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Abstract

In this paper we present an inference procedure for the

semantic segmentation of images. Different from many CRF

approaches that rely on dependencies modeled with unary

and pairwise pixel or superpixel potentials, our method is

entirely based on estimates of the overlap between each of

a set of mid-level object segmentation proposals and the

objects present in the image. We define continuous latent

variables on superpixels obtained by multiple intersections

of segments, then output the optimal segments from the in-

ferred superpixel statistics. The algorithm can recombine

and refine initial mid-level proposals, as well as handle mul-

tiple interacting objects, even from the same class, all in

a consistent joint inference framework by maximizing the

composite likelihood of the underlying statistical model us-

ing an EM algorithm. In the PASCAL VOC segmentation

challenge, the proposed approach obtains high accuracy

and successfully handles images of complex object interac-

tions.

1. Introduction

The goal of semantic segmentation is to detect objects

from different categories and identify their spatial layout

simultaneously. Each pixel in the image must be classi-

fied as a foreground object of a certain category, or be as-

signed as background. This task is of great practical im-

portance, because determining object boundaries is crucial

for scene understanding and robot vision. However, the

level of detail required makes inference extremely chal-

lenging and has stimulated interesting research in recent

years [1, 8, 9, 11, 12, 13, 15, 19, 21].

An approach that we have pursued with some success

was based on ‘sliding segments’, starting from an unsu-

pervised generation of many possibly conflicting mid-level

figure-ground object segmentation proposals with large spa-

tial support, obtained based on cuts in graphs defined on

edge and color potentials. The segments are then passed

to classifiers or regressors that determine to which category

they belong. Full image interpretations are then assembled

sequentially from individual segments.

The existence of predictions for many mutually

overlapping segments poses a new inference challenge

for pixel labeling. Standard inference approaches in

a high-order (hierarchical) CRF model [14, 15] can

model both pixel/superpixel and segment-level layers with

pixel/superpixel nodes and segment nodes interconnected

based on overlap and compositionality. However, the inter-

actions in these models are complex and involve different

types of pairwise potentials (between pixels, between pix-

els and segments and between segments) which limits the

range of potential functions for which tractable approximate

inference is feasible. A recently proposed variation using

latent topics, the Pottics model [5], sidesteps the need for

high-order cliques but still requires approximate inference.

Other approaches search for configurations of non-

overlapping segment hypotheses [9, 13] by using non-

maxima suppression and maximum clique random field

models [11]. They can be tractable since the decision space

that has to be searched is limited to the initial segments

(normally < 200 in practice). However, these are likely

to encounter difficulties when multiple objects touch or in-

teract with each other. Examples are: people riding bicycles

or horses, interacting with other people, sitting on sofas or

chairs, etc. In such cases, segments often occlude and cut

through each other and the initial mid-level proposals may

not be entirely accurate. In such situations, a high-precision

approach should be able to refine the initial hypotheses.

Non-probabilistic methods have also been developed to

produce an average [10, 19] or weighted average [4, 17] of

the predicted scores on each pixel/superpixel, then output

the highest scoring labels. Arbelaez et al. learn to classify

superpixels using class predictions from all enclosing seg-

ments as input features [1]. This strategy would typically

allow for the refinement of a semantic segmentation in a

heuristic manner, by e.g. thresholding pixel or superpixel

scores.

In this paper, we propose a model that allows for the

refinement and recombination of initial bottom-up propos-

als using a principled statistical inference method, while

avoiding some of the intractability with random field struc-
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Figure 1. (Best viewed in color). The need for an efficient in-

ference procedure given multiple object segmentation proposals.

Identifying the correct object layout from the overlapping segment

predictions is a nontrivial task. Simply performing non-maximum

suppression would discard all the person segments, which have

lower scores because they all overlap the first bike segment.

tures. A main deviation from CRF approaches is that in-

stead of directly modeling the conditional label distribu-

tions, we model the one-dimensional error distributions of

many predicted region statistics. By combining thousands

of pixels that span a large segment into one segment statis-

tic, we transfer conflicting high-order terms into a number

of one-dimensional distributions, hence avoiding difficult

maximum a posteriori inference in models with cyclic de-

pendencies. Models of error distributions are commonly

seen in the context of regression, the simplest being the

Gaussian error used in least squares. In our case, the error

distribution is modeled as a mixture with two components,

based on intuitions obtained through exploratory data anal-

ysis. The first component corresponds to false positive de-

tections while the second one is a Gaussian truncated to the

domain of the statistic.

Our main idea is to model the segments as computable

composites of statistics on superpixels that do not spatially

overlap. By computable, we mean there exists a mathemat-

ical formula that can output segment statistics given values

of the superpixel statistics. Based on such a link, we can op-

timize the superpixel statistics by maximizing the compos-

ite likelihood (or posterior) of the predicted segment statis-

tics in the modeled error distribution. Intuitively, the con-

figuration of superpixels that can explain most of predicted

segment statistics will emerge as the maximum likelihood

solution, as shown in fig. 2. The generative graphical model

is presented in fig. 3 and encodes the dependency of the

ground truth statistic on the segments and the superpixel

statistics, as well as the dependency of the observations on

predicted segment statistics and a noise source.

Our methodology consists of a training phase and an in-

ference phase. In the training phase, regressors are esti-

mated to predict segment statistics. This can be done by

standard routines such as SVR or least-squares, and is not
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Predicted Overlap: 48%

Config_1: 50%
Config_2: 100%

Predicted Overlap: 27%
Config_1: 50%

Config_2: 72%

Configuration 1 is more likely to be right!

Predicted Overlap: 4%
Config_1: 0%

Config_2: 25%

Predicted Overlap: 3%
Config_1: 0%

Config_2: 40%

Figure 2. (Best viewed in color) The goal of our inference can be

intuitively thought as finding the superpixel configuration which

best explains most of the predicted segment statistics, here spatial

overlap (with the chair object). This formulation allows discov-

ering objects that are cut into disconnected components, such as

the chair. Instead of find such a superpixel configuration using a

search algorithm, we formulate it as a continuous maximum com-

posite likelihood problem with a convex relaxation, where a near-

optimal solution can be found via mathematical optimization.
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Figure 3. The conceptual graphical model. Superpixel statistics

are generated from the ground truth objects. Segment statistics are

generated from superpixel statistics and the segments. The obser-

vations are predicted segment statistics on each category. They

are the maximal segment statistic for all ground truth objects in

the same category, perturbed with noise ǫ. During inference, we

first solve for the superpixel statistics θ, then output full object

segmentations given θ.

covered here. Given a test image, the inference phase has

three main stages:

• Use the trained regressors to predict segment statistics.

• Maximize the composite likelihood to estimate super-

pixel statistics.

• Output an optimal full-image semantic segmentation

given the estimated superpixel-level statistics.

The first stage is straightforward thus we will be mainly

discussing the second and the third ones. Since this is a new

methodology, many innovations are presented in the paper

to facilitate its execution in the difficult semantic segmenta-

tion problem:

• To ensure the computable composite assumption, our

superpixels are obtained by multiple intersections from



the mid-level segment hypotheses, so that each super-

pixel either totally belongs to a segment or is com-

pletely outside it.

• We generalize the composite likelihood methodology

to handle statistic estimates instead of probabilistic es-

timates.

• We introduce a prior on the number of objects. A

maximum-a-posteriori (MAP) step is used to infer the

optimal number of objects within each category.

• An EM algorithm is used to maximize the likelihood

based on the mixture error model. The E-step assigns

mixture weights and the M-step maximizes the com-

posite likelihood. In the M-step, we propose a good

convex relaxation which is used to warm-start the so-

lution.

• For the last stage, we exploit the structure in the super-

pixel statistics in order to propose an efficient, optimal

search algorithm to find the best pixel labeling given

the estimated superpixel statistics.

2. Composite Likelihood and Its Generaliza-

tion to Statistical Estimates

Throughout the paper we denote p(x) the probability of

random variable x, I the indicator function. N (x;µ, σ2) the

density function of the normal distribution with mean µ and

variance σ2, Ber(α) a Bernoulli distribution with parame-

ter α, Exp(x;λ) the density of an exponential distribution

with parameter λ, and δ(x) the Dirac function. When x is

a vector, x ≥ 0 means that all dimensions of x are larger

or equal to 0. For a set A, let |A| denote its cardinality. A

segment is considered a set whose cardinality is the number

of pixels inside it.

A maximum composite likelihood (MCL) approach [18,

20] drops the independence assumptions typical in maxi-

mum likelihood. For us, this is important, in order to be able

to leverage overlapping higher-order observations (on seg-

ments) that are strongly inter-dependent. We adopt a ver-

sion in [6] with some simplifications, and refer the reader to

[6] and our associated technical report [16] for details.

Definition 1 Suppose we have a dataset D =
{X(1), . . . , X(n)}, where each X(i) is a m-dimensional

vector. Consider a finite sequence of variable subset

pairs (called m-pairs) (A1, B1), . . . , (Ak, Bk), where

Aj , Bj ⊂ {1, . . . ,m}, ∀j ∈ 1, . . . , k with A 6= ∅ = A ∩B.

Given vector β ≥ 0, the composite likelihood object is

cl(θ) =
n
∑

i=1

k
∑

j=1

βj log pθ(X
(i)
Aj

|X
(i)
Bj

). (1)

When β has stochastic components, this is called stochas-

tic composite likelihood (SCL)[6]. MCL is the approach

to solve for θ by maximizing the composite likelihood (1).

The MCL/SCL approach is statistically consistent given an

identifiability assumption, but is intractable in most cases,

however, because of the need to model a high-dimensional

distribution pθ(XAj
|XBj

). We propose to extend the MCL

framework to distributions on statistical estimates. This

makes us work with 1-dimensional distributions which are

much easier to model and estimate.

Definition 2 With the same conditions as in Definition 1

for D,X(i), Aj , Bj and β, let us further assume that

f(X(i), Aj , Bj) is an observed statistic from X(i), Aj and

Bj . We define the maximum composite f -likelihood prob-

lem as

max
θ

n
∑

i=1

k
∑

j=1

βj log pθ(f(X
(i), Aj , Bj)). (2)

This new MCL problem recovers the model parameters θ

from the composite f -likelihood log pθ(f(X
(i), Aj , Bj))

for all the random variables on multiple different subsets. It

seeks to find a parameter vector θ that best explains all the

observed statistics from X(i) and the two given subsets Aj

and Bj . The distribution pθ(f(X
(i), Aj , Bj)) is modeled

as a 1-dimensional distribution. A relevant example is a lin-

ear subset regression model with Gaussian errors. Suppose

X(i) is an image, Aj is a subset of its pixels (a segment)

and Bj is a background segment non-overlapping with Aj .

Then a fixed-length feature vectorZij can be extracted from

these segments and the distribution of fij can be modeled

as pθ(fij) = N (θ⊤Zij , σ
2), with θ the regression weights.

Given observed values of fij for many different X(i), Aj

and Bj , the MCL problem in this case becomes a weighted

least squares regression of solving for θ. As shown in our

associated technical report[16], the asymptotic consistency

proof still partially holds, even when different fij are inter-

dependent. Intuitively, as the number of observations goes

to infinity, the true model parameters θ should give the best

performance for each individual segment, hence converge

to the optimal solution of the MCL problem (2), given a

suitably chosen β vector.

3. Maximizing the Composite Likelihood for

Semantic Segmentation

In this section we present the main parametric model of

the proposed CSI (Composite Statistical Inference) method

that uses the modified MCL to infer semantic segmenta-

tions. We will first present the probabilistic model (sec.

3.2), followed by the EM algorithm to estimate parameters

(sec. 3.3). We must convert the per-category scores to per-

object scores in order to properly maximize the likelihood.

To do so, we need to estimate the number of objects in each

category and assign the score of each segment belonging to



a particular object. We postpone the relevant discussion to

sec. 3.4 because it uses the same probabilistic model and

EM formulation introduced in sec. 3.2 and 3.3. A discus-

sion on how to output final segmentations given the super-

pixel statistics estimated from MCL is deferred to sec. 4.

3.1. Semantic Segmentation from Figure­Ground

In our problem setting, I represents the image, as a lat-
tice of pixels. An object segmentation proposal (or sim-
ply segment) Ai ⊂ I is a subset of I . Suppose m seg-
ments A1, A2, . . . , Am; c object categories C1, C2, . . . , Cc;
r ground truth objects F1, . . . , Fr are present in the im-
age I and each one belongs in a particular category, de-
noted as Fk ∈ Cj . Each pixel p in the image should ei-
ther belong to a single object or to the background, i.e.
∑r

k=1 I(p ∈ Fk) ≤ 1. For each segment Ai, its class-
specific overlap with a category Ck is defined by

V
0
ik = V (Ck, Ai) = max

Fj∈Ck

|Fj ∩Ai|

|Fj ∪Ai|
. (3)

The true overlap V 0
ik can be estimated by training one re-

gressor for each categoryCk(for details on possible training

methods one can consult e.g. [17, 4, 1]). Since this paper

deals with inference, which is only required during testing,

we assume that regressors are already obtained based on a

separate training set and denote their estimates in the test

image I as V̂ 0
ik .

Given segments A1, A2, . . . , Am, we find multiple in-

tersections by dividing the image I into superpixels

S1, S2, . . . , Sn, so that ∀i, j, Si∩Sj = ∅, ∀k,Ak = ∪iSk(i)

(every segment Ak is the union of some superpixels), and

the number of superpixels is minimal. In practice we con-

sider only segments that have non-negligible predicted over-

lap (over a loose threshold) with at least one category.

Therefore, in many cases, the superpixels have finer granu-

larity inside objects of interest (fig. 5) and coarser granular-

ity on the background. In practice, we filter out superpixels

that are very small (e.g. < 50 pixels) and assign the relevant

pixels to nearby superpixels. After filtering, most images

can be represented using only 20− 300 superpixels.

3.2. The Probabilistic Model

We use θkj to model the percentage of pixels within a
superpixel Sk that belongs to object Fj . Then, the overlap
between a segment Ai and Fj can be computed as

Vij =
|Fj ∩Ai|

|Fj ∪Ai|
=

∑

Sk∈Ai
θkj |Sk|

∑

Sk∈Ai
|Sk|+

∑

Sk /∈Ai
θkj |Sk|

(4)

Importantly, Vij is computable from θ only since each |Sk|
is a constant. The idea is that if one parameterizes the
ground truth object with θ, then its overlap with each seg-
ment can be computed (fig. 2). Now, given the observed

overlaps V̂ 0
ij , one can optimize θ by maximizing the com-

posite likelihood of V̂ 0
ij , given the overlap Vij(θ) computed

from θ:

max
θ

m
∑

i=1

c
∑

k=1

max
Fj∈Ck

log p(V̂ 0
ik|Vij(θ)) (5)

where the inside max operation represents the fact that V̂ 0
ik

is an estimate of maxFj∈Ck
Vij(θ), instead of any Vij(θ). If

we know the number of objects in each category and their

rough locations, this can be solved by assigning each V̂ 0
ik to

one of the objects in Ck , so that likelihood is maximized.
In order to simplify the presentation of the graphical model,
we assume for now that this assignment has been resolved,

so that each V̂ij has been properly assigned from a corre-

sponding V̂ 0
ik , if Fj ∈ Ck. The MCL problem becomes:

max
θ

m
∑

i=1

r
∑

j=1

βijp(V̂ij |Vij(θ)) (6)

where θ is an n × r matrix, βij = 1 if segment Ai has

been assigned to object Fj and 0 otherwise. Note that an

assignment is performed within each category, hence a seg-

ment can be assigned to many objects, but at most 1 per

category. The resolution of the assignment problem within

each category will be described in Sec. 3.3.

We assume that the estimated overlap V̂ik is generated

from the true overlap Vik plus noise. In order to determine

the form of p(V̂ |V ), we resort to histograms. Fig. 6 shows

histograms on V |V̂ , for the data collected from PASCAL

VOC training set. The distribution of V |V̂ can easily be

interpreted as a combination of two components: a bump

at V = 0, which apparently corresponds to false positive

detections, and a centered distribution with V 6= 0. As V̂

increases, the chance of misclassification is reduced.
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Figure 4. The graphical model used. We separate objects within

each category (Sec. 3.4) so that the categorical predictions are

mapped to each object. Also, θ and V generate a Bernoulli ran-

dom variable z, which determines whether the predicted overlap

would be a false positive.

Motivated by these observations, we introduce an ad-
ditional Bernoulli random variable zij for each predicted

score V̂ij (fig. 4). The outcome of zij informs whether the

prediction V̂ij is a false positive. We make three conditional
distribution assumptions:

Vij |V̂ij , zij ∼

{

Exp(λ), zij = 0

N (V̂ij , σ
2), zij = 1

(7)

zij |V̂ij ∼ Ber(α(V̂ij))

zij = 1|V̂ij , Vij , θ ∼ Pr(zij = 1|Vij , V̂ij)f(Vij , θ−j)



where θ−j = [θ1, θ2, . . . , θj−1, θj+1, . . . , θr] represents all

the θ columns without the j-th. These assumptions are in

line with our observations: if zij = 0, the prediction is

a false positive and the true overlap Vij should be 0. We

take an exponential distribution as an approximation, due to

smoothness and tractability. If zij = 1, then Vij should be

centered around the predicted overlap1. Besides, the false

positive probability p(zij = 0|V̂ij) controlled by α(V̂ij) is

smaller if V̂ij is larger. The third assumption is a ‘mutual

exclusion’ prior. We observe that in categories that are hard

to distinguish, e.g. cat and dog, horse and cow, a seg-

ment often has significant predicted overlaps on multiple

categories, but only one of them is correct (see our tech-

nical report [16] for an example). In such cases, when we

have evidence from θ−j that an object in another category

might exist, the probability of zij = 1 is diminished by a

factor (details in [16]). The 1-dimensional function α(V̂ij)
is obtained by computing the histogram on the false positive

rate over a validation set and fitting a smooth function to it.

Figure 5. (Best viewed in color) Refined superpixels obtained by

multiple intersection from original mid-level segments. Each dif-

ferent color represents a different superpixel (black identifies the

largest one). Note that the partitions are, automatically, finer-

grained, on the objects of interest.
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Figure 6. Histograms of true overlap given predicted overlap

across the VOC validation set. One can easily identify two com-

ponents: a probability mass at 0 and a centered distribution to the

right. The 0 mass corresponds to misclassifications, where the ob-

ject does not belong to the category, but the regressor erroneously

outputs nonzero predicted overlaps. Also note that with higher

predicted overlap V̂ , there is less chance for V = 0.

1Here N should be viewed as a truncated Gaussian on the range [0, 1],
but since the log-likelihood between truncated and normal Gaussians dif-

fers only by a constant, we abuse the notation N here.

If the prediction is biased such that E(V |V̂ ) 6= E(V̂ ),
we could correct the (systematic) bias in this step by using

a function g(V̂ij) instead of V̂ij in the assumption. The bias-

correction function could be fitted in the same way as α, by

taking a histogram on the validation data and smoothing it.

Because both α and g are 1-dimensional functions, the risk

of overfitting is drastically reduced when the validation set

becomes large (e.g. with cross-validation).

3.3. EM Estimation

To maximize the likelihood with latent variable zij , we

adopt a conventional expectation maximization (EM) ap-

proach. In the E-step, we will average over choices of

zij , and then in the M-step maximize the expected log-

likelihood. Formally, we would like to optimize the com-

posite likelihood with latent variables Z = [zij ]:

max
θ,Z

m
∑

i=1

r
∑

j=1

βij log p(V̂ij |Vij(θ), zij) (8)

In the E-step, E(zij) is computed from existing estimates
using Bayes’ formula (see [16]):

E(zij) = p(zij = 1|V̂ , V, θ) = f(Vij , θ−j)p(zij = 1|V̂ij , Vij)
(9)

This turns out to be similar to a standard mixture model

update rule, with an additional factor f(Vij , θ−j) reflecting

the change of belief on Vij and V̂ij , given current estimates

of θ for other categories.
In the M-step we maximize the log-likelihood based on

the following optimization (detailed derivations in [16]):

min
θ

∑

i,j βij

(

E(zij)

2σ2 (V̂ij − Vij(θ))
2 + (1− E(zij))λVij(θ)

)

s.t. 0 ≤ θkj ≤ 1, k = 1, . . . , n, j = 1, . . . , C;
∑C

j=1 θkj ≤ 1, k = 1, . . . , n (10)

Substituting (4) into (10) results in the full optimization.

Since θkj models percentages, it has a range of [0, 1], repre-

sented in the first constraint. The second constraint comes

from the assumption that each pixel can belong to only 1
object. In practice, we also employ a regularization term

λ2

∑n
k=1 |Sk|

(

∑c
j=1 θ

2
kj

)

where λ2 is a parameter. This

regularizer can be viewed as a smoothness term that pro-

motes a more uniform selection of θ. It tends to preserve the

shape of segments in the superpixel potentials and proved

important for practical performance.

Interestingly, the optimization has a convex relaxation.

The expanded form of both (10) and its convex relaxation

are given in our associated report[16]. In the M-step of

each EM iteration we first solve the convex relaxation, then

use the solution to warm start the optimization (10). A

projected quasi-Newton method from minConf2 is used

2http://www.di.ens.fr/ mschmidt/Software/minConf.html



to solve both optimization problems.

3.4. Locating Multiple Objects within Each Cate­
gory

To locate multiple objects in one category and in order
to separate the estimates to each object, we adopt the above
EM estimation with a hypothesis-testing framework to find
the number of objects in each category, in a MAP setting.
Namely, we solve (2) for each category Ck independently,
with an additional geometric prior on the number of objects
rk: p(rk = j) = (1 − q)jq, where q > 0 is a parameter.
For each of rk = 1, 2, 3, etc., the following posterior is
computed:

Lrk = max
θ,Z

m
∑

i=1

max
j∈1,...,r

log p(V̂ 0
ik|Vij(θ), zij)+rk(1− q) (11)

by maximizing over θ and Z . The posteriors Lrk are
computed iteratively. First L1 is computed by setting all
E(zi1) = αik and running the M-step (10) only. Then,
suppose Lrk is computed with the optimized parameters as
θrk , Zrk , Lrk+1 is inductively computed by adding one ob-
ject with an initialization of:

E(zi,rk+1) = 1−
maxj∈{1,...,rk} p(V̂

0
ik|Vij(θr))

p(V̂ 0
ik|V = V̂ 0

ik)
(12)

and running the EM steps (10) and (9) until convergence.

In (12), the denominator represents the maximum likeli-

hood from any configuration, and the nominator represents

the likelihood of the best explanation of V̂ 0
ik by any of the

current j objects. The logic behind (12) is that, if V̂ 0
ik has

already been explained perfectly, adding an object cannot

improve the likelihood thus E(zi,rk+1) is initialized to 0. If

none of the objects has been able to explain V̂ 0
ik so far, then

a new object is likely present, thus E(zi,rk+1) is initialized

to 1.

At any point, if Lrk+1 < Lrk , the computation is

stopped and rk is decided to be the number of objects. Then,

each segment is assigned to the object Fj that maximizes

E(zi,j) in the final Zrk . The joint inference on all cate-

gories is subsequently performed, by treating each object as

a different category with separately assigned predictions.

3.5. The Full Procedure

The full inference procedure involves two steps:

• Determining the number of objects within each cate-

gory by the within-class object separation routine in

Sec. 3.4.

• Performing joint inference by iterating (9) and (10)

across all categories and objects.

Notice that we choose to perform the within-class object

separation routine before the joint inference, because within

each category the enumeration of object counts is tractable.

1 Bicycle 2 Bicycles 1 Person 2 Persons

Bicycle 1 Bicycle 1 Bicycle 2 Person 1 Person 1 Person 2

Figure 7. Different θ computed for 1 bicycle/2 bicycles, and 1 per-

son/2 persons hypotheses for the same set of predicted segment

overlaps. The second bike represents spurious predictions from

noise, whereas separating two people indeed improves the solu-

tion.

Bike 1 Bike 2 Person 1 Person 2

Figure 8. Joint optimization on 4 objects. One can see that po-

tentials for Bicycle 2 have been suppressed due to similar spatial

layout and lower scores to Person 2.

If one enumerates in the joint inference phase, then hy-

potheses like “1 object in c1, 2 objects in c2” need to be

tested and could lead to exponential blowup when there

are many categories. Whereas, even if the within-class ob-

ject separation can make mistakes, the erroneous object hy-

potheses can still be suppressed during the joint inference.

In fig. 7 we show the result of running the within-class

object separation routine on the segments in fig. 1. One

can see that in both the bicycle and the person categories,

two objects are generated instead of one. Although both

categories improve the likelihood by predicting 2 objects,

the second bicycle object is erroneous whereas the second

person object is correct. After detecting two objects for each

category and running joint inference with these 4 objects,

the algorithm is able to correct that mistake, as shown in

fig. 8.

4. Optimal Full Image Labeling

Given the inferred real-valued parameters θ (e.g. fig. 8),
we still need to produce a consistent segment for each ob-
ject. A graph-cut algorithm can be used on a potential map
like fig. 8, but because θ has different magnitudes in differ-
ent images, a uniform cut parameter choice across a dataset
is unlikely to be successful. We propose an algorithm to
produce optimal segments that maximizes the overlap with
ground truth, without the need to re-segment. First, note
that the overlap formula (4) can also be written as:

V (Fj , A) =

∑

Sk∈A θkj |Sk|
∑n

k=1 θkj |Sk|+
∑

Sk∈A(1− θkj)|Sk|
(13)



where in the denominator we first count all the ground truth

pixels in Fj by
∑n

k=1 θkj |Sk|, then sum all the pixels inside

segment Ai that do not belong to Fj . This reformulation

leads to a simple approach to grow A optimally. Suppose

we have A with V (Fj , A) = V0, then V can be increased

if and only if we add a superpixel to A with
θkj

1−θkj
> V ,

because a+c
b+d

> a
b

iff c
d
> a

b
. Therefore, when the image

contains only an object in a single category, the optimal seg-

ment can be found by starting from A = ∅ and V = 0. We

then sort
θkj

1−θkj
corresponding to all superpixels in descend-

ing order, and keep adding superpixels from the top of the

list until V ≥ θkj

1−θkj
for all remaining superpixels.

In case the optimal segments in multiple categories con-
flict on some superpixels, one can run a branch-and-bound
search on all the conflicting superpixels to maximize the
sum of overlaps on each object. For each conflicting super-
pixel Sk, a quality function is defined by

Qkj = max
A

V (Fj , A)− max
A,Sk /∈A

V (Fj , A) (14)

where we perform the search in a best-first manner, with

the superpixelSk for objectFj picked first if the pair has the

best quality Qkj . At each branch, an upper bound is com-

puted by maxA,Sk⊂A V (Fj , A) and a lower bound is com-

puted by maxA,Sk∩A=∅ V (Fj , A), where max can choose

from all the superpixels that have not been assigned at the

branch. These bounds prune the search space effectively.

The search can be performed very fast because: 1) Since

θ from all categories are optimized jointly, one superpixel

is likely to be assigned to a single category and only a lim-

ited number of superpixels will be simultaneously present

in the optimal segment of many categories; 2) The bounds

obtained with the above procedure are usually quite tight.

In many cases, a greedy approach using the quality func-

tion achieves the optimal solution. Fig. 9 shows the search

results for the 4 objects in fig. 8 as well as the final output.

5. Experiments

The experiments are conducted on the PASCAL VOC

Segmentation dataset [7], a widely used benchmark for se-

mantic segmentation. This dataset defines 20 object cat-

egories and provides around 3, 000 training images with

pixelwise ground truth annotations. This set, named

trainval, was further divided into half in the train

and half in the val set. In addition, around 9, 000 images

annotated with bounding box information can be used for

training. The final benchmark of performance is a held out

test set, for which the ground truth is not available and

evaluation can only be done by submitting results to an on-

line evaluation server. Performance is evaluated as the aver-

age pixel precision, computed on all the pixels of each class

and then averaged over the 20 classes plus background. We

tune the parameters λ, λ2 and δ and the α function on the

Bicycle: 0.457 Person: 0.243 Bicycle: 0.071 Person: 0.222

Original Image Class Output Instance Output

Bicycle

Person

Figure 9. Final masks and final output of the algorithm. Bike 2

is filtered out because of very low score. Not all superpixels with

non-zero potentials are in the final mask, because adding some

more would be suboptimal according to the procedure in Sec. 4. It

is interesting to see that the first person has his right leg correctly

cut through by the bicycle, a solution that was not available in any

of the initial object segmentation proposals.

val set using the regressor output trained on train and

the additional images with bounding box annotations. Then,

evaluation is performed on the test set with the tuned pa-

rameters and fitted functions. The overlap predictions V̂

used in our system are obtained by combining the regres-

sors from [17] and [2], with linear weights learned on the

trainval set. The parameters λ, λ2 and δ are tuned on

the val set.

On the VOC test set, we compare the proposed CSI

approach against other methods on the 2012 challenge us-

ing the same set of category prediction scores, which in-

cludes SVRSEGM [3] and JSL [11]. The JSL entry to VOC

2012 is different from the paper [11] in that it also employed

pixel-level averaging to improve performance. It can be

seen from Table 1 that the method performs slightly bet-

ter than the others, especially for object categories involved

in interactions such as Bike, Chair, Person and Sofa.

It does less well in the animal categories where interactions

are less likely to happen. The 47.5% overall result for CSI

is the best reported on comp5 of the VOC 2012 challenge

so far [7].

We show some images on the VOC test set in fig. 10. It

can be seen that CSI handles object interactions very well

in many cases. More images and comparisons are given in

our technical report[16].

6. Conclusion

This paper proposes a composite statistical inference

approach to semantic segmentation. The composite

likelihood methodology is generalized to model one-

dimensional error distributions of statistical estimates.

Based on this generalization, superpixel-level inference is

performed based on a set of mutually overlapping object

segmentation proposals and their predicted overlaps with
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Figure 10. Example of semantic segmentations. The first row shows results using the post-processing algorithm of [17], the second row

shows results of the proposed CSI algorithm. Areas of the image labeled as background are depicted with their original appearance. The

first four images show cases where our algorithm is more accurate, mainly involving relatively complex scenes with multiple interacting

objects. The last image, on the right, shows a typical failure case: segments covering part of one of the horses are strongly confused and

assigned to ‘cow’. The algorithm of [17] typically oversmooths the predictions, which is advantageous in some cases, like in this image.

Table 1. VOC 2012 test results

Method M
ea
n

B
ac
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gr
ou
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d

A
ir
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n
e

B
ik
e

B
ir
d

B
oa
t

B
ot
tl
e

B
u
s

C
ar

C
at

C
h
ai
r

C
ow

D
in
in
g

T
ab

le

D
og

H
or
se

M
ot
or
b
ik
e

P
er
so
n

P
ot
te
d

P
la
n
t

S
h
ee
p

S
of
a

T
ra
in

T
V
/M

on
it
or

SVRSEGM 46.8 84.9 63.8 22.1 50.5 38.9 44.8 61.3 63.3 48.8 9.8 57.2 35.6 43.0 51.1 58.8 53.7 29.7 49.8 30.3 47.0 38.0

JSL 47.0 85.1 65.4 29.3 51.3 33.4 44.2 59.8 60.3 52.5 13.6 53.6 32.6 40.3 57.6 57.3 49.0 33.5 53.5 29.2 47.6 37.6

CSI 47.5 85.2 64.0 32.2 45.9 34.7 46.3 59.5 61.6 49.4 14.8 47.9 31.2 42.5 51.3 58.8 54.6 34.9 54.6 34.7 50.6 42.2

object categories. The generative process underlying

overlap prediction is modeled using a graphical model

and an EM algorithm is proposed to solve the maximum

composite likelihood inference in two steps: the number

of objects in each category is first determined, then a joint

optimization is performed for all objects across categories.

Once superpixel-level parameters have been estimated,

the optimal pixel-level segmentation can be computed

efficiently by best-first search. Experiments demonstrate

the effectiveness of the approach, especially in scenes with

multiple objects and interactions.
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