain, otherwise (7)



(a) (b) (c)
Figure 7. (a) PCA Projection Comparison; (b) Maximum Feature Map Extremal Value Comparison; (c) Median Value Comparison

Our approach can be seen as estimating P (Ω = 1|xi) in
this framework. Experiments about the effect of such self-
aware learning is shown in the supplementary material. We
eagerly hope to apply it in realistic applications in future
work.

7.2. Image Recovery

Insights from [4] indicate that the adversarial mechanism
is very specifically attacking vulnerable gradients starting
from the first convolutional layer. Insights from the pre-
vious experiments also suggest that LBFGS-adversarials
work to diminish filter responses from the first convolu-
tional layer. Therefore a natural idea would be to destroy
the adversarial effects in the first convolutional layer to try
to recover the original image. We tried a very simple ap-
proach: applying a small (e.g. 3 × 3) average filter on the
adversarial image before using the CNN to classify it. The
positive and negative adverse gradients will average out in
this approach, and make the masked activations from the
normal images more prominent. In Table 4 we illustrate
such recovery results: after using a 3 × 3 average filter on
identified adversarial examples, the classification accuracy
improved from almost 0% to 73.0%, showcasing the effec-
tiveness of this simple average filter.

Table 4. Recovery Results. Simply using a 3 × 3 average filter
we can recover a large proportion of adversarial examples after
detecting them using the algorithm described previously. More
complex cancellation approaches such as foveation in [18] that
utilizes cropping can achieve better results.

Approach Top-5 Accuracy
(Recovered Images)

Original Image (Non-corrupted) 86.5%
3× 3 Average Filter 73.0%
5× 5 Average Filter 68.0%

Foveation (Object Crop MP) [18] 82.6%

Those results show that we can both detect and recover
from adversarial examples with high accuracy. But the main

reason we performed this (overly simplistic) experiment is
to show how simple it might be to cancel out some adversar-
ial perturbations. Importantly, this result indicates that cur-
rent deep convolutional networks are too locally focused:
these are corruptions that can be cancelled out by a simple
3× 3 average filter, however they can adversely impact the
entire result of the deep network. For human with a large
receptive field, they will not even care about what happens
within a 3 × 3 area. Therefore, we believe that future deep
learning approaches should focus on enlarging the receptive
field in order to reduce the chance of being fooled by adver-
sarial examples. Another potential direction is to research
classification approaches that do not require a softmax-type
normalization, in order to avoid regularizing attacks such as
the ones used in the adversarial optimization in (2).

8. Conclusion

This paper proposes an approach that detects adversar-
ial examples using simple statistics on convolutional layer
outputs. A cascade classifier was designed based on simple
statistics on filter outputs from each layer. And it was capa-
ble of detecting more than 85% of the adversarial examples.
Experiments showed that our cascade classifier significantly
outperforms state-of-the-art on detecting adversarial exam-
ples. Experiment also showed transfer learning capabili-
ties of our classifier, since the classifier we trained with L-
BFGS adversarials are capable of detecting EA-adversarials
as well. Insights drawn from these experiments lead us to
perform simple 3 × 3 average filter to corrupted images,
which successfully recovered most of them. In the future,
we would like to explore GAN-type generative adversarial
networks from the current results, with multiple rounds of
adversarial detection and counter-detection.

Acknowledgements

This paper was supported by Future of Life grants 2015-
143880 and 2016-158701.



References
[1] A. Balsubramani. Learning to abstain from binary predic-

tion. arXiv preprint arXiv:1602.08151, 2016.
[2] A. Bendale and T. E. Boult. Towards open set deep networks.

In IEEE Conference on Computer Vision and Pattern Recog-
nition, 2016.

[3] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,
D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Gen-
erative adversarial nets. In Advances in Neural Information
Processing Systems, pages 2672–2680, 2014.

[4] I. J. Goodfellow, J. Shlens, and C. Szegedy. Explain-
ing and harnessing adversarial examples. arXiv preprint
arXiv:1412.6572, 2014.

[5] S. Gu and L. Rigazio. Towards deep neural network ar-
chitectures robust to adversarial examples. arXiv preprint
arXiv:1412.5068, 2014.

[6] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of
Statistical Learning. Springer-Verlag, New York, 2001.

[7] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition. In IEEE Conference on Computer
Vision and Pattern Recognition, 2016.

[8] R. Huang, B. Xu, D. Schuurmans, and C. Szepesvári. Learn-
ing with a strong adversary. In International Conference on
Learning Representations, 2016.

[9] P. Indyk and R. Motwani. Approximate nearest neighbors:
towards removing the curse of dimensionality. In Proceed-
ings of the thirtieth annual ACM symposium on Theory of
computing, pages 604–613, 1998.

[10] S. Ioffe and C. Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift.
arXiv preprint arXiv:1502.03167, 2015.

[11] I. Jolliffe. Principle Component Analysis. Springer-Verlag,
1986.

[12] R. Kleinberg, A. Niculescu-Mizil, and Y. Sharma. Regret
bounds for sleeping experts and bandits. Machine learning,
80(2-3):245–272, 2010.

[13] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet
classification with deep convolutional neural networks. In
Advances in Neural Information Processing Systems, pages
1097–1105, 2012.

[14] A. Kurakin, I. Goodfellow, and S. Bengio. Adversarial exam-
ples in the physical world. arXiv preprint arXiv:1607.02533,
2016.

[15] G. R. Lanckriet, L. E. Ghaoui, C. Bhattacharyya, and M. I.
Jordan. A robust minimax approach to classification. Journal
of Machine Learning Research, 3:555–582, 2003.

[16] L. Li, M. L. Littman, T. J. Walsh, and A. L. Strehl. Knows
what it knows: a framework for self-aware learning. Machine
learning, 82(3):399–443, 2011.

[17] X. Li, F. Li, X. Fern, and R. Raich. Filter shaping for convo-
lutional networks. In International Conference on Learning
Representations, 2017.

[18] Y. Luo, X. Boix, G. Roig, T. A. Poggio, and Q. Zhao.
Foveation-based mechanisms alleviate adversarial examples.
arXiv preprint arXiv:1511.06292v3, 2016.

[19] S. Moosavi-Dezfooli, A. Fawzi, and P. Frossard. Deepfool:
a simple and accurate method to fool deep neural networks.
CoRR, abs/1511.04599, 2015.

[20] A. Nguyen, J. Yosinski, and J. Clune. Deep neural networks
are easily fooled: High confidence predictions for unrecog-
nizable images. In IEEE Conference on Computer Vision
and Pattern Recognition, 2015.

[21] N. Papernot, P. McDaniel, X. Wu, S. Jha, and A. Swami. Dis-
tillation as a defense to adversarial perturbations against deep
neural networks. arXiv preprint arXiv:1511.04508, 2015.

[22] A. Radford, L. Metz, and S. Chintala. Unsupervised repre-
sentation learning with deep convolutional generative adver-
sarial networks. arXiv preprint arXiv:1511.06434, 2015.

[23] S. Sabour, Y. Cao, F. Faghri, and D. J. Fleet. Adversarial
manipulation of deep representations. In International Con-
ference on Learning Representations, 2016.

[24] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Rad-
ford, and X. Chen. Improved techniques for training gans.
arXiv preprint arXiv:1606.03498, 2016.

[25] U. Shaham, Y. Yamada, and S. Negahban. Understand-
ing adversarial training: Increasing local stability of neu-
ral nets through robust optimization. arXiv preprint
arXiv:1511.05432, 2015.

[26] K. Simonyan and A. Zisserman. Very deep convolutional
networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014.

[27] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,
D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.
Going deeper with convolutions. arXiv:1409.4842, 2014.

[28] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan,
I. Goodfellow, and R. Fergus. Intriguing properties of neural
networks. arXiv preprint arXiv:1312.6199, 2013.

[29] P. Viola and M. J. Jones. Robust real-time face detection.
International journal of computer vision, 57(2):137–154,
2004.

[30] Y. Wiener and R. El-Yaniv. Agnostic selective classifica-
tion. In Advances in Neural Information Processing Systems,
pages 1665–1673, 2011.

[31] X. Zhang and Y. LeCun. Universum prescription: Regular-
ization using unlabeled data. In AAAI Conference on Artifi-
cial Intelligence, 2017.

[32] J. Zhao, M. Mathieu, and Y. LeCun. Energy-based genera-
tive adversarial network. arXiv preprint arXiv:1609.03126,
2016.



Supplementary materials for ICCV submission

#3060

1 Results on DeepFool

For this experiment we used 5000 adversarial images generated with the Deep-
Fool algorithm. We collected a training set of images using the adversarials,
with an equal number of real images drawn from the ILSVRC2012 validation
set. For the Deep- Fool adversarials we used the implementation given in the
Foolbox algorithm library. Given this data, we chose to use the ResNet 50 ar-
chitecture as the backbone CNN for our experiments. Because we use ImageNet
data, we preprocessed our training set accordingly: all images were reshaped to
224x224x3, the channels were modified to BGR ordering, and the channel-wise
mean was subtracted from each sample. We then performed a forward pass as
usual on all images, performing the classifier cascade at each layer. Given the
output of each convolutional layer, we extracted features that would charac-
terize images as being either from a real or adversarial distribution. For each
output we extracted PCA coefficients, extremal values, and values within the
25th, 50th and 75th percentile to form a new training sample. We then used
an SVM to learn the real statistics from the adversarials. The real examples
were given a ground truth label of 1, and the adversarials were given a label
of 0. We performed a parameter search over kernel type and C value. In all
our experiments a C of 0.005 and a linear kernel performed the best. We then
tested on 2000 real images and 2000 DeepFool adversarials. In our experiments
with ResNet, we only performed the cascade for the first three layers before we
found nearly all of the adversarial images.

The result can be seen in Fig. 1. The algorithm maintained more than
90% AUC, showing that DeepFool did not fundamentally change the type of
adversarials.

2 Results on Self-Aware Learning

We implemented self aware learning using ResNet 50, the goal being to use
the softmax probabilities to learn parameters that would cause the network to
more intelligently classify inputs. The network should classify an image if it
was sure the image was real, or abstain if either the network was not sufficiently
confident, or if the image was adversarial, as described in Sec. 7.1. To test

1



Figure 1: ROC Curve for Detecting DeepFool adversarials in ResNet-50, the
algorithm maintained more than 90% in AUC

the presented algorithm, we use 2, 000 real images drawn from ILSVRC2012
validation set, and 2, 000 adversarial images from the testing set of the previous
experiment, generated using the DeepFool algorithm. We tested the self aware
learning algorithm with a high eq = 10. This worked well enough that the
network chose to abstain or classify, rather than incur a high penalty for guessing
incorrectly. We observed that for each testing image, our estimation of the
source distribution resulted in ea between 2 and 8. We then varied ea between
these values to see if there was a threshold at which we could abstain from
all adversarials, retaining predictions for only real examples. We were also
interested in thresholds that maximized the true positive rate (prediction of
real examples) while abstaining from as many adversarials as possible. We
found the lower thresholds resulted in the abstaining from predicting on all
adversarials, but it also abstained from many (but not all) real examples. Higher
thresholds resulted in many more real predictions retained, but some also some
adversarials made it through. High thresholds would finally result in the network
not abstaining at all.

The results can be seen in Fig. 2. It can be seen that besides abstaining
adversarial examples, the system also abstains from predicting on some normal
examples that the classifier is not confident on. Hence, with a high abstain ratio
the prediction accuracy on normal examples is also higher.

2



Figure 2: Self-aware learning results. In a mixture of half real and half adversar-
ial examples, the classification accuracy of discarding nothing falls a little under
50%, with more examples abstained, the accuracy improves significantly. The
accuracy of retained normal examples (blue curve) also improves when more ex-
amples are abstained, as the abstained examples also include normal examples
that are not predicted confidently.

3 Images Classified Correctly and Incorrectly

In this section we show some images classified correctly and incorrectly from
the algorithm. Unfortunately we are not quite able to observe any particular
visible trends, maybe due to the subtlety of adversarial images.

3



(a) (b) (c) (d)

Figure 3: Some of Misclassification on L-BFGS images by Our Classifier. (a)
and (b) are from normal dataset. (c) and (d) are from LBFGS-Adversarial
dataset, which is misclassified to category n02408429(water buffalo) and
n01518878(ostrich, Struthio camelus).

(a) (b) (c) (d)

Figure 4: Some of Correctly Classified on L-BFGS images by Our Classi-
fier. (a) and (b) are from normal dataset. (c) and (d) are from LBFGS-
Adversarial dataset, which is misclassified to category n04209133(shower cap)
and n02328150(Angora).

(a) (b) (c) (d)

Figure 5: Some of Misclassfied EA images by Our Classifier. From left to right,
they are misclssified to category n03220513 (dome), n01749939 (green mamba),
n04118776 (rule, ruler) and n03935335 piggy (bank, penny bank)

4



Figure 6: Some of Correctly Classified EA images by Our Classifier. From left to
right they are misclassified to n06874185 (traffic light, traffic signal, stoplight),
n03443371 (goblet), n04522168 (vase) and n03742115 (medicine chest, medicine
cabinet)

(a) (b) (c) (d)

Figure 7: Images Misclassified by OpenSet Method but Correctly Classified by
Our Classifier. (c) and (d) are from LBFGS-Adversarial dataset, which is mis-
classified to category n02133161(American black bear) and n02328150(Agona).

5


