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Abstract

The random Fourier embedding methodology can be used toxipmte the
performance of non-linear kernel classifiers in linear timéhe number of train-
ing examples. However, there still exists a non-trivialfpenance gap between
the approximation and the nonlinear models, especiallytierexponentialy>
kernel, one of the most powerful models for histograms. Baseanalogies with
Chebyshev polynomials, we propose an asymptotically ageve analytic series
that can be used in the random Fourier approximation of thersntialy? ker-
nel. The new series removes the need to use periodic apptaims to they?
function, as typical in previous methods, and improves thssification accuracy.
Besides, out-of-core principal component analysis (PCAdhmods are introduced
to reduce the dimensionality of the approximation and aghietter performance
at the expense of only an additional constant factor to the tiomplexity. More-
oever, when PCA is performed jointly on the training and beled testing data, a
further performance improvement can be obtained. The gegapproaches are
tested on the PASCAL VOC 2010 segmentation and the Imag&/$&tRC 2010
datasets, and give statistically significant improvements alternative approxi-
mation methods.

1 Introduction

Random Fourier (RF) feature embeddings,[27, 26, 19 are a promising method-
ology for large-scale classification. By using Monte Cadmgling in the frequency
domain of a kernel, one can construct an embedding sucHittesy functions on that
embedding are asymptotically convergent approximatiotisd nonlinear kernel func-
tions. The benefit of this transformation is that the time ptaxity of many learning
methods becomes linear in the number of examp)e®mpared to at leag(n>3) for



the (non-approximated) kernel method. Therefore, RF mp&ssible to use compli-
cated nonlinear learning models in the massive datasdtarthancreasingly common
nowadays. RF also benefits from most of the learning rate andrglization results
valid for kernel methods, for instance, local Rademachanbs ’]. Sucha advantages
raise the question whether a slower kernel formulation eaamMoided while preserving
its predictive power.

Unfortunately at least in the visual recognition commurntitye current answer is
still no. In practice there seems to be a nontrivial perfarogadifference between RF
approaches and kernel methods. Although this gap (0.5% -t huge 19, it
is still too significant to ignore. Multi-stage methodsIspilay a major role for ob-
ject detection?7], where RF and more expensive kernel methods can be useaas tw
consecutive stages]

This paper aims to reduce the approximation gap withouhtptie advantageous
O(n) time complexity. Our two main contributions are: (a) a newna@rgent analytic
series for they? distance commonly used for histogram features, and (b)cipah
component analysis (PCA) methodologies on the random rieaépresentations, in
order to improve performance without additional comphexit

The starting point of our exploration is the two-stage agpnation of the expo-
nential chi-square kernel (exp?)

k(z,y) = exp(—x*(z,y)) (1)

proposed in 76]. Empirically we found that this similarity measure has test per-
formance in visual recognition over most RF kernel appr@tions that have been
proposed so far. The two-stage methad[first uses the Fourier transform on the
non-negative orthant to approximate thedistance as an inner product. Then another
standard RF approximation for the Gaussian kernel is usestimate expg?.

Existing inner-product approximations to tly& distance P¢] rely on a periodic
version of the function. The additional periodicity parderas rather sensitive. Even
if well-tuned, the approximation quality can deterioratean the histograms are out of
the periodic rangeZd]. In this paper we derive an analytic recurrence formulakie o
tain asymptotically convergent approximations to fRedistance. Besides its intrinsic
theoretical and methodological novelty, experiments stiawsuch an approach tends
to obtain slightly better performance than existing peidadethods.

In addition, in order to obtain more compact embeddingsdagyd-scale learning
when the data does not fit into memory, we exploit an out-séeersions of PCA that
add little computational overhead to the RF approximatspecially when combined
with least squares and other methods based on quadrats|¢ssg. group LASSO).
PCA allows us to reduce the number of dimensions requiredl&ssification and re-
laxes memory constraints when multiple kernels have to Ipecagimated by RF. We
also explore the use of unlabeled (test) data in order t@begtimate the covariance
matrix in PCA. This, turns out, better selects of the frequyecomponents that are
effective for classification performance.



2 Related Work

Speed-ups to kernel methods based on low-rank approxinsatibthe kernel matrix
have been proposed beforfe!] 1]. These methods are effective, but applying the kernel
predictor on new data requires slow kernel computationsdsen the test and training
examples. An alternative is to use the Nystrom methadkthat sub-sample the train-
ing set to operate on a reduced kernel matrix. Although tleiske/well in practice, the
asymptotic convergence rate of this approximation is sIGWa‘i) [17], wheren is

the number of sample datapoints in the approximation.

A topic of recent interest is on methods for coding imagetfie=s. The goal of such
methods is to achieve good performance with linear classidio or regression follow-
ing a feature embedding ¥, 16]. Hierarchical coding schemes with deeper structures
have also been proposedl/]. Both sparse and dense coding schemes have proven
successful, with supervector codirg)] and the Fisher kernel€f] being some of the
best performers in the ImageNet large-scale image classificchallengel1]. Con-
trasting coding methods and RF, we notice that often RF warkay-of-word vector
gquantizations whereas coding schemes often operate omrageifeatures, therefore
having an extra layer of processing freedom. Neverthetegsacing hard clustering
with a soft-assignment may fill the gap between the perfonaasf the histogram
methods and some of the coding schentds Alternatively, one can use a Gaussian
match kernel approximated with RF, instead of comparing bidependentlyd].

The dictionaries of some of the influential coding schemesuaually extremely
large (e.g., both the Fisher kernel and supervector codsnglly require more than
200k dimensions9]) and the generation of the dictionary is often extremetyeti
consuming. RF is theoretically guaranteed to approxintagekernel model with a
reasonable asymptotic convergence ratg,[and requires neither too many dimen-
sions, in practice, nor training dictionaries. Therefar@ipears worth exploring as an
alternative approach.

3 The Chebyshev Approximation

Throughout this paper we use€ to denote the training set with training examples
andd dimensions.D denotes the number of random features after the RF embedding
The all-ones vector is described bythe all-zeros by, and the imaginary unit by.
* is used for complex conjugate. All kernels are positive sdafinite.

In [2€], the class ofy-homogeneouskernels is introduced:

k(cz,cy) = c"k(x,y),Ve > 0. )
Choosinge = \/%_y a~y-homogeneouskernel can be written as:
— Y — 3 y J/z
o) = henen) = @) Er L[5

= (2y)2K(logy — log ) @3)

wherek is an even function, i.e(—x) = K(z).



DenotingA = logy — log z, thel — x? kernel is

(zi —y:)? 2wy,
k =1- — = : 4
o,y) Z Fo— Zijmyi (4)
(assuming . z; = 1). In each dimension we have
2xy 2 A
ko(z,y) = = VTy—=—— = /aysech(), (5)
T4y \/%+ VE 2
wheresech(z) = W—% is the hyperbolic secant function whose Fourier transform

is wsech(nw). Using the inverse Fourier transform to megech(rw) back tokg(x, y)

o0 .
ko(z,y) = w/:cy/ eI eBrloe W) goch (1w dw
—o0

/ " B () B (y)do ®)

whered,, (z) = \/ze /@187 /sech(nw).

In [2€], the functione 7«18 Zsech(7w) is approximated with a periodic function,
which is then approximated with finite Fourier coefficiertsieafter called th€Z ap-
proximation as a shorthand for Vedaldi-Zisserma#). However,e 7«18 Zsech(rw)
is inherently aperiodic. As a consequence, the approxamatiror is low when log x|
is small, but excessively high whdnog x| is larger than the period. Convergence
is attained in P& because the introduced aperiodic bias is cancelled wahfahtor
v/Zy whenz or y are small. However, uneven biases in different regions mmpact
learning performance. Here we pursue an alternative danvahat is analytic and
asymptotically convergent, even without the factgry. We describe the main ideas
below and provide more details in a technical repafl [

Because the kernel is symmetric, the imaginary part of itsrise Fourier transform
is 0, leading to

ko(z,y) = \/@/w cos(w(log z — log y))sech(mw)dw
= \/@/oo (cos(wlog ) cos(wlog y) @)

+ sin(w log z) sin(w log y)) %dw.
eﬂ'w e*ﬂ'h}

Through a change of variable,= 2 arctan e™, the integral becomes
ko(z,y) = (8)
—/W(cos(llo |tani|lo x)cos(llo |tan£|lo )
T Jo w08 9!1%8 w08 1108y

.1 z .1 z
+ sm(; log | tan 5 |log ) sm(; log | tan §| logy))dz.



Since the functionsos (1 log | tan %|log z) andsin (< log | tan Z|log z) are periodic
and even, they can be represented using discrete-ternefFoogine series

fe(z ) cos( 9)

n=1

Since for all integers, andm,

/7r cos(nx) cos(mz)dr = {0 n#m )
0

/2 n=m

we have

/ fo(2) fy(2)dz = L02A0Y) ) 41 Z (10)

which offers a natural orthogonal decomposition. A veetoe W [ao(x)/V/2, a1(z), ax(z), . ..

guarantees that a, = L [ f.(2) f,(2)dz
Now, to determine the coefficients Wh|ch are

ap(z) = z/ cos(1 logtan(2)1og:1:) cos(kz)dz
T™Jo 7T

br(z) = z/ sin(1 logtan(2)logx) cos(kz)dz (11)
T™Jo 7T

we try to derive an analytical recurrence relation. The id¢a use integration by parts
twice. First we list some useful properties.

Lemmal. Letu(z) = 1 logtan(Z)logz, then,
(1) () = 0; cos(u(%)) = 1;sin(u(%)) =0
(2) u/(z) = o8z _1 1 sin(z)

7 sin(z)’ u’(z) log;ﬂ

1 _ 1 _
@ v =0 wm =0

First of all we concermy andb,. With Mathematica we can computg =
2sech(1°%) = 4{ andby = 0. For the rest of the series, we can immediately
observe that fok evenb, = 0 becausein(u(z)) is antisymmetric af andcos(kz) is
symmetric for everk and antisymmetric for odéd. Same argument gets us fbiodd,
ar = 0. Therefore we only need to solve the coefficieltwith odd k&, anda,, with



evenk. Therefore, we start with the integration:

s T 1 z
Zbk(:v) = sin(— log tan(§) log z) cos(kz)dz
0

™

= /5 sin(u(z)) cos(kz)dz
0

w3

1
= —/0 cos(kz)u,(z)d(cos(u(z)))

™

- /O : cos(u(:))d(cos(k=) o sin()

= 10; /0 ' cos(u(z))(—ksin(kz) sin(z) + cos(kz) cos(z))dz

- 10; /0_ cos(u(z))(cos((k +1)2) — (k — 1) sin(kz) sin(z))dz

- 3 /0 cos(u(2)) (cos((k + 1)z) — © - L (cos((k = 1)2) — cos((k + 1)2)))d=
- @) - e

Same trick applies to the, series with even coefficients:

™

L
—ai(z) = /2 cos(— log tan(f) log z) cos(kz)dz
4 0 7T 2

/i cos(u(z)) cos(kz)dz
0

/05 cos(kz) ! d(sin(u(z)))

u'(2)
= - /0 ? in(u(=)d(cos(k2) 107ng sin(z))
= s / ¥ sinu(=)) (—k sin(k=) sin(z) + cos(kz) cos(z))d
= —10; /0 %Sin(“(z))(cos((k-Fl)Z)—(k—l)sin(kz) sin(z))dz
- _10;3 /0_ sin(u(z)) (cos(( +1)z) ~ * o) L (cos((k — 1)2) — cos((k + 1)2)))d=
— Tyt (@) = b @)



For k = 0 it's slightly different as:

™

Zao(x) = /Oicos(u(z))dz

71 .
= /0 /(Z)d(sm(u(z)))

= — [ sintwa

[NERES

gz sin(z))

™

= _logx/o sin(u(z)) cos(z)dz

m™ T

= bi(z)

_Zlogx

Now we can combine the nonzero entries for the two series aité Mvasc;,, and
the recurrence relation can also be written ouidfoas:

(D) 2EZ (2) + (k- 2)ee—2(x)), k>1
cr(w) = —2@@(1), k=1 (12)
wf17 k = O

with ko (x, y) = 32, cr(@)ck (y)-

Applying the calculation for all dimensions yields the neauFier embedding for
the x2 kernel. Then, we follow 6] and use RF to approximate a Gaussian kernel
onc(z), to obtain the approximation of the exg-kernelk(x, y) = exp(—yx2(z,y)).

The complete procedure is presented in Algorithridve refer to the above algorithm as

Algorithm 1 Approximation of the expe? kernel based on the Chebyshev approxima-
tion of they? distance.
input : n x d data matrixX = [X{, X7, ..., XI]T. Parameters:, D.
output : The random Fourier featui# of the expy? kernel.
1: Compute fork =0,...,m — 1

L((—1)k2leti gy ) ())

+(k — 2)cp—2(xij)), >
ck(2ij) = _Y2logwi 0 () b=l

2z T ’ =

wu"’zl’ k -

for each dimension of each example;. Denotec(X;) themd x 1 vector con-
structed by concatenating all (x;;), 7 =1,...,d.

2: Construct and x D matrix 2, where each entry is sampled from a normal distri-
bution (0, 2).

3: Construct aD x 1 vectorb which is sampled randomly frof, 2] 7.

4 Z; = cos(c(X;)Q + b) is the RF feature foX; [25].

the Chebyshev approximation because it draws ideas frorhyShev polynomials and



the Clenshaw-Curtis quadraturd.[ A central idea in the Clenshaw-Curtis quadrature
is to use the change of varialfle= arccos(z) in order to convert an aperiodic integral
into a periodic one, making possible to apply Fourier teghas. Our variable substi-
tution z = arctan e” serves a similar purpose. The same technique can be applied i
principle to other kernels, such as the histogram intei@eeind the Jensen-Shannon
kernel. However, the integration by parts used to deriveatiaytical approximation
may not extend straightforward (this is a topic of our cutresearch).

4 Convergence Rate of the Chebyshev Approximation

In this section we present an analysis on the asymptoticazgewnce rate of the Cheby-
shev approximation. Sincel®) is exact, we can apply standard results on Fourier
series coefficients!], which state the convergence rate depends on the smostbhes
the function that is approximated.

Lemma 2. |k0(xi,yi) — > en(zi)en(ys)| < £./Ziy; where C' isa constant.

Proof. Since<=Z2) represents Fourier series fars(L log | tan £|log z;) andsin(< log | tan Z|log z;),

which are both absolutely continuous but not continuousfgrentiable (oscillate at
z = 0), we have:

0 < mem(x:) < VO (13)

and consequently

C
|k0(ml7yt) | < Z RY Tili < E\/miyi O

k>m

Using Lemma2 it is straightforward to prove that

Theorem 1. |ko(x,y) — >, D opey crl(@i)er(yi)] < % when) o, =3,y = 1.

Proof. We use Cauchy-Schwarz inequality,
[ko(z,y) = 2, s en(@)en (i)l < 5 32, VT
<SS imiyui=E. 0

Although our method converges slower than Yh&s approximation, our conver-
gence is independent on the factors;y;. Whenz; ory; are small, th&/Z approxima-

tion can only guarante@%—’;” < (4 where(, is a constant close tb. In contrast,

we can guaranteé‘)(jg—’;” < % which in turn would be superior t¥Z. Since the
image histograms considered in this work often consist afyrsamnall values instead
of a few large ones, our approximation can be expected to slayktly better.

We can numerically simulate the constéhfor differentz values by computing the
empirical boundnax,, m\/cg. The simulation results with00, 000 < m < 500, 000
are presented in Figute It can be seen that the approximation is more accurate if the
input values are larger, however, the error on the smalfaitimalues can be offset by
the /z factor, making the effective constant small in all cases.
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Figure 1: A plot of theC' in Theorem 1 for different input values. THe error of
the kernel approximation is decided By(Theorem 1). The valu€' is large when the
histogram value is small, which can be offset by {ie factor multiplying it.

5 Principal Component Analysis of Random Features
on Multiple Descriptors

Another orthogonal strategy we pursue is principal compom=@alysis on random
features. This is useful for reducing the memory footprihiew multiple image de-
scriptors are used and RF embeddings are computed for edtobnof{this is common
in computer vision, see e.g119]). It is known that the performance of RF improves
when more random dimensions are used. However, when the RRltiple kernels
are concatenated, e.g. for 7 kernels and 7,000 RF dimenforeach kernel, the
learning phase following RF needs to operate on a 49,000rdiioeal feature vec-
tor. In most cases, the speed of learning algorithms degteis quickly when the data
cannot be loaded into memory. PCA appears to be a naturalehobrder to obtain
fewer dimensions without significant loss of approximatiprality. In fact, it is one
of the very few possible choices in high dimensions, sincaynwdher techniques like
guasi-Monte Carlo face the curse of dimensionality — as eqyence rate decreases ex-
ponentially with the number of dimensiorig,[they would be unsuitable for RF, when
many dimensions are needed.

Another interesting aspect of RF-PCA is that it can bringwofl@f semi-supervised
learning, in that one can use unlabeled test data to impriassification accuracy.
RF-PCA amounts to selecting the relevant dimensions inrbguency domain. By
considering both the training and the testing data during,H@&quencies that help
discriminate test data will more likely be selected. In tRpeximents this strategy is
shown to improve performance over working with PCA only airting data.

The main problem in large-scale datasets is that data cdmenfutlly loaded into
memory. Therefore PCA needs to be performed out-of-core igla-prerformance
computing terminology describing this situation (unalilddad data into memory).
As discussed extensively in the high-performance comgplitierature (e.g.,44]), the
approach to out-of-core PCA in linear time would not be bygsiar value decom-
position on the RF features, but by performing eigenvalue decomposition for the
centered covariance matrik” (I — 2117)Z, which can be computed out-of-core by



Algorithm 2 Out-of-Core Principal Component Analysis.

input : n x d data matrixX = [X{, XZ, ..., XT]T. Output vectory. Number of
dimensionD to retain after PCA.
: Divide the data intd: chunks, called\ (), X(3),..., X(x)-
H=0m=0,v=0
fori=1— kdo
Load thei-th chunkX ;) into memory.
Use Algorithm1 to compute the RF featutg;, for X ;.
H=H + Zg)Z(i), m=m+ Z(Ti)l, v=0v+ Z(Ti)y
end for
H=H— %mmT.
. Compute eigen-decompositidh = UDU”. Output the firstD columns ofU as
U, the diagonal matridD, and the input-output produet

© X NOD R W®NRE

just loading a chunk oX; into memory at a time, computing their RF featufecom-
puting the covariance matrix and then deleting the RF featirom memory. Then, an
eigen-decomposition gives the transformation madirifor PCA. We denoté/ as the
matrix obtained by selecting the first dimensions of/ corresponding to the largest
eigenvalues (Algorithn2). Denote the mean vector of the input mat#Ax= %ZTL
then

7= (Z2-12")0 = (I - %IIT)ZU (14)

is the feature vector obtained after PCA projection.

It is very convenient to perform regression with a quadritss following PCA,
since only the Hessian is needed for optimization. Thisiappiot only to traditional
least squares regression, but also to the LASSO, group LA&8®other composite
regularization approaches. In this case the projectioed net be performed explicitly.
Instead, notice that only” Z andZ7y are necessary for regression:

zv'z = UTZT(I—%IIT)ZU
7Ty = UTZT(I—%IIT)y (15)

It follows that only Z7Z, ZT1 and Z”y have to be computed. All terms can be
computed out-of-core simultaneously. AlgorittBdepicts this scenario. Under this
PCA approach the data is loaded only once to compute theategsiditional work of
O(D?) is necessary for matrix decomposition Bn If ridge regression is used, ti&
after decomposition is diagonal therefore 06lyD) is needed to obtain the regression
results. The bottleneck of this algorithm for large-scalelyems is undoubtedly the
computation of the initial Hessian, which involves readingltiple chunks from the
disk.

The more sophisticated case is when PCA has to be performadsgely on multi-
ple different kernel approximators, i.¢Z,= [Z(V Z(?) ... z(], where eacl ") is the
RF feature embedding of each kernel. This time, the needrtppateZ " Z() rules
out tricks for simple computation. The data needs to be neat(Algorithm4), first

10



Algorithm 3 Learning after PCA with Quadratic Loss.

input : n x d data matrixX = [X{, XZ, ..., XT]T. Output vectory. Number of
dimensionD to retain after PCA.

: Perform out-of-core PCA using Algorithéh

. H' = UTHU = D, the firstD rows and columns of the diagonal matfix

v =UTv— 1 (1Ty)UTm.

. Perform learning oD, v/, e.g., for linear ridge regression where the optimization
is arg min,, |w” Z — y||?> + \|w|?, the solution isw = (D + \I) "0/,

5. Use UTw instead ofw as a function of the original inputsf(z) = w’ Uz —

%wTUm, in order to avoid the projection for the testing examples.

B w N R

to perform the PCA, and then uskto transformX in chunks in order to obtai# and
ZT 7. But the full computation is still linear in the number ofitring examples.

In both cases, the projection is not required for the teséirgmples. Because
whenevemw is obtainedw” Z = w? U (Z — 1 Z17), thenUw can be the weight vector
for the original input, with the addition of a constant term.

Algorithm 4 Two-stage Principal Component Analysis when learning wwithitiple
kernels.
input : n x d data matrixX = [X{, XZ, ..., XT]T. Output vectory. Number of
dimensionD to retain after PCA.
: Perform out-of-core PCA using Algorithéh
:fori=1—kdo
Load thei-th chunkX ;) into memory.
Use Algorithm 1 to compute the RF featui®;) for X(;), with the same ran-
domization vectors as before.
Z = (Z(l) - %lmT)U.
H =H +2T7 v = v’—i—ZTy
end for
Perform learning o', v'. E.g., for linear least squares where the optimization is
argmin,, ||w? Z — y||?, the solution isv = H'~'v'.
9: Use UTw instead ofw as a function of the original inputsf (z) = w'Uz —
%wTUm, in order to avoid the projection step for the testing exaspl

© N o a9

We note that out-of-core least squares or ridge regressiales extremely well
with the number of output dimensiors which can be used to solve one-against-all
classification problems with classes. In Algorithn2 or 4, Z™y will be computed in
O(nDc) time along with the Hessian. After the inverse of Hessianbigimed, only
a matrix-vector multiplication costin@(D?c) is needed to obtain all the solutions,
without any dependency om. Thus the total time of this approach witiclasses is
O(nDc+ D?c) which scales very well in, especially compared with other algorithms
that need to perform the full training procedure on eachsclasthough thel, loss is
not optimal for classification, in large-scale problemsg (dmageNet) withl, 000 —
10,000 classes, the out-of-core ridge regression can still be tsgénerate a fairly

11



good baseline result quickly.

6 Experiments

Our experiments are conducted on two extremely challendatgsets, the PASCAL

VOC 2010 [.3] and the ImageNetl[1] ILSVRC 2010 (http://www.image-net.org/challenges/LIS®/2010/).
These benchmarks reveal the different performance amopig@mation methods,

which would otherwise be difficult to observe in simple datasWe conduct most ex-

periments on the medium-scale PASCAL VOC data in order topaymagainst kernel

methods. For this dataset, we use exclusivelyithi@ andval datasets, which have

964 images and around 2100 objects each. Classificatiohgase also shown on the

ImageNet dataset to demonstrate the efficiency of the kappmloximation. The ex-

periments are conducted using an Intel Xeon E5520 2.27GHz8ores and 24GB

memory. The algorithn is parallelized using OpenMP to take advantage of all cores.

6.1 Resultson the Chebyshev Approximation

To test the Chebyshev approximation, we consider a smalégaroblem from the
PASCAL VOC segmentation dataset. For training, we use insagenents that best
match each ground truth segment in terms of overlap (cakstiimatching segments)
in thetrain  set, plus the ground truth segments. The best-matchingesggnn
theval set are used as test. This creates a problem with 5100 tyaamid 964 test
segments.

The methods tested a@hebyshev , PCA-Chebyshev andVZ[28]. The kernel
approximation accuracies for each method are shown in @anaganying TRP]. For
reference, we also report classification results onthieernel without exponentiating
asChi2 , as well as the skewegl kernel proposed in1[J] as Chi2-Skewed . Due
to the Monte Carlo approximation, different random seedslead to quite significant
performance variations. Therefore the experiments aravaitaged over 20 trials of
random seeds. Within each trial, the same random seedsextdarsall methods. For
PCA-Chebyshev , the initial sampling is done using three times the final agpnat-
ing dimensions, and PCA is performed to reduce the dimea8tgrio the same level
as the other two methods. We test the classification perfocmaf these kernels with
two different types of features: a bag of SIFT words (BOW}dea of 300 dimensions,
and a histogram of gradient (HOG) feature of 1700 dimensidine classification is
done via a linear SVM using the LIBSVM library (empiricallyenfind the LIBLIN-
EAR library produces worse results in this case for denseifes). TheC' parameter
in LIBSVM is set to 50, the kernel to be approximated is a g¥gkernel withs = 1.5.
ForVZ, the period parameter is set to the optimal one specifieddh For each ker-
nel, 10 dimensions are used to approximate tffedistance in each dimension. More
dimensions have been tested but they did notimprove pedioce(hence those results
are not included).

The results are shown in Tablésaand?2. It can be seen that tHehebyshev ap-
proximation almost always has a slight performance edgetbed/Z approximation,
andPCA-Chebyshev is always significantly better than the other two. This sdoul

12



not be surprising sincBCA-Chebyshev takes advantage of three times moe dimen-
sions than the other methods (before dimensionality réahict With 7000 approxi-
mating dimensions and good random seedsP@é-Chebyshev method is able to
match the performance of the kernel methods, arguably amaalachievement for

the expx 2.
Number of Dimensiong 3000 5000 7000
Chi2 29.15% 30.50% 31.22%
Chi2-Skewed 30.08%=+ 0.74% | 30.37 %=+ 0.63% | 30.51 %+ 0.35%
Chebyshev 31.26%+ 0.62% | 32.75%+ 0.71% | 33.03%=* 0.87%
PCA-Chebyshev 32.74%4+ 0.62% | 33.35%4+ 0.68% | 33.49%4 0.45%
VZ 31.37%+ 0.77% | 32.19 %+ 0.83% | 32.66%=* 0.78%

Exact expy?

34.34%

Table 1: Classification accuracy of exg-kernel when the? function is estimated

with different approximations, on a HOG descriptor.

Chi2-Skewed kernels are also shown for reference.

Restir the Chi2 and

Number of Dimensiong 3000 5000 7000
Chi2 41.91% 42.32% 42.12%
Chi2-Skewed 39.82%+ 0.73% | 40.79%+ 0.55% | 40.90%=* 0.82%
Chebyshev 41.48%=+ 0.95% | 42.52%=* 0.88% | 42.65%+ 0.47%
PCA-Chebyshev 42.80%=+ 0.74% | 43.25%=+ 0.55% | 43.42%+ 0.42 %
VZ 41.08%=% 1.22% | 42.06 %4- 0.92% | 42.46%+ 0.72 %
Exact expy? 44.19%

Table 2: Classification accuracy of exg-kernel when the? function is estimated
with different approximations, on a BOW-SIFT descriptoesRlts for theChi2 and
Chi2-Skewed kernels are also shown for reference.

6.2 Resultsfor Multiple Kernelson the PASCAL VOC Segmenta-

tion Challenge

In this section the image segmentation task from PASCAL V®€oinsidered, where
we need to both recognize objects in images, and generabwise segmentations
for these objects. Ground truth segments of objects paiitdtheir category labels

are available for training.

A recent state-of-the-art approach trains a scoring fondtr each class on many
putative figure-ground segmentation hypotheses, obtaisied) the constrained para-
metric min-cut method7]. This creates a large-scale learning task even if themalgi
image database has moderate size: With segments in each image, training @61
images creates a learning problem with arow®@, 000 training examples. This train-
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ing set is still tractable for kernel approaches, thus we diegctly compare against
them.

Two experiments are conducted using multiple kernel agprations for the exp-
x? kernels. We use 7 different image descriptors, which inel8dHOGs at different
scales, BOW on SIFT for the foreground and background, an&/R@ color SIFT
for the foreground and backgrount 6]. The VOC segmentation measure is used to
compare the different approaches. This measure is thegeefegixel-wise average
precision on the 20 classes plus background. To avoid ceatfins and for a fair
comparison, the post-processing stéjag not performed and the result is obtained by
only reporting one segment with the highest score in eaclyégmdahe method used
for nonlinear estimation is one-against-all support veotgression (SVR) as in.f],
and the method for linear estimation is one-against-afjeicegression. The latter is
used since fast solutions for linear SVR problems are noayailable for out-of-core
dense features. We want to avoid stochastic gradient metteod., P1]) since these
are difficult to tune to full convergence, and this can pa&iytbias the results. We
average over 5 trials of different random seeds.

The result of applyingChebyshev , VZ andPCA-Chebyshev is shown. Here
PCA-Chebyshev takes the principal components on both the training ancetsteset.
Additionally we show results by PCA on the training set onlyderPCA-training-Chebyshev
For Chebyshev andVz, we take 4,000 RF dimensions for each kernel, which totals
28,000 dimensions (the largest number that can fit in our coempnemory). For PCA,
we retain a total of 19,200 dimensions, particularly sindgitonal dimensions do not
seem to improve the performance. In addition, we compareddlystr 6mmethod
[30] by taking 28,000 random training examples and evaluatiggcbmbined kernel
of each example against them on the feature vector.

The results for this experiment are computed using the pxerage precision
measure of VOC, and are shown in the latter part of T&blerhe trend resembles
the one in the previous experiment, wifCA-Chebyshev 's accuracy better than
Chebyshev , in turn, slightly higher thavZ. InterestinglyPCA-Chebyshev gives
slightly better results thaRCA-training-Chebyshev , which shows the benefit
of a semi-supervised approach to PCA. While a very diffetectiniques to approxi-
mate the kernel, the performanceNyfstr ©mis comparable wittPCA-Chebyshev .
This may indicate that further improvements can be achibyetbmbining ideas from
the two techniques. Howeva?CA-Chebyshev still leaves a performance gap with
respect to the full Kernel SVR. This could partly be accodritethe difference be-
tween SVR and ridge regression, but shows that the prediatiodel can be further
improved.

6.3 Resultson ImageNet

The ImageNet ILSVRC 2010 is a challenging classificatioraskett where 1 million
images have to be classified into 1,000 different categarese we only show prelim-
inary experiments performed using the original BOW feapravided by the authors.
Our goal is primarily to compare among different approxiioras, hence we did not
generate multiple image descriptors or a spatial pyramid¢chvare compatible with
our framework and should improve the results significarithg funning time of fea-
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Method Performance
Chebyshev 26.25% + 0.41%
VZ 25.50% % 0.54%
PCA-Chebyshev 27.57% + 0.44%
PCA-training-Chebyshey 26.95% + 0.35%
Nystrom 27.55% £+ 0.49%

Kernel SVR 30.47%

Table 3: VOC Segmentation Performance onithke set, measured by pixel AP with
one segment output per image (no post-processing), avkkage 5 random trials.
The upper part shows results on only BOW-SIFT features ®fdheground and back-
ground, in order to compare RF methods with the feature cpdiathod EMK. The

lower part shows results using 7 different descriptors.

ture extraction is the main limiting factor). A calibratissdone on the output scores
to make the 500th highest score for each class the same.

Number of Dimensiong 3000 5000 7000
Chebyshev 16.30%=* 0.04% | 17.11%=* 0.04% | 17.63%=+ 0.09%
PCA-Chebyshev 16.66%4+ 0.08% | 18.05%4 0.08% | 18.85%4 0.10 %
VZ 16.05%=* 0.04% | 16.97 %4- 0.08% | 17.46%+ 0.09%
Linear 11.6% ([LC])

Table 4: Performance on ImageNet ILSVRC 2010 data

In Table4, the performance obtained usihgnear kernel [L(] is shown along
with the RF results. It can be seen that among the tested RtoaeP CA-Chebyshev
performs the best. Interestingly, different random see@snsto have a much smaller
effect on ImageNet. One could also see that RF improves acgliy at least 6% over
the linear kernel, with very little computational overheddr methods likevVZ and
Chebyshev , each run would finish in 3 hours on a single machine. For thettime
consuming?CA-Chebyshev , each run still finishes in 7 hours. After collecting the
Hessian matrix, training each regressor would only takelOs&conds, which would
make this approach scale easily to 10,000 or more classes.

7 Conclusion

This paper introduces two novel techniques to improve thréopaance of random
Fourier methodology (RF) in the context of approximatingé&scale kernel machines.
First, based on analogy to Chebyshev polynomials, an exatjtic series is proposed
to thex? kernel. Second, out-of-core PCA on joint training and testlata is proposed
and applied after extracting the random Fourier featurespitcal results show that
these methods increase the performance of RF significamtiihé exponentiateg?
kernel, a state of the art similarity measure in computeéprignd machine learning,
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while the method is still linear in the number of training exales. Moreover, in con-
junction with anLs loss training objective and a ridge regression model, théhotks
are shown to scale extremely well for large number of classes
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