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Abstract

In this paper we present a learning and inference framework, Composite Statis-

tical Learning and Inference (CSLI), for random fields with extremely high order

interactions. Instead of conventional probabilistic approaches that build models on

clique potentials, we propose to focus on subset statistics from overlapping ran-

dom variable subsets and employ composite likelihood approaches for learning

and inference. Focusing on subset statistics avoids the need to consider normal-

ization constants in both learning and inference. Learning becomes a conventional

(weighted) regression problem, and inference is also greatly simplified since the

subset statistics are of much lower dimensionality than the initial random variables.

We present an inference algorithm on the semantic segmentation problem in com-

puter vision, where the statistic of choice is maximal class-specific overlap. Con-

tinuous parameters are defined on superpixels obtained by multiple intersections

of segments, then the optimal segments are outputted from the inferred superpixel

statistics. The algorithm is capable of recombine and refine initial mid-level seg-

ment proposals, as well as handle multiple interacting objects, even from the same

class, using an EM algorithm maximizing the composite likelihood. In the PAS-

CAL VOC segmentation challenge, the proposed approach obtains high accuracy

and successfully handles images of complex object interactions.

1 Introduction

In machine learning and computer vision, many problems can be represented as ran-

dom fields. A random field model is described by an undirected graph, where random

variables are represented as nodes and dependencies among variables are represented

by graph edges. The joint probability model is factorized over graph cliques, and poten-

tials (under a Boltzmann distribution) are often defined on such cliques for parameter
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learning and inference. Such models have achieved great success in the past twenty

years in many different problems in computer vision, natural language processing and

other domains.

In practice, most of the clique potentials considered in these models are unary (or-

der 1) or pairwise (order 2). Higher order cliques are often ignored mainly because

of the computational difficulties for using them in learning and inference. This raises

a question mark for certain complex computer vision problems, such as scene under-

standing, where it is extremely important to consider higher order potentials because

local dependencies are not sufficient to model the complex dependencies over large

image regions.

A concrete example is the semantic segmentation problem [1, 14, 15, 17, 22, 23,

25, 34, 43], an important aspect of scene understanding. The goal of semantic seg-

mentation is to detect objects from different categories and identify their spatial layout

simultaneously. Each pixel in the image must be classified as a foreground object of

a certain category, or be assigned as background. Suppose the labels of each pixel

contain two categorical random variables, one indicating its category and another indi-

cating the object it belongs to, the semantic segmentation problem can be defined on

a random field where the nodes are the labels of each pixel, and links are specified by

dependencies among image regions (pixel subsets). It can then be argued that higher

order dependencies are necessary: the label of one pixel is not only dependent on its

spatial neighbors, but also the labels of many pixels that are spatially far away from

that pixel.

An empirical approach we have pursued with some success to solve this problem

can be called ‘sliding segments’ [27, 5], starting from an unsupervised generation of

many possibly conflicting holistic figure-ground segment proposals with object-sized

spatial support [7] (Fig. 10). The segment proposals are then passed to classifiers or

regressors that determine their category. Full image interpretations are in turn assem-

bled sequentially from individual segments. Feature extraction on segments can better

capture global dependencies such as object shape, object-level color and texture distri-

butions, leading to more accurate classifications than earlier local classifiers focusing

on patches around pixels [36]. This type of approach has been shown to deliver top

performances in difficult benchmarks [27, 5] and is a backbone of most state-of-the-art

systems on this problem [44, 28, 42].

The use of predictions on mutually overlapping segments requires a new learning

and inference framework for graphical models, that is inherently based on large corre-

lated variable subsets instead of local unary/pairwise connections. In order to do that,

we need to translate the insights observed from the empirical problem into statistical

language. Note that segments can be regarded as random variable subsets by noting

that each image segment is a subset of image pixels, thus defines a subset of random

variables in the aforementioned random field. The category label of the segment, or the

spatial overlap of the segment with a ground truth object, can be considered as subset

statistics that are higher order moments on the subset of random variables defined by

the segment. Therefore, the learning and inference based on such a set of mutually

overlapping segments is related to a classic approach, composite likelihood [31], that

has not been widely used in computer vision and machine learning. Composite likeli-

hood performs inference by modeling probabilities on many random variable subsets,
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and is asymptotically consistent [10]. The difference between the aforementioned ap-

proach and composite likelihood is that instead of probability models, statistical es-

timates are employed. A (set of) statistics are usually of much lower dimensionality

than the probability distribution defined on many variables, thus one can expect that

the ensuing probability models would be less complicated, which would in turn make

learning and inference both easier.

The main focus of this paper is to formalize and develop such a statistical frame-

work. We name our framework Composite Statistical Learning and Inference (CSLI),

which consists of a learning stage (Composite Statistical Learning, CSL) and an infer-

ence stage (Composite Statistical Inference, CSI). During CSL, statistics are defined on

variable subsets sampled from the σ-algebra of a probability measure, and predictors

of subset statistics are learned from observations, using standard techniques such as

classification or regression. During CSI, variable subsets are sampled, learned predic-

tors are applied on these subsets to predict statistics, and then inference is performed

to uncover the MAP/MLE solution of each random variable.

CSLI handles higher order learning and inference in a clear and tractable manner.

A very desirable feature of it is the simple learning stage. Most of the time, learning is

performed just as simple classification/regression problems which have been extremely

well-studied. Convex solutions often exist and generalization bounds from the training

set to testing data have been well-established. During the inference stage, the dimen-

sionality reduction effect by moving from probability to statistical estimates make the

problem tractable. In semantic segmentation, the low dimensionality enables us to use

exploratory data analysis [37] to explicitly specify a parametric error distribution of the

statistics, as well as proposing a simple convex relaxation for the inference algorithm.

The drawback of the framework lies in the sampling of variable subsets. Since

variable subsets are overlapping, it is impossible to assume that the variable subsets are

sampled i.i.d.. Thus it becomes difficult to develop theoretical results on learning rates.

Besides, in practice one needs to control the weights of the sampled variable subsets to

alleviate biased sampling. We will also propose a practical method to deal with this in

semantic segmentation.

The rest of the paper is organized as follows: in section 2, we review previous liter-

ature on higher order graphical model inference and semantic segmentation. In section

3, we propose the CSLI framework and prove theoretical consistency results. In section

4, we develop a CSI algorithm for the spatial inference in semantic segmentation. In

section 5, implementation details are presented, as well as the technique for alleviating

biased sampling. Results on the popular MSRC-21 and PASCAL VOC datasets are

shown in section 6, and the conclusion is presented in section 7.

2 Related Work

2.1 Higher Order CRF Inference

The inference part of our approach can be viewed as a higher-order CRF inference

method, albeit very different from traditional ones that work directly with explicit

clique potentials for the conditional distribution. A well-known earlier work by Kohli
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Predicted Overlap: 48%
Config_1: 50%

Config_2: 100%

Predicted Overlap: 27%
Config_1: 50%
Config_2: 72%

Configuration 1 is more likely to be right!

Predicted Overlap: 4%
Config_1: 0%

Config_2: 25%

Predicted Overlap: 3%
Config_1: 0%

Config_2: 40%

Figure 1: (Best viewed in color) The goal of our inference can be intuitively thought as

finding the superpixel configuration which best explains most of the predicted segment

statistics, here spatial overlap with the chair object. This formulation allows discov-

ering objects that are cut into disconnected components, such as the chair. Instead

of find such a superpixel configuration using a search algorithm, we formulate it as a

continuous maximum composite likelihood problem with a convex relaxation, where a

near-optimal solution can be found via mathematical optimization.

et al. [20] proposes the robust Pn potential where the potential is defined on a set of

superpixels, and the penalty is linearly increased if more superpixels are different from

the predicted label, the confidence of the prediction controls the rigidity (slope) of the

potential. This is very different from our approach where region statistics are predicted

and the loss function is determined by the predicted region statistics. Especially, in

our approach if the spatial overlap between the segment and the ground truth category

is predicted to be 75%, then no loss will be incurred if there are exactly 75% of the

pixels in the segment assigned to the ground truth category. In the case of [20], there

will still be a loss incurred corresponding to the 25% region, and hence our approach

is more suitable with segments that only partially overlap the object. Kohli and Ku-

mar [19] proposes to represent higher-order potentials using lower envelopes of linear

functions, which unfortunately also cannot represent the aforementioned phenomena.

The marginal probability field approach [41] attempted to solve this problem by incor-
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Figure 2: The conceptual graphical model. Superpixel statistics are generated from

the ground truth objects. Segment statistics are generated from superpixel statistics

and the segments. The observations are predicted segment statistics on each category.

They are the maximal segment statistic for all ground truth objects in the same category,

perturbed with noise ǫ. During inference, we first solve for the superpixel statistics θ,

then output full object segmentations given θ.

porating dependent statistics estimates, however it does not include our idea of making

these statistics based on overlapping regions (segments).

(less relevant) Other higher-order inference models involve ones based on pat-

terns [35, 21], which is different from the current ones that do not form a specific

pattern. Komodakis and Paragios [21] proposed to use dual decomposition for optimiz-

ing higher-order potentials, where each clique turns into one subproblem. Lempitsky

et al. [26] includes higher-order potentials of bounding box priors. Label counts were

used in [40, 30].

2.2 Composite Likelihood

The composite likelihood method has been proposed as a generalization of the pseudo-

likelihood in the 1980s [31], [38] summarizes the earlier work in this direction. Dillon

and Lebanon [10] proposes a stochastic version that involves random draws on the

variable subsets instead of fixed ones, and proved consistency of this version.

On the theoretical side, Liang and Jordan proposed an asymptotic analysis of cer-

tain pseudo likelihood/composite likelihood methods [29]. But what they call as com-

posite likelihood is a model that always model the probability of all the variables,

but condition on a subset of them. This is significantly different from our settings.

Bradley and Guestrin has developed PAC bounds for learning CRF using composite

likelihood [3], and claimed that the only PAC-learning methods for CRF can be re-

casted into pseudo-likelihood approach.

2.3 Semantic Segmentation

The common approach to use CRF in semantic segmentation is as a hierarchical model [24,

25, 45] , where the higher-order potentials are decomposed into pixel/superpixel level

layers and segment-level layers, with different layers connected based on overlap and

compositionality. However, the interactions in these models are complex and involve
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Original Image Score: 0.363 Score: 0.359 Score: 0.328 Score: 0.301 Score: 0.297

Score: 0.295 Score: 0.291 Score: 0.289 Score: 0.288 Score: 0.287 Score: 0.287
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Figure 3: (Best viewed in color). The need for an efficient inference procedure given

multiple object segmentation proposals. Overlap predictions between each segment

and all categories are given as input to our algorithm - however only the category with

maximal score is shown on the figure. Identifying the correct object layout from the

overlapping segment predictions is a nontrivial task. Simply performing non-maximum

suppression would discard all the person segments, which have lower scores because

they all overlap the first bike segment.

different types of pairwise potentials (between pixels, between pixels and segments and

between segments) which limits the range of potential functions for which tractable

approximate inference is feasible. Another recently proposed variation using latent

topics, the Pottics model [9], sidesteps the need for high-order cliques but still requires

approximate inference.

This hypothesis-testing scheme is similar to the popular sliding window detection

which test multiple rectangular window hypotheses [39, 8]. However, by exploiting

low-level cues, segments align better with object boundaries. There are usually fewer

candidate object regions than the set of all possible bounding boxes.

Conditional random field approaches have been proposed by modelling the prob-

ability of the labels conditioned on the image, so that local potentials can take full

advantage of the entire image. However, the higher order interactions among subsets

of labels are still important even within such a CRF framework. In practice models that

incorporate higher order knowledge consistently outperform local approaches.

Other approaches search for configurations of non-overlapping segment hypothe-

ses [15, 23] by using non-maxima suppression and maximum clique random field mod-

els [17]. They can be tractable since the decision space that has to be searched is lim-

ited to the initial segments (normally < 200 in practice). However, these are likely

6



to encounter difficulties when multiple objects touch or interact with each other. Ex-

amples are: people riding bicycles or horses, interacting with other people, sitting on

sofas or chairs, etc. In such cases, segments often occlude and cut through each other

and the initial mid-level proposals may not be entirely accurate. In such situations, a

high-precision approach should be able to refine the initial hypotheses.

Non-probabilistic methods have also been developed to produce an average [16,

34] or weighted average [7, 27] of the predicted scores on each pixel/superpixel, then

output the highest scoring labels. Arbelaez et al. learn to classify superpixels using

class predictions from all enclosing segments as input features [1]. This strategy would

typically allow for the refinement of a semantic segmentation, but in a heuristic manner,

by e.g. thresholding pixel or superpixel scores.

3 Composite Statistical Learning and Inference

Throughout the paper we denote p(x) the probability of random variable x, I the indi-

cator function. N (x;µ, σ2) the density function of the normal distribution with mean

µ and variance σ2, Ñ (x;µ, σ2) a truncated normal distribution to the domain (0, 1].
Ber(α) a Bernoulli distribution with parameter α, Exp(x;λ) the density of an expo-

nential distribution with parameter λ, and δ(x) the Dirac function. When x is a vector,

x ≥ 0 means that all dimensions of x are larger or equal to 0. For a set A, let |A|
denote its cardinality. A segment is considered a set whose cardinality is the area, i.e.,

the amount of pixels within the segment.

3.1 Pseudo Likelihood and Composite Likelihood

The composite likelihood approach that we are going to use is a generalization of the

pseudo-likelihood approach [2]. In the pseudo-likelihood approach, for a random vec-

tor X , one maximizes the pseudo-likelihood

p(X) =
∏

i

p(xi|xi) (1)

instead of the conventional likelihood. This has been shown as asymptotically consis-

tent but not as efficient as maximum likelihood.

A maximum composite likelihood (MCL) approach [31, 38] drops the indepen-

dence assumptions typical in maximum likelihood. For us, this is important, in order

to be able to leverage overlapping higher-order observations (on segments) that are

strongly inter-dependent. We adopt a version in [10] with some simplifications.

Definition 1. Suppose we have a dataset D = {X(1), . . . , X(n)}, where each X(i)

is a m-dimensional vector. Consider a finite sequence of variable subset pairs (called

m-pairs) (A1, B1), . . . , (Ak, Bk), where Aj , Bj ⊂ {1, . . . ,m}, ∀j ∈ 1, . . . , k with

A 6= ∅ = A ∩B. Given vector β ≥ 0, the composite likelihood is

cl(θ) =

n
∑

i=1

k
∑

j=1

βj log pθ(X
(i)
Aj

|X
(i)
Bj

). (2)
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MCL is the approach to solve for θ by maximizing the composite likelihood (2).

When β has stochastic components, this is called stochastic composite likelihood (SCL)[10].

The MCL/SCL approach is statistically consistent given an identifiability assumption:

Definition 2. A sequence of m-pairs (A1, B1), . . ., (Ak, Bk) is identifiable of pθ if the

map {pθ(XAj
|XBj

)} is injective. In other words, there exists only a single collection

of conditionals {pθ(XAj
|XBj

)} that does not contradict the joint pθ(x).

3.2 Composite Statistical Learning

Unlike pseudo-likelihood, MCL/SCL is intractable in most cases because of the need

to model a high-dimensional distribution pθ(XAj
|XBj

), for which close forms exist

for only very limited types of distributions. We propose to extend the MCL framework

to distributions on statistical estimates. This makes us work with low-dimensional

distributions which are much easier to model and estimate.

Definition 3. With the same conditions as in Definition 1 for D,X(i), Aj , Bj and β, let

us further assume that f(X(i), Aj , Bj) is an observed statistic from X(i), Aj and Bj .

We define the composite f-likelihood as pθ(f(X
(i)), Aj , Bj), and composite statistical

learning (CSL) problem as maximizing the composite f-likelihood

max
θ

n
∑

i=1

k
∑

j=1

βj log pθ(f(X
(i), Aj , Bj)). (3)

This new CSL problem recovers the model parameters θ from the composite f -

likelihood log pθ(f(X
(i), Aj , Bj)) for all the random variables on multiple different

subsets. It seeks to find a parameter vector θ that best explains all the observed statistics

from X(i) and the two given subsets Aj and Bj . The distribution pθ(f(X
(i), Aj , Bj))

is modeled as a 1-dimensional distribution. The identifiability given function f is sim-

ilarly defined as:

Definition 4. A sequence of m-pairs (A1, B1), . . ., (Ak, Bk) is f -identifiable of pθ if

the map {pθ(f(X,Aj , Bj))} is injective. In other words, there exists only a single

collection of conditionals {pθ(f(X,Aj , Bj))} that does not contradict the joint distri-

bution pθ(X).

An example of CSL is a linear subset regression model with Gaussian errors. Sup-

pose X(i) is an image, Aj is a subset of its pixels (a segment) and Bj is a back-

ground segment non-overlapping with Aj . Then a fixed-length feature vector Zij

can be extracted from each segment and the distribution of fij can be modeled as

pθ(fij) = N (θ⊤Zij , σ
2), with θ the regression weights. Given observed values of fij

for many different X(i), Aj and Bj , the CSL problem in this case becomes a weighted

least squares regression of solving for θ.

Intuitively, as the number of observations goes to infinity, the true model parameters

θ should give the best performance for each individual segment, hence converge to the

optimal solution of the MCL problem (8), given a suitably chosen β vector. We proceed

to prove the consistency of this newly-defined CSL problem, which mimics the proof

in [10].
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Theorem 1. Let Ω ∈ R
r be an open set, let −C ≤ f(x,A,B) ≤ C be a bounded func-

tion, pθ(f(x,A,B)) > 0 and continuous and smooth in Ω, (A1, B1), . . . , (Ak, Bk) be

a sequence of m-pairs which ensures f -identifiability. Then the sequence of maximizers

of the CSL problem (8) is strongly consistent, that is, suppose θ0 is the true parameter

value, we have

p
(

lim
n7→∞

θ̂n = θ0

)

= 1. (4)

Proof. The CSL objective function can be modified slightly by a linear combination

with a constant term:

cl′f (θ;n) =

n
∑

i=1

k
∑

j=1

βj

(

log pθ(f(X
(i), Aj , Bj))− log pθ0(f(X

(i), Aj , Bj))
)

. (5)

By the strong low of large numbers, the above expression converges as n 7→ ∞ to its

expectation

µ(θ) = −
k
∑

j=1

βjD(pθ0(EX(f(X,Aj , Bj)))||pθ(EX(f(X,Aj , Bj)))) (6)

We can always restrict ourselves to compact set S : {c1‖θ − θ0‖ ≤ c2} so that both

cl′f(θ;n) and µ(θ) remain bounded, so that the conditions for uniform strong law of

large numbers hold [13], which leads to:

P{ lim
n7→∞

sup
θ∈S

|cl′f (θ;n)− µ(θ)| = 0} = 1 (7)

However the identifiability condition specifies that the KL-divergence term µ(θ) = 0
iff θ = θ0. And since KL-divergence is non-negative and θ0 /∈ S, supθ∈S µ(θ) <
0. Combine this with (7) there exists N so that supX,θ∈S,n>N cl′f (θ;n) < 0 with

probability 1. However, since cl′f (θ;n) can always be arbitrarily close to 0 when θ =
θ0, we have maxθ cl

′
f(θ;n) /∈ S when n > N . Since c1, c2 are chosen arbitrarily

maxθ cl
′
f(θ;n) → θ0 with probability 1.

3.3 Composite Statistical Inference

Given learned parameters θ, it is often needed to find the data configuration that maxi-

mizes the likelihood or posterior of the composite f-likelihood (8), which is defined as

the MLE or MAP composite statistical inference problem, depending on whether there

is a prior or not.

Definition 5. We define the composite statistical inference (CSI) problem as finding

the input X that maximizes the composite f-likelihood

max
X

k
∑

j=1

βj log pθ(f(X,Aj , Bj)). (8)
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Suppose in the CSL stage one has taken a linear subset regression model and has ob-

tained regression weights as θ, then in the CSI stage one could compute pθ(f(X,Aj , Bj))
for every (X,Aj , Bj) by applying the regression weights and assuming that pθ ∼
N (θ⊤Zj, σ

2). Then the problem becomes finding the X that are consistent with all

the least squares predictions. Note the statistic f(X,Aj , Bj) is assumed to be di-

rectly computable from X,Aj and Bj without θ. The intuition of the whole learn-

ing/inference process is as follows: in the CSL stage previous knowledge are encoded

in the form of a predictor of certain statistics; during inference, pθ(f(X), Aj , Bj) taps

such previous knowledge to verify whether X is consistent in all the subset statistics.

A more practical example would be in the form of classification, where the knowl-

edge could be, e.g., about whether the object is a bottle, then during learning such

knowledge is encoded in a bottle classifier. And during inference, the pixels cor-

responding to the bottle should be collected so as to maximize the classifier output

for bottle.

A major difference of inference and learning is that in inference one do not sum

over all i.i.d. samples of X . Instead, one work on the same X and seeks to evaluate it

using many different subsets. This makes the consistency harder as no i.i.d assumptions

can be made and statistics on different overlapping subsets are inherently correlated to

each other. The consistency of the inference procedure is still an open problem.

One certain thing though, is that CSI is usually not identifiable beyond the limit

that the subsets specify. Suppose there exists two indices i1, i2 ∈ {1, . . . ,m}, so that

i1 ∈ Aj iff i2 ∈ Aj and i1 ∈ Bj iff i2 ∈ Bj , ∀Aj , Bj , then for many potential statistic

f such as the mean or variance, f(X) would not change if one swaps Xi1 with Xi2 .

Therefore, we define the identifiable partition of CSI as:

Definition 6. The identifiable partition is defined as the coarsest partitionP of {1, . . . ,m}
so that for every set Pi ∈ P , ∀Aj , either Pi ⊂ Aj or Pi ∩Aj = ∅. The same holds for

Bj .

If we sample enough subsets, we can identify all the dimensions. However nor-

mally with limited number of subsets we can only identify up to the level of the iden-

tifiable partition with the CSI approach. This makes CSI undesirable for certain text

processing problems where identification needs to be at the per-word level. However,

for image applications, per-pixel level accuracy is not always needed and CSI is well-

suited for superpixel-level prediction problems that are abundant in computer vision.

Obviously, the inference is not usually as trivial as the learning. Choices of f and

pθ are crucially important to the success of the inference and will vary greatly from

problem to problem. In the remaining of this paper, we show a successful application

of this framework in the semantic segmentation problem and derive a detailed inference

algorithm for it, in order to inspire future applications of the same framework.

4 CSI for Semantic Segmentation

In this section we present the main models of applying the proposed framework to se-

mantic segmentation. We will first present the problem setup (Section 4.1), then the

probabilistic model (Section 4.2), followed by the EM algorithm to estimate parameters
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(Section 4.3). We must convert the per-category scores to per-object scores in order to

properly maximize the likelihood. To do so, we need to estimate the number of objects

in each category and assign the score of each segment belonging to a particular object.

We postpone the relevant discussion to Section 4.4 because it uses the same proba-

bilistic model and EM formulation introduced in Section 4.2 and 4.3. Implementation

details are presented in Section 5. A discussion on how to output final segmentations

given the superpixel statistics estimated from MCL is deferred to Section 6.

4.1 Semantic Segmentation from Figure-Ground

First, suppose there are c object categories C1, C2, . . . , Cc to be predicted. Let I rep-

resents the image, as a lattice of pixels. Only one image is concerned since we mainly

deals with the inference problem in this section. Suppose in the image I there are r
objects F1, . . . , Fr, presented as subsets of pixels in I . Each object belongs to a partic-

ular category, denoted as Fk ∈ Cj . Each pixel p in the image should either belong to a

single object or to the background, i.e.
∑r

k=1 I(p ∈ Fk) ≤ 1. An object segmentation

proposal (or simply segment) Ai ⊂ I is a subset of I . Suppose we have extracted m
segments A1, A2, . . . , Am. Normally, segments can be obtained by an unsupervised

multiple segmentation approach such as [6, 11].

Given segments A1, A2, . . . , Am, we partition image I into the identifiable parti-

tion P = {S1, S2, . . . , Sn} and call each Sj ∈ P a superpixel. In practice we consider

only segments that have non-negligible predicted overlap (over a loose threshold) with

at least one category. Therefore, in many cases, the superpixels have finer granularity

inside objects of interest (fig. 5) and coarser granularity on the background. In prac-

tice, we filter out superpixels that are very small (< 50 pixels in our experiments) and

assign the corresponding pixels to nearby superpixels. After filtering, most images can

be represented using only 20− 300 superpixels.
For each segment Ai, its overlap with an object Fk is defined by

Vj(Fk, Ai) =
|Fj ∩ Ai|

|Fj ∪ Ai|
(9)

This intersection-over-union overlap metric is commonly used to evaluate image seg-
mentations since it discriminates a good segment from either a too small segment or
a too large one. However for the CSL purpose, this metric is hard to estimate since it
directly works on individual objects. Therefore, we define:

V 0
ik = V (Ck, Ai) = max

Fj∈Ck

|Fj ∩Ai|

|Fj ∪Ai|
. (10)

as the class-specific overlap that is defined on every category, which is much easier to

be learned by a learner.

As the CSL step, we collect a training set of images with pixel-level annotations so

that we can observeV 0
ik of each segmentAi on each category. Then, from each segment

in each image, a feature vector is extracted using standard appearance features such as

SIFT [32], HOG [8], LBP [?], pooled on the segment and the ambient context and

concatenated. Any regression algorithm can then be used to learn category-specific

regressors of V 0
ik , with support vector regression normally used for robustness. For

details on possible training methods one can consult e.g. [27, 7, 4].
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During the CSI step, the test image is first segmented as in the training, all the

regressors are then tested on all segments in the test image I , obtaining estimates of the

class-specific overlap V̂ 0
ik . The rest of the paper focuses on inference, i.e. recovering

the pixel-level labels from these observed statistic estimates.

4.2 The Probabilistic Model for Predicted Overlap

We use θkj to model the percentage of pixels within a superpixel Sk that belongs to
object Fj . Then, the overlap between a segment Ai and Fj can be computed as

Vij(θ) =
|Fj ∩Ai|

|Fj ∪Ai|
=

∑

Sk∈Ai
θkj |Sk|

∑

Sk∈Ai
|Sk|+

∑

Sk /∈Ai
θkj |Sk|

(11)

Importantly, Vij is computable with θ as the only variables, since each |Sk| is a con-
stant. The idea is that if one parameterizes the ground truth object with θ, then its
overlap with each segment can be computed (fig. 1). Now, given the observed over-

laps V̂ 0
ij , one can optimize θ by maximizing the composite likelihood of V̂ 0

ij , given the

overlap Vij(θ) computed from θ:

max
θ

m
∑

i=1

c
∑

k=1

max
Fj∈Ck

log p(V̂ 0
ik|Vij(θ)) (12)

where the insidemax operation represents the fact that V̂ 0
ik is an estimate ofmaxFj∈Ck

Vij(θ),
instead of any Vij(θ). If we know the number of objects in each category and their

rough locations, this can be solved by assigning each V̂ 0
ik to one of the objects in Ck,

so that likelihood is maximized. In order to simplify the presentation of the graphi-
cal model, we assume for a moment that this assignment has been resolved, so that

each V̂ij has been properly assigned from a corresponding V̂ 0
ik , if Fj ∈ Ck. The CSI

problem becomes:

max
θ

m
∑

i=1

r
∑

j=1

βij log p(V̂ij |Vij(θ)) (13)

where θ is an n × r matrix, βij = 1 if segment Ai has been assigned to object Fj

and 0 otherwise. Note that the assignment is performed within each category, hence a

segment can be assigned to many objects, but at most 1 per category. The resolution of

the assignment problem within each category will be described in Sec. 4.3.

We assume that the estimated overlap V̂ik is generated from the true overlap Vik

plus noise. In order to determine the form of p(V̂ |V ), we resort to histograms. Fig.

6 shows histograms of V |V̂ on data collected from PASCAL VOC training set. The

distribution of V |V̂ can easily be interpreted as a combination of two components:

a bump at V = 0, which apparently corresponds to false positive detections, and a

centered distribution with V 6= 0. As V̂ increases, the chance of misclassification is

reduced.
Motivated by these observations, we introduce an additional Bernoulli random vari-

able zij for each predicted score V̂ij (fig. 4). The outcome of zij informs whether the
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Figure 4: The graphical model used. We separate objects within each category

(Sec. 4.4) so that the categorical predictions are mapped to each object. Also, θ and

V generate a Bernoulli random variable z, which determines whether the predicted

overlap would be a false positive.

prediction V̂ij is a false positive. We make the following distributional assumptions:

Vij |V̂ij , zij ∼

{

Exp(λ)/(1− exp(−λ)), zij = 0

Ñ (V̂ij , σ
2), zij = 1

zij |V̂ij ∼ Ber(α(V̂ij))

p(zij = 1|V̂ij , Vij , θ) = p(zij = 1|Vij , V̂ij)f(Vij , θ−j)

where θ−j = [θ1, θ2, . . . , θj−1, θj+1, . . . , θr] represents all the θ columns without the

j-th.

The three conditional assumptions are in line with our observations: if zij = 1,

then V̂ij should be centered around the true overlap, with some noise; an observation

is more likely to be a false positive (zij = 0), if the predicted overlap V̂ij is small;

when it is indeed a false positive, then the observation V̂ij is independent of Vij given

zij = 0, and Vij follows a exponential distribution truncated at 1.

The final assumption is a ‘mutual exclusion’ assumption. We observe that in cate-

gories which are hard to distinguish, e.g. cat and dog, horse and cow, a segment

often has significant predicted overlaps on multiple categories, but only one of them is

correct (see Fig. 9 for an example). In such cases when we have evidence from θ−j

that an object in another category might exist, the probability of zij = 1 is diminished

by a factor f . For each segment Ai, we compute the segment inside Ai that has the

maximal overlap with object Fk (using the algorithm in Section 4), denoted as Bik.

Then we take f to be the following function:

f(Vij , θ−j) = exp

(

−β

(

max
k 6=j

(V (Fk, Bik)− Vij , 0)

))

(14)

Therefore if a part of the current segment Ai has superior overlap with the optimal

segment of another object, rather than the current object Fj , then the chance that V̂ij is

a true positive is sharply reduced by an exponential term.

Note that the introduction of zij is only needed when there are significant false

positives in the system. In cases where the predictions are accurate enough, z would not

need to be estimated as a latent variable. In the “ideal” case experiment we conducted

in Section 7.1, we did not employ z and only make the simple assumption that V |V̂ ∼

13



Ñ (V̂ , σ2). The EM machinery discussed in the next section is also not needed in this

case and the MCLE problem is solved in one run.

Figure 5: (Best viewed in color) Refined superpixels obtained by multiple intersection

from original mid-level segments. Each different color represents a different superpixel

(black identifies the largest one). Note that the partitions are, automatically, finer-

grained, on the objects of interest.
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Figure 6: Histograms of true overlap given predicted overlap across the VOC validation

set. One can easily identify two components: a probability mass at 0 and a centered

distribution to the right. The 0 mass corresponds to misclassifications, where the object

does not belong to the predicted category. Also note that with higher predicted overlap

V̂ , there is less chance for V = 0.

4.3 Generalized EM Estimation

To maximize the likelihood with latent variable zij , we adopt an expectation maximiza-

tion (EM) approach. In the E-step, we will average over choices of zij , and then in the

M-step maximize the expected log-likelihood. Formally, we would like to optimize the
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Figure 7: True positive rate priorα and bias correction g fitted from the VOC validation

set. α adopts a sigmoid shape. The fitted function is α(V̂ ) = 1− 1
1+0.015 exp(14V̂ )

. For

g, the true overlap increases slower when the predicted overlap is high.

composite likelihood with latent variables Z = [zij ]:

max
θ,Z

m
∑

i=1

r
∑

j=1

βij log p(V̂ij |Vij(θ), zij) (15)

In the E-step, E(zij |V̂ , V, θ) is computed from existing estimates using the Bayes

formula:

E(zij |V̂ , V, θ) = p(zij = 1|V̂ , V, θ) = f(Vij , θ−j)p(zij = 1|V̂ij , Vij)

=
f(Vij ,θ−j)p(Vij |zij=1,V̂ij)p(zij=1|V̂ij)

p(Vij |V̂ij ,zij=1)p(zij=1|V̂ij)+p(Vij |V̂ij ,zij=0)p(zij=0|V̂ij)
(16)

= f(Vij , θ−j)
Ñ (Vij ;V̂ij ,σ

2)αij

Ñ (Vij ;V̂ij ,σ2)αij+Exp(Vij ;λ)/(1−exp(−λ))(1−αij))
.

For the M-step, we factorize the joint likelihood function:

p(V̂ij , zij = 1|V, θ) = p(V̂ij , zij = 1|Vij , θ−) (17)

= p(V̂ij |zij = 1, Vij)p(zij = 1|Vij , θ−)

=
p(Vij |zij = 1, V̂ij)p(V̂ij |zij = 1)

p(Vij |zij = 1)
p(zij = 1|Vij)f(Vij , θ−)

= p(Vij |zij = 1, V̂ij)p(V̂ij |zij = 1)f(Vij , θ−)
p(zij = 1)

p(Vij)

p(V̂ij , zij = 0|V, θ) = p(V̂ij , zij = 0|Vij , θ−) (18)

= p(V̂ij |zij = 0)p(zij = 0|Vij , θ−)

= p(V̂ij |zij = 0) (1− p(zij = 1|Vij)f(Vij , θ−))

Take a uniform prior on p(Vij) so that it is independent on Vij and ignoring the fac-
tors that are independent of θ, and making a further simplification assuming f(Vij , θ−)
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is fixed, we obtain the MAP problem

min
θ

∑

i,j

βij

(

E(zij = 1|V, V̂ , θ)
(

(V̂ij − Vij(θ))
2)
)

−2σ2
E(zij = 0|V, V̂ , θ) log(1 + a1f(Vij , θ−j) exp(−λ1Vij)− f(Vij , θ−j))

+

n
∑

k=1

c
∑

j=1

λ2|Sk|θ
2
kj

s.t. 0 ≤ θkj ≤ 1, k = 1, . . . , n, j = 1, . . . , C;

C
∑

j=1

θkj ≤ 1, k = 1, . . . , n (19)

where a1 is a constant depending on the various priors. The second part (when zij = 0)
is still hard to optimize, but note that when f(Vij , θ−j) = 1, then log(1−f(Vij , θ−j)+
a1f(Vij , θ−j) exp(−λ1Vij) can be simplified to −λ1Vij in the optimization, we use
this approximation and present the final problem for the M-step:

min
θ

∑

i,j

βij

(

E(zij = 1|V, V̂ , θ)
(

(V̂ij − Vij(θ))
2)
)

+ 2E(zij = 0|V, V̂ , θ)σ2λ1Vij(θ)
)

+
n
∑

k=1

c
∑

j=1

λ2|Sk|θ
2
kj

s.t. 0 ≤ θkj ≤ 1, k = 1, . . . , n, j = 1, . . . , C;

C
∑

j=1

θkj ≤ 1, k = 1, . . . , n (20)

After the M-step, objects Fj with maxk θkj < 0.05 or maxi zij < 0.05 are pruned

to improve speed. Therefore the algorithm will process less and less variables with the

advance of the EM procedure. Normally the number of iterations won’t exceed 20.
The above M-step optimization has a simple convex relaxation. One can simply

multiply the denominator in the true overlap Vij to both Vij and V̂ij and divide them
by the size of the segment only – which is a constant. This yields the following convex
relaxation – a quadratic program:

min
θ

m
∑

i=1

c
∑

j=1

βij

(

E(zij = 1|V, V̂ , θ)

(

∑

Sk∈Ri
θkj |Sk|

∑

Sk∈Ri
|Sk|

− V̂ij

(

1 +

∑

Sj /∈Ri
θkj |Sk|

∑

Sk∈Ri
|Sk|

))2

+2E(zij = 0|V, V̂ , θ)σ2λ1

∑

Sk∈Ri
θkj |Sk|

∑

Sk∈Ri
|Sk|

)
∑

Sk∈Ri
θkj |Sk|

∑

Sk∈Ri
|Sk|

+ λ2

n
∑

k=1

|Sk|

(

c
∑

j=1

θ2kj

)

s.t.

c
∑

j=1

θkj ≤ 1, θkj ≥ 0, k = 1, . . . , n; j = 1, . . . , c (21)

The solution of this problem is used as a starting point for the solution of optimization

(20). The relaxation is in general quite accurate, the only problem is that it biases

toward small segments when they are part of a bigger ground truth (then the segment

size |Ri| is not a good estimate of Ri ∪GT ). Therefore we run the relaxation only on

segments with size at least 10% of the biggest segment in the image to prevent bad local
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minima when later optimizing the true underlying objective. This strategy works well

in our case. In the M-step of each EM iteration we first solve the convex relaxation,

then use the solution to warm start the optimization (20). A spectral projected gradient

method from minConf1 is used to solve both optimization problems.

Two illustrations are shown (Fig. 8 and Fig. 9) to illustrate the procession of the

EM algorithm. In the first one (Fig. 8), the algorithm first figures out the person is not

a motorbike in the first few iterations, then struggles a bit until finally determining the

layout of the person and the horse. In the second one (Fig. 9), the dog also has very

strong predicted scores therefore it takes the algorithm a while to gradually wash it out.

Original Image

Iteration 1 Iteration 2

horse motorbike person horse motorbike person

Iteration 3 Iteration 15
horse person horse person

Figure 8: In this image, the first few EM iterations have the motorbike potential

suppressed. Then, note that in the 1st iteration, both person and horse have strong

potential on the frontal part of the horse. And the horse mask also has some potential

on the person. However, the horse finally wins its frontal part and the person wins its

body when the algorithm converges.

1http://www.di.ens.fr/ mschmidt/Software/minConf.html
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Original Image Iteration 1

cat cow diningtable

dog diningtable

Iteration 2 Iteration 3

cat diningtable dog

cat dog

Iteration 6 Iteration 15
cat dog cat dog

Figure 9: In this image, the main difficulty is the confusion between the cat and dog

categories. The algorithm takes several iterations to suppress the strong prediction

score on the dog object.

4.4 Locating Multiple Objects within Each Category

To locate multiple objects in one category and in order to assign the predicted over-
laps to each object, we adopt the above EM estimation with a hypothesis-testing MAP
framework to find the number of objects in each category, before engaging in the full
EM estimation described in the previous subsection. Namely, we solve (8) for each
category Ck independently, with an additional geometric prior on the number of ob-
jects rk: p(rk = j) = (1− q)jq, where q > 0 is a parameter. For each of rk = 1, 2, 3,
etc., the following posterior is computed:

Lrk = max
θ,Z

m
∑

i=1

max
j∈1,...,r

log p(V̂ 0
ik|Vij(θ), zij) + rk(1− q) (22)

by maximizing over θ and Z . The posteriors Lrk are computed iteratively. First L1

is computed by setting all E(zi1) = αik and running the M-step (20) only. Then, sup-
pose Lrk is computed with the optimized parameters as θrk , Zrk , Lrk+1 is inductively
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computed by adding one object with an initialization of:

E(zi,rk+1) = 1−
maxj∈{1,...,rk} p(V̂

0
ik|Vij(θr))

p(V̂ 0
ik|V = V̂ 0

ik)
(23)

and running the EM steps (20) and (17) until convergence. In (23), the denominator

represents the maximum likelihood from any configuration, and the nominator repre-

sents the likelihood of the best explanation of V̂ 0
ik by any of the current j objects. The

logic behind (23) is that, if V̂ 0
ik has already been explained perfectly, adding an object

cannot improve the likelihood thus E(zi,rk+1) is initialized to 0. If none of the objects

has been able to explain V̂ 0
ik so far, then a new object is likely present, thus E(zi,rk+1)

is initialized to 1.

In addition, we employ a k-means initialization to escape potential local optima

using the previous optimization. With this initialization, k-means on all the segments

with significant predicted overlap are performed, using the hamming distance on the

segments (as a binary vector of include/exclude on all superpixels). Then E(zi,k) are

set to 0.75 if segment Ai belongs to cluster k, and 0.25 otherwise. The algorithm

optimizes with both initializations and choose the one with the best objective value.

At any point, if Lrk+1 < Lrk , the computation is stopped and rk is decided to be

the number of objects. Then, each segment is assigned to the object Fj that maximizes

E(zi,j) in the final Zrk . The joint inference on all categories is subsequently performed,

by treating each object as a different category with separately assigned predictions.

4.5 The Full Procedure

The full inference procedure involves two steps:

• Determining the number of objects within each category by the within-class ob-

ject separation routine in Sec. 4.4.

• Performing joint inference by iterating (17) and (20) across all categories and

objects.

Notice that we choose to perform the within-class object separation routine before

the joint inference, because within each category the enumeration of object counts is

tractable. If one enumerates in the joint inference phase, then hypotheses like “1 object

in c1, 2 objects in c2” need to be tested and could lead to exponential blowup when

there are many categories. Whereas, even if the within-class object separation can

make mistakes, the erroneous object hypotheses can still be suppressed during the joint

inference.

In fig. 10 we show the result of running the within-class object separation routine

on the segments in fig. 3. One can see that in both the bicycle and the person cate-

gories, two objects are generated instead of one. Although both categories improve the

likelihood by predicting 2 objects, the second bicycle object is erroneous whereas the

second person object is correct. After detecting two objects for each category and run-

ning joint inference with these 4 objects, the algorithm is able to correct that mistake,

as shown in fig. 11.
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1 Bicycle 2 Bicycles 1 Person 2 Persons

Bicycle 1 Bicycle 1 Bicycle 2 Person 1 Person 1 Person 2

Figure 10: Different θ computed for 1 bicycle/2 bicycles, and 1 person/2 persons hy-

potheses for the same set of predicted segment overlaps. The second bike represents

spurious predictions from noise, whereas separating two people indeed improves the

solution.
Bike 1 Bike 2 Person 1 Person 2

Figure 11: Joint optimization on 4 objects. One can see that potentials for Bicycle 2

have been suppressed due to similar spatial layout and lower scores to Person 2.

5 Implementation Details

5.1 Segment Weighting

A major shortcoming of the composite statistical inference approach is the need to

re-weight the sampled subsets (segments) during inference. Because i.i.d. sampling

is not assumed and the fact that we use a deterministic prediction function (instead

of multiple random samples of the statistics), significant sampling biases could occur

in the segments and a meticulous effort must be made to correct those biases. As a

simple example of the sampling bias in the semantic segmentation problem, imagine

we sample a same wrongly predicted (in terms of category label) segment 10 times and

the correctly predicted segment only once. Without proper weighting, the composite

likelihood inference problem will favor the wrong segment simply because it occurs

more often, although that is an artifact of non i.i.d. sampling.

It is obvious how to avoid completely identical samples occurring multiple times,

but usually one should retain multiple segments that have significant amount of overlap

(e.g. 70%) since those could provide information from different facets that are all help-

ful to the inference. However, care still needs be taken to avoid segments from a certain

category outscore others merely by outnumbering them in the (biased) sampling.

Another bias that is introduced is the regularization. Since we regularize equally on

each superpixel in the image, segments that have more superpixels are receiving more

regularization than segments with less superpixels. Therefore they ought to be given a

higher weight to counter-balance such an effect.

It is hard to design weight choices on multiple overlapping segments with predic-
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tions on many objects. Therefore we explore achieving our design goals from simple

cases. The first design goal of the weighting is to ensure that segments predicted as

different categories and of different size would incur the same loss if their predicted

overlap is the same. Suppose one have segments A1 and A2, all containing exactly one

superpixel (but of different size |S1| and |S2| respectively), and predicted to 2 objects

with the same overlap score V̂ . Then suppose the CSI optimization problem is:

min
θ1,θ2

f(θ1, θ2) = w1(θ1 − V̂ )2 + w2(θ2 − V̂ )2 + λ21|S1|θ
2
1 + λ22|S2|θ

2
2 (24)

where we have splitted λ2 into λ21 for the regularization on the first object and λ22 for

the regularization on the second object to have more degrees of freedom in weighting.

Our design goal for the weighting is to have

f(θ̂, 0) = f(0, θ̂), ∀θ̂ ≥ 0 (25)

because according to the information we have, there should be no difference in like-

lihood predicting to these 2 objects. It is easy to see that the solution to achieve the

identity is to have
λ21|S1|

w1

= λ22|S2|
w2

, which leads to our principle #1: The regulariza-

tion parameters should be inversely proportional to the size of the objects.

Now suppose there are n1 copies of A1 and n2 copies of A2, in order to still satisfy

the above identity, we can set w1 and w2 to different values so that n1w1 = n2w2

to negate this sampling bias. This leads to design principle #2, The total amount

of weights on each object should be about the same. In order to achieve this on

multiple overlapping segments, we designate that the total weight on each superpixel

is to be 1 and let the segment weight be a sum of all the superpixel weights inside the

segment. One can verify in the above case that our design choice achieves the desired

goal, because multiplicities in sampling have been negated by spreading the weight

evenly across all the copies.

One heuristic design choice we made is to make smaller segments take a larger

share when a superpixel is shared by many segments. The rationale behind this is that

in a smaller segment that contains the superpixel, it contributes more to the segment

statistic, while in a larger segment (e.g. the full image), the small superpixel still con-

tributes, but to a much less extent. For accordance with the Gaussian assumption (and

square loss) we chose, we designate vij = I(Sj ∈ Ai)
(

|Sj |
|Ai|

)2

and v̄ij =
vij∑
i vij

be its

normalized version. The weight of a segment is thus:

wi =
∑

j,Sj∈Ai

v̄ij =
∑

j,Sj∈Ai

vij
∑

i vij
(26)

Finally, the weight is renormalized so that the average weight of each segment is 1, to

keep accordance with the other parameters in the system.

After weighting, we also need to renormalize the λ2 for different objects, this is

done by summing up the sizes of all superpixels that are supposedly within the object.

Ideally, this should change as we are progressing the optimization, but that will lead to

convergence issues of the algorithm. We heuristically fix the λ2 for each object Fk to

be

λ2k =
1

∑

j,
∑

Sj∈Ai
αik≥nm

|Sj |
. (27)
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where the summand in the denominator means that we only consider superpixels which

belong to multiple detections that has a sum of true positive probabilities more than nm

(a parameter). nm is set to 7 in our experiments.

6 Optimal Full Image Labeling

Given the inferred real-valued parameters θ (e.g. fig. 11), we still need to produce a
consistent segment for each object. A graph-cut algorithm can be used on a potential
map like fig. 11, but because θ has different magnitudes in different images, a uniform
cut parameter choice across a dataset is unlikely to be successful. We propose an
algorithm to produce optimal segments that maximizes the overlap with ground truth,
without the need to re-segment. First, note that the overlap formula (11) can also be
written as:

V (Fj , A) =

∑

Sk∈A θkj |Sk|
∑n

k=1
θkj |Sk|+

∑

Sk∈A(1− θkj)|Sk|
(28)

where in the denominator we first count all the ground truth pixels in Fj by
∑n

k=1 θkj |Sk|,
then sum all the pixels inside segment Ai that do not belong to Fj . This reformu-

lation leads to a simple approach to grow A optimally. Suppose we have A with

V (Fj , A) = V0, then V can be increased if and only if we add a superpixel to A

with
θkj

1−θkj
> V , because a+c

b+d > a
b iff c

d > a
b . Therefore, when the image contains

only an object in a single category, the optimal segment can be found by starting from

A = ∅ and V = 0; sort
θkj

1−θkj
corresponding to all superpixels in descending order;

and keep adding superpixels from the top of the list until V ≥
θkj

1−θkj
for all remaining

superpixels.

In case the optimal segments in multiple categories conflict on some superpixels,

one can run a branch-and-bound search on all the conflicting superpixels to maximize

the sum of overlaps on each object. The overall goal is to optimize the joint overlap of

all non-overlapping objects:

max
A1,...,Ar

Ai∩Aj=∅,∀i,j

r
∑

i=1

Vθ(Fi, Ai). (29)

The best-first search starts from the configuration A1, . . . , Ar so that the superpix-

els are assigned to the optimal segment of each individual object (but may overlap), and

try to make moves by removing superpixels. The first move is performed by removing

a conflicting superpixel Sk from object Fj that minimizes the quality function

Qkj = Vθ(Fj , Aj)− max
A,Sk /∈A

Vθ(Fj , A) (30)

which means after removal of Sk, we recompute the overlap of the best segment for

Fj without Sk, and choose the move which loses minimal overlap. The search is per-

formed then in a depth-first manner, first obtaining a full solution without conflicts,

then backtrack and search for potential improvements. It is easy to prune the search

space because the overlap upper bound

V j
−k = max

A,Sk /∈A
Vθ(Fj , A) (31)
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Bicycle: 0.457 Person: 0.243 Bicycle: 0.071 Person: 0.222

Original Image Class Output Instance Output

Bicycle

Person

Figure 12: Final masks and final output of the algorithm. Bike 2 is filtered out because

of very low score. Not all superpixels with non-zero potentials are in the final mask,

because adding some more would be suboptimal according to the procedure in Sec. 6.

It is interesting to see that the first person has his right leg correctly cut through by

the bicycle, a solution that was not available in any of the initial object segmentation

proposals.

can be computed in constant time, given sorted lists of
θkj

1−θkj
. If after a move of

removing Sk from Aj , the upper bound

V j
−k +

r
∑

i=1,i6=j

max
A

Vθ(Fi, A) (32)

is smaller than the current objective value, then the branch consisting of the move

removing Sk from Aj can be directly pruned.

The search can be performed quickly because: 1) Since θ from all categories are

optimized jointly, one superpixel is likely to be assigned to a single category and only

a limited number of superpixels will be simultaneously present in the optimal segment

of many categories (see e.g. Fig. 8); 2) The bounds obtained with the above procedure

are usually quite tight In many cases, a greedy approach using the quality function

achieves the optimal solution. Fig. 12 shows the search results for the 4 objects in fig.

11 as well as the final output.

7 Experiments

The main experiments are conducted on the PASCAL VOC Segmentation dataset [12],

a widely used benchmark for semantic segmentation. This dataset defines 20 object

categories and provides around 3, 000 training images with pixelwise ground truth an-

notations. This set, named trainval, was further divided into half in the train and

half in the val set. In addition, around 9, 000 images annotated with bounding box
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information can be used for training. The final benchmark of performance is a held

out test set, for which the ground truth is not available and evaluation can only be

done by submitting results to an online evaluation server. Performance is evaluated as

the average pixel precision, computed on all the pixels of each class and then averaged

over the 20 classes plus background.

7.1 Experiment using Noise-Free Predictions

In order to examine the consistency of the approach empirically, we perform an exper-

iment by supplying the ground truth maximal class-specific overlap to the algorithm.

In this experiment, we do not use EM iterations except in the within-class object sep-

aration routine (Sec. 4.4). We also do not use segment weighting (Sec. 5.1) since any

weighting scheme would generate the same results under zero noise. Besides, λ is

always set to 0 since there is no false positives. Ideally, we should also set λ2 to 0,

however, empirically we found out that setting it too small greatly slows down con-

vergence. Therefore we set it to 0.005. Since δ is irrelevant without EM iterations,

the algorithm in this case has no parameters except λ2, which is nonzero purely for

numerical convergence reasons. One should note how simple the algorithm is, if we do

not have to deal with the complicated noise in the practical scenario.

We compare on the PASCAL VOC val set against the heuristic sequential ap-

proach SVRSEGM, and another approach which greedily selects the best non-overlapping

segments given the ground truth objects. Another upper bound is the Superpixel

Max, which measures the performance by classifying each superpixel to the best cat-

egory label. The result is shown in Table 1. One can see that our multi-intersection

superpixels lose about 5% from the full 100% due to errors in boundary detection and

segmentation. The performance of CSI given the ground truth maximal class-specific

overlap is only less than 6% worse than the optimal superpixel performance, and out-

performs CPMC Max by a margin of 6%. This shows the need for recombining initial

noisy segments in order to fully solve the segmentation problem. It also shows the

effectiveness of the overlap statistic in encoding higher-order information in noisy seg-

ments.

As a class-specific analysis, note that the bicycle category is the hardest where

even the best superpixels can only obtain less than 80% accuracy. Then CSI Max

further drops this to 63%, due to the difficulty of finding good segments. The next two

difficult categories are Potted Plant and Chair where the Superpixel Max

is about 90% and CSI Max is about 80%. For most other categories, Superpixel

Max has over 95% accuracy and CSI Max is about 5% worse than the best superpix-

els. Given that we have only used 150 segments and the combinatorial possibilities are

far from fully explored, we conclude that these results are reasonable and show the vast

potential of the CSI framework.

7.2 PASCAL VOC Results

For this experiment, we tune the parameters λ, λ2 and δ and the α function on the

val set using the regressor output trained on train and the additional images with

bounding box annotations. Then, evaluation is performed on the test set with the
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Table 1: Upper bound results on the VOC 2012 val set. SVRSEGM Max and CSI

Max represents the performance SVRSEGM and CSI could obtain by supplying them

the maximal class-specific ground truth overlaps on each category. CPMC Max repre-

sents the performance that can be obtained by selecting the best original CPMC seg-

ments, note that since these segments could overlap, this oracle accuracy is not attain-

able in reality. Superpixel Max represents the performance obtained by classifying

each of the refined superpixels to the right category.

Method SVRSEGM CPMC CSI Superpixel

MAX MAX MAX MAX

Mean 79.0 81.8 90.2 95.2

Background 93.3 91.2 97.2 98.8

Airplane 84.6 83.5 93.3 96.4

Bike 47.3 48.8 62.9 79.4

Bird 87.6 82.5 95.0 97.0

Boat 80.1 82.0 88.8 94.3

Bottle 77.8 82.4 90.9 95.7

Bus 83.2 85.3 92.3 96.7

Car 79.4 78.8 89.8 94.4

Cat 89.4 91.6 96.2 98.2

Chair 63.2 71.6 82.2 92.3

Cow 86.2 89.2 94.8 98.0

Dining Table 75.0 82.8 90.9 96.5

Dog 88.0 90.6 95.9 98.1

Horse 82.5 82.3 92.6 96.2

Motorbike 78.3 78.1 91.0 95.9

Person 74.9 77.0 89.7 96.2

Potted Plant 72.2 79.0 79.4 90.2

Sheep 87.8 84.2 94.5 98.1

Sofa 67.2 85.0 93.7 97.3

Train 80.8 84.6 92.8 95.9

TV/Monitor 79.2 88.2 89.6 94.5

25



tuned parameters and fitted functions. The overlap predictions V̂ used in our system

are obtained by combining the regressors from [27] and [4], with linear weights learned

on the trainval set. The parameters λ, λ2 and δ are tuned on the val set.
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Figure 13: Example of semantic segmentations. The first row shows results using the

post-processing algorithm of [27], the second row shows results of the proposed CSI

algorithm. Areas of the image labeled as background are depicted with their original

appearance. The first four images show cases where our algorithm is more accurate,

mainly involving relatively complex scenes with multiple interacting objects. The last

image, on the right, shows a typical failure case: segments covering part of one of the

horses are strongly confused and assigned to ‘cow’. The algorithm of [27] typically

oversmooths the predictions, which is advantageous in some cases, like in this image.

On the VOC test set, we compare the proposed CSI approach against other meth-

ods on the 2012 challenge using the same set of category prediction scores, which in-

cludes SVRSEGM [7] and JSL [17]. The JSL entry to VOC 2012 is different from the

paper [17] in that it also employed pixel-level averaging to improve performance. It

can be seen from Table 2 that the method performs slightly better than the others, es-

pecially for object categories involved in interactions such as Bike, Chair, Person

and Sofa. It does less well in the animal categories where interactions are less likely

to happen. The 47.5% overall result for CSI is the best reported on comp5 of the VOC

2012 challenge so far [12].

In order to gain more insights, we partition the 20 PASCAL object categories into

bigger subgroups. We make 2 types of partitions to the 20 object categories. In the

first partition, we divide the categories into 3 almost equal subsets: Indoor objects +

Person, Animals, Outdoor Objects. Bottle, Chair, Dining Table, Potted

Plant, Sofa, TV/Monitor and Person belongs to the class Indoor objects +

Person. The 6 animal categories Bird, Cat, Cow, Dog, Horse, Sheep which are

partitioned to Animals. The other 6 non-animal categories are placed in Outdoor Ob-

jects. The second split is into 2 subgroups: High Interaction Categories and Low

Interaction Categories. High Interaction Categories include “ride-able” ones such

as Bike, Motorbike, Horse, “sit-able” ones such as Chair, Sofa; “hold-able”

ones such as Bottle; Dining Table because it is often in some configuration

with chairs and persons, as well as Person which interact with all other categories.

The rest are classified as Low Interaction Categories. From Table 3 one can see that

CSI obviously improves on Indoor Objects, where it is 2.4% and 2.8% better than
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Table 2: VOC 2012 test results
Method SVRSEGM JSL CSI

Mean 46.8 47.0 47.5

Background 84.9 85.1 85.2

Airplane 63.8 65.4 64.0

Bike 22.1 29.3 32.2

Bird 50.5 51.3 45.9

Boat 38.9 33.4 34.7

Bottle 44.8 44.2 46.3

Bus 61.3 59.8 59.5

Car 63.3 60.3 61.6

Cat 48.8 52.5 49.4

Chair 9.8 13.6 14.8

Cow 57.2 53.6 47.9

Dining Table 35.6 32.6 31.2

Dog 43.0 40.3 42.5

Horse 51.1 57.6 51.3

Motorbike 58.8 57.3 58.8

Person 53.7 49.0 54.6

Potted Plant 29.7 33.5 34.9

Sheep 49.8 53.5 54.6

Sofa 30.3 29.2 34.7

Train 47.0 47.6 50.6

TV/Monitor 38.0 37.6 42.2

SVRSEGM and JSL, respectively. On High Interaction Categories, it also shows

2.2% improvement over SVRSEGM and 1.4% improvement over JSL. It works worst

in Animals, where it is 1.5% worse than SVRSEGM and 2.9%worse than JSL. This in-

dicates that the same parameters for interaction handling might not work uniformly for

both Indoor Objects and Animals, especially because confusion between categories

is a much more significant problem in Animals than Indoor Objects (e.g. confusion

between Cat and Dog, Horse and Cow, Horse and Dog, Cow and Sheep are all

pretty significant). In future work, we will try to work on injecting different priors in

different categories hoping to make the system better all around.

We show some images on the VOC test set in fig. 13. It can be seen that CSI

handles object interactions very well in many cases.

7.3 Validation Set Results

We show results on the validation set of the 2012 challenge in Table 4. We compare in

detail the results of non-maximum suppression, SVRSEGM and CSI in different condi-

tions. It can be seen that both SVRSEGM and CSI are much better than non-maximum

suppression, with CSI slightly better than SVRSEGM, especially on interaction cat-

egories such as Bike, Chair, Dining Table, Potted Plant and Person.

27



Method Indoor Objects Animals Outdoor High Interaction Low Interaction

+ Person Objects Categories Categories

SVRSEGM 34.6 50.1 50.7 38.3 49.3

JSL 34.2 51.5 50.4 39.1 49.1

CSI 37.0 48.6 51.6 40.5 49.0

Table 3: Comparison of 3 inference methods on VOC 2012 test set when the predictions

are grouped by categories. CSI obviously outperforms SVRSEGM and JSL in Indoor

Objects + Person as well as High Interaction objects.

Similar to test set results, CSI is worse than SVRSEGM on animal categories such as

Cat and Cow. Sheep is a particular animal category in which CSI does better than

SVRSEGM, upon investigation on the dataset we find that when Sheep appears, there

are very often multiple sheep in one image. Thus CSI’s better handling of multiple

objects might have helped it.

We have also tried to run CSI without the EM (as No EM) or without the mutual

exclusion prior (as No ME). The similarly dismal performances there show the crucial

importance of the mutual exclusion prior as giving the approach some non-maximum

suppression capabilities. However, it can be seen for certain categories such as Bike,

Person, Motorbike, Boat where false positives are unlikely to happen, the per-

formance without mutual exclusion is on par or slightly better than the full system.

This shows that perhaps false positives are unlikely in these categories, and without the

mutual exclusion, the interaction between objects is still handled correctly to give good

performance.

Note that validation set results are significantly higher than the test set results

(50.5 − 50.9% vs. 46.8 − 47.5%). There are two potential reasons of this, first is

when we are combining the scores of two sets, we used ground truth overlaps to fit a

regressor on the trainval set, which can overfit to val quite a bit. Another potential

reason is that the test set of 2012 is harder than trainval, as well as the test sets in

previous years. For example, with the same set of images that obtain 47.5% in the 2012

test, we have obtained 48.8% and 49.6% in the 2011 and 2010 test sets, respectively.

7.4 MSRC Results

In order to test full-image annotation capabilities of the algorithm, we have also in-

cluded tests on the MSRC-21 segmentation dataset. The MSRC-21 dataset contains 21

object categories in 591 photographs, separated into training (45%), validation (10%)

and test (45%) sets. The main difference between MSRC and PASCAL VOC is the

inclusion of “stuff” classes, which are background classes that are mainly defined by

texture and cannot be counted, such as Grass, Sky, Water, etc. Some other MSRC

classes are also of the textured nature although it might not look so from the defini-

tion, such as Flower and Book, where the books are usually stacked on a bookshelf

and all the books on the shelf are annotated as one book (Fig. 14). Even Bicycles

are always a lot of bikes stacked together. Furthermore, in the standard benchmark,

background is not counted in the final score. All these seem to be favoring CRF-type
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NMS SVRSEGM CSI

No EM No ME Full

Mean 47.53 50.51 45.66 45.73 50.86

Background 84.58 85.44 82.49 82.58 85.38

Airplane 66.80 70.19 60.65 60.26 67.21

Bike 17.72 23.89 28.14 28.36 27.61

Bird 50.11 50.58 43.22 41.52 50.17

Boat 38.89 42.45 45.89 46.01 44.57

Bottle 41.74 44.61 38.65 36.88 43.96

Bus 62.19 66.93 61.95 61.78 66.16

Car 66.22 67.85 61.07 61.46 65.36

Cat 60.62 67.01 54.20 54.45 62.36

Chair 9.20 20.04 20.00 19.99 22.95

Cow 47.70 51.92 40.82 42.06 50.97

Dining Table 26.71 27.95 24.24 26.12 29.38

Dog 50.66 50.22 40.44 41.09 50.19

Horse 50.65 56.76 44.66 43.82 56.43

Motorbike 48.68 51.29 49.04 50.20 49.88

Person 52.85 55.04 54.55 55.35 56.27

Potted Plant 33.07 37.14 32.83 33.28 40.90

Sheep 58.01 60.61 47.03 45.65 62.76

Sofa 28.72 29.80 27.59 28.81 30.23

Train 54.11 53.51 54.36 54.99 56.14

TV/Monitor 48.94 47.39 46.97 45.67 49.12

Table 4: Validation results. No EM shows the setting when the algorithm is stopped

after the first iteration and No ME shows the setting when the mutual exclusion prior

is not enforced (see Section 4.1). One can see CSI without either of these two would

not perform very well.

approaches that work on pixel-level classification and smooth it over the entire image.

With certain parameter settings, CRF is capable of oversmoothing to the entire image,

beneficial for several categories such as Flower and Book, as shown in the figure.

Our goal is to test the sliding segment-based approach on this dataset while ac-

knowledging its heavy design bias toward CRF-type texture recognition and smooth-

ing models. This has not been done in previous sliding segment approaches due to the

lack of a consistent inference method. As in PASCAL VOC, we extract 150 segments

per image, extract the same features as in PASCAL VOC, and train the regressors with

O2P features and color SIFT. The parameters of the regressor and CSI are tuned with

the MSRC validation set. There are two types of annotations in MSRC-21 that has

been commonly used. The original annotation and the more accurate “clean” annota-

tion from [33]. We train with the precise annotation and test on both the original and

clean annotations.

The results are shown in Table 5. The “Average” column shows the per-category

averages and the “Global” Column shows the per-pixel averages. One can see the

segment-based approach is comparable with CRF approaches. On the Clean annota-
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Figure 14: MSRC images and annotations. One can see background categories and

texture categories.

tions which is more accurate, an obvious pattern is that CSI greatly outperform CRF-

based methods on objects, but CRF-based methods excel on textures. The Global ac-

curacy of CSI is lower because there are more pixels in the textures but the average

accuracy of CSI is higher because there are more categories that are objects, as com-

pared with texture categories. One notable thing is CSI, as a superpixel-level approach,

still does a reasonably good job on textures, such as Grass, Sky, Water.

Taking a closer look, on the clean annotations in 4 object categories CSI improved

over 10% over the competitors: Cow, Bird, Chair, Boat. The only classes that CSI

is more than 10% worse than the top method is Book and Road, the former is mainly

due to the lack of oversmoothing capability in CSI, the latter due to the fact that road

pixels are often mixed with other objects, therefore some accuracy has already been

lost in the superpixel stage.

On the original annotations, we compare with more approaches due to more have

reported results using these annotations. The average accuracy of CSI is still compa-

rable with the top methods here. It only wins in two categories, Sign and Bird, but

outperformed the next competitor at least 9% in each of these categories. Note one

can clearly see that some deficiencies of CSI are mainly due to annotation errors, since

two competitors Yao et al. [45] and HCRF [25] dropped 2% moving from original to

clean annotations, but CSI gained 1% instead. Especially, in categories such as Cow

and Sheep, with clean annotations CSI improved by a lot. Therefore, the results here

against HCRF and Yao et al. are not meant to be trusted. But one can see that CSI

outperforms earlier methods such as TextonBoost [36], Jiang and Tu, and Harmony

potential [14] by a comfortable margin. Dense CRF [22] on the other hand, has better

pixel-level accuracy than the other approaches thus would benefit more if the anno-

tation is clean [22] (however they pixel-level accuracy is so high that they need even

cleaner annotations than the “Clean” one used here) and might outperform CSI with

the clean annotation.

If one groups the object categories and texture categories (defined as Grass, Sky,

Water, Road, Flowers, Book, the reason the last two are texture categories can be

seen in Fig. 14) separately, it can be seen that CSI wins the object categories by a large

margin but is losing on the texture categories. A potential future work is to connect

the CSI with Dense CRF in order to gain both object recognition capabilities and high
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Table 5: MSRC-21 results
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Clean MSRC Annotations

CSI 79.2 81.8 68 87 79 92 92 94 84 75 89 84 89 84 89 68 83 80 78 79 60 71 39

HCRF [25] 75.8 85.9 73 93 82 81 91 98 81 83 88 74 85 97 79 38 96 61 90 69 48 67 18

Yao et al. [45] 77.4 84.4 67 92 80 82 89 97 86 83 86 79 94 96 85 35 98 70 86 78 55 62 23

Original MSRC Annotations

CSI 78.2 83.1 69 95 83 82 86 95 76 76 89 81 89 83 86 66 82 78 83 78 60 70 36

TextonBoost [36] 67 72 49 88 79 97 97 78 82 54 87 74 72 74 36 24 93 51 78 75 35 66 18

Jiang and Tu [18] 68 78 53 97 83 70 71 98 75 64 74 64 88 67 46 32 92 61 89 59 66 64 13

Harmony Potential [14] 75 77 60 78 77 91 68 88 87 76 73 77 93 97 73 57 95 81 76 81 46 56 46

HCRF [25] 77.8 86.5 74 98 90 75 86 99 81 84 90 83 91 98 75 49 95 63 91 71 49 72 18

Dense CRF [22] 78.3 86.0 75 99 91 84 82 95 82 71 89 90 94 95 77 48 96 61 90 78 48 80 22

Yao et al. [45] 79.3 86.2 71 98 90 79 86 93 88 86 90 84 94 98 76 53 97 71 89 83 55 68 17

pixel-level accuracies.

Some sample images are shown in Fig. 15, where one can see the strength and

weaknesses of CSI for interpreting the full image. CSI is capable of recognizing object

categories and arrange them for a full-image interpretation. Contrary to some popular

beliefs on methods based on unsupervised figure-ground segmentations, the perfor-

mance on certain texture categories, such as grass, are not bad. However, CSI does

suffer when it sometimes attempts to separate different objects for a texture category,

which leads to a deficiency in certain texture categories such as water or book.

8 Conclusion

This paper proposes a composite statistical inference approach to semantic segmenta-

tion. The composite likelihood methodology is generalized to model one-dimensional

error distributions of statistical estimates. Based on this generalization, superpixel-

level inference is performed based on a set of mutually overlapping object segmen-

tation proposals and their predicted overlaps with object categories. The generative

process underlying overlap prediction is modeled using a graphical model and an EM

algorithm is proposed to solve the maximum composite likelihood inference in two

steps: the number of objects in each category is first determined, then a joint optimiza-

tion is performed for all objects across categories. Once superpixel-level parameters

have been estimated, the optimal pixel-level segmentation can be computed efficiently

by best-first search. Experiments demonstrate the effectiveness of the approach, espe-

cially in scenes with multiple objects and interactions.
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Table 6: MSRC-21 results grouped by objects or texture categories. CSI is even in

both, while the CRF approaches usually does texture categories way better than object

categories.

Method Object Categories Texture Categories

Clean MSRC Annotations

CSI 77.5 83.5

HCRF [25] 69.0 92.8

Yao et al. [45] 71.4 92.0

Original MSRC Annotations

CSI 75.3 85.7

TextonBoost 62.8 77.5

Jiang and Tu 61.3 84

Harmony Potential 71.1 85

HCRF 71.1 94.2

Dense CRF 73.4 91.0

Yao et al. 73.7 93.5
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