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Abstract

This paper addresses a new problem of boundary motion estimation in videos,1

which we named boundary flow (BF) estimation. Boundary motions are important2

for tracking objects and understanding object interactions. Yet, most prior work3

focuses on motions of dense feature points that may not reside on boundaries. We4

present a rigorous definition of BF that generalizes optical flow on boundaries5

and handles occlusions and out-of-plane rotations. For BF estimation, we propose6

a fully convolutional Siamese network (FCSN) that first jointly estimates object7

boundaries in two consecutive frames. Importantly, our FCSN is trained only8

on boundary annotations in one frame, and requires no annotations of boundary9

motions. Then, a coarse boundary correspondence between two frames is computed10

using an excitation-based attention estimation with the FCSN. An edgelet-based11

dynamic time warping is used for predicting the pixel-level boundary motion.12

Evaluation is conducted on three tasks: boundary detection in videos, BF estimation,13

and optical flow estimation. On boundary detection, we achieve the state-of-the-art14

performance on the benchmark VSB100 dataset. We present the first BF results on15

the Sintel training dataset. For optical flow estimation, we augment the recent CPM-16

Flow with our BF estimation, and achieve significant performance improvement17

relative to the original CPM-Flow on the Sintel benchmark.18

1 Introduction19

This paper considers a new problem of estimating motions of object boundaries in two consecutive20

video frames, or simply two images. We call this problem boundary flow (BF) estimation. Intuitively,21

BF is defined as the motion of every pixel along object boundaries in two images, as illustrated in22

Fig. 1. A more rigorous definition will be presented in Sec. 3. BF estimation is an important problem.23

Its solution can be used as an informative mid-level visual cue for a wide range of higher-level vision24

tasks, including object detection (e.g.,25

Yet, this problem has received scant attention in the literature. Related work has mostly focused on26

single-frame edge detection and dense optical flow estimation. These approaches, however, cannot27

be readily applied to BF estimation, due to new challenges. In particular, low-level spatiotemporal28

boundary matching — which is agnostic of objects, scenes, and motions depicted in the two video29

frames — is subject to many ambiguities. The key challenge is that distinct surfaces sharing a30

boundary move with different motions, out-of-plane rotations and changing occlusions. This makes31

appearance along the boundary potentially inconsistent in consecutive frames. The difficulty of32

matching boundaries in two images also increases when multiple points along the boundary have33

similar appearance.34

Submitted to 31st Conference on Neural Information Processing Systems (NIPS 2017). Do not distribute.



Figure 1: Boundary flow estimation. Given two images in (a), we predict object boundaries in both images
in (b), and estimate motion of the boundaries in the two images in (c). Our training is only from per-image
annotations of boundaries, not motions. For clarity, only a part of boundary matches are shown in (c).

Our key hypothesis is that because of the rich visual cues along the boundaries, BF may be learned35

without pixel-level motion annotations, which is typically very hard to come by (prior work resorts to36

simulations37

While there are a few approaches that separately detect and match boundaries in a video, to the best38

of our knowledge, this is the first work that gives a rigorous definition of boundary flow, as well as39

jointly detects object boundaries and estimates their flow within the deep learning framework. We40

extend ideas from deep boundary detection approaches in images41

Our network trains only on boundary annotations in one frame and predicts boundaries in each42

frame, so at first glance it does not provide motion estimation. However, the Siamese network is43

capable of predicting different (but correct) boundaries in two frames, while the only difference44

in the two decoder branches are max-pooling indices. Thus, our key intuition is that there must45

be a common edge representation in the JFR layer for each edge, that are mapped to two different46

boundary predictions by different sets of max-pooling indices. Such a common representation enables47

us to match the corresponding boundaries in the two images. The matching is done by tracking a48

boundary from one boundary prediction image back to the JFR, and then from the JFR to boundaries49

in the other boundary prediction image. This is formalized as an excitation attention-map estimation50

of the FCSN. We use dynamic time warping to further improve the smoothness and enforce ordering51

of pixel-level boundary matching along an edgelet.52

Since FCSN performs boundary detection and provides correspondence scores for boundary matching,53

we say that FCSN unifies both boundary detection and BF estimation within the same deep architecture.54

In our experiments, this approach proves capable of handling large object displacements in the two55

images, and thus can be used as an important complementary input to dense optical flow estimation.56

We evaluate FCSN on the VSB100 dataset57

Our key contributions are summarized below:58

• We introduce the new problem of BF estimation, give a rigorous definition of BF, specify59

and extensively evaluate a new deep architecture FCSN for solving this problem. We also60

demonstrate the utility of BF for estimating dense optical flow.61

• We propose a new approach to generate excitation-based correspondence scores from62

FCSN for boundary matching, and develop an edgelet-based dynamic time warping (DTW)63

algorithm for refining point matches along corresponding boundaries.64

• We improve the state-of-the-art on spatiotemporal boundary detection, provide the first65

results on BF estimation, and achieve competitive improvements on dense optical flow when66

integrated with CPM-Flow67

2 Related Work68

This section reviews closely related work on boundary detection and dense optical flow69

estimation. The literature on semantic video segmentation and semantic contour detection is70

beyond our scope.71

Boundary Detection. Traditional approaches to boundary detection typically extract a72

multitude of hand-designed features at different scales, and pass them to a detector for73

boundary detection74

Optical flow estimation. There has been considerable efforts to improve the efficiency and75

robustness of optical flow estimation, including PatchMatch76
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Figure 2: FCSN consists of a Siamese encoder and a Siamese decoder and takes two images as input. The two
Siamese soft-max outputs of the decoder produce boundary predictions in each of the two input images. Also,
the decoder associates the two Siamese branches via the decoder layers and the JFR layer (the green cube) for
calculating the excitation attention score, which in turn is used for BF estimation, as indicated by the cyan and
purple arrows. The convolution, pooling, softmax and concatenation layers are marked with black, blue, red and
brown respectively. Best viewed in color.

x

Occlude
y

B1 B2

x

B1
y

B2

Emerge

(a) (b)

Occluded area Newly appeared areaBoundary in frame t Boundary in frame t+1

Figure 3: Fig. 3(a) shows the case when a boundary B1 in frame t is occluded at time t+ 1. Fig. 3(b) shows
the case when a boundary B1 in frame t is no longer a boundary at time t+ 1 but its pixels are visible. In both
cases BF is well-defined and always resides on the boundary.

3 Boundary Flow77

This section defines BF, introduces the FCSN, and specifies finding boundary correspon-78

dences in the two frames using the FCSN’s excitation attention score.79

3.1 Definition of Boundary Flow80

BF is defined as the motion of every boundary pixel towards the corresponding boundary81

pixel in the next frame. In the case of out-of-plane rotations and occlusions, BF identifies82

the occlusion boundary closest to the original boundary pixel (which becomes occluded).83

We denote the set of boundaries in frame t and t+ 1 as B1 and B2, respectively. Let OF(x)84

denote the optical flow of a pixel x in frame t, and x+ OF(x) represent a mapping of pixel85

x in frame t+ 1. Boundary flow BF(x) is defined as:86

(i) BF(x) = argminy∈B2
‖y − (x+ OF(x))‖2 − x, if OF(x) exists;87

(ii) BF(x) = OF(argminy,∃OF(y) ‖y − x‖2), if OF(x) does not exist (x occluded in frame88

t+ 1);89

(iii) BF(x) is undefined if argmin in (i) or (ii) does not return a unique solution.90

In (i), BF is defined as optical flow for translations and elastic deformations, or the closest91

boundary pixel from the optical flow for out-of-plane rotations (see Fig. 3(b)). In (ii), BF92

is defined as the closest occlusion boundary of the pixel which becomes occluded (see93

Fig. 3(a)). Thus, BF can be defined even if optical flow is not defined. Since optical flow94

is often undefined in the vicinity of occlusion boundaries, BF captures shapes/occlusions95

better than optical flow. In (iii), BF is undefined only in rare cases of fast movements with96

symmetric occluders (e.g. a perfect ball) resulting in multiple pixels as the argmin solution.97

3.2 Fully Convolutional Siamese Network98

We formulate boundary detection as a binary labeling problem. For this problem, we develop99

a new, end-to-end trainable FCSN, shown in Fig. 2. FCSN takes two images as input, and100

produces binary soft-max outputs of boundary predictions in each of the two input images.101

The fully convolutional architecture in FCSN scales up to arbitrary image sizes.102
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Figure 4: (a) Estimation of the excitation attention score in frame t+1 (bottom) for a particular boundary point
in frame t (top; the point is indicated by the arrow). The attention map is well-aligned with the corresponding
boundary in frame t + 1, despite large motion. (b) Visualization of attention maps at different layers of the
decoders of FCSN along the excitation path (cyan) from a particular boundary point in frame t to frame t+ 1
via the JFR. For simplicity, we only show the attention maps in some of the layers from the decoder branch at
time t and t+ 1. As can be seen, starting from a pixel on the predicted boundary in frame t, the attention map
gradually becomes coarser along the path to the JFR. Then from the JFR to boundary prediction in frame t+ 1,
the excitation attention scores gradually become refined and more focused on the most relevant pixels in frame
t+ 1. (Best viewed in color)

FCSN consists of two modules: a Siamese encoder, and a Siamese decoder. The encoder103

stores all the pooling indices and encodes the two frames as the joint feature representation104

(JFR) (green box in Fig. 2) through a series of convolution, ReLU, and pooling layers. The105

outputs of the encoder are concatenated, and then used as the input to the decoder. The106

decoder takes both the JFR and the max-pooling indices from the encoder as inputs. Then,107

the features from the decoder are passed into a softmax layer to get the boundary labels of108

all pixels in the two images.109

The two branches of the encoder and the two branches of the decoder use the same architec-110

ture and share weights with each other. However, for two different input images, the two111

branches would still output different predictions, since decoder predictions are modulated112

with different pooling indices recorded in their corresponding encoder branches. Each113

encoder branch uses the layers of VGG net114

3.3 Boundary Flow Estimation115

This section first describes estimation of the excitation attention score, used as a cue for116

boundary matching, and then specifies our edgelet-based DTW for refining point matches117

along the boundaries.118

3.3.1 Excitation Attention Score119

A central problem in BF estimation is to identify the correspondence between a pair of120

boundary points 〈xi
t,y

j
t+1〉, where xi

t is a boundary point in frame t, and yj
t+1 is a boundary121

point in frame t + 1. Our key idea is to estimate this correspondence by computing the122

excitation attention scores in frame t+ 1 for every xi
t in frame t, as well as the excitation123

attention scores in frame t for every yj
t+1 in frame t+1. The excitation attention scores can124

be generated efficiently using excitation backpropagation (ExcitationBP)125

The intuition behind our approach is that the JFR stores a joint representation of two126

corresponding boundaries of the two images, and thus could be used as a “bridge” for127

matching them. This “bridge” is established by tracking the most relevant neurons along128

the path from one branch of the decoder to the other branch via the JFR layer (the cyan and129

purple arrows in Fig. 2).130

In our approach, the winner neurons are sequentially sampled for each layer on the path from131

frame t to t+ 1 via the JFR, based on a conditional winning probability. The relevance of132

each neuron is defined as its probability of being selected as a winner on the path. Following133

where w+
mn = max{0, wmn}, Pm and Cn denote the parent nodes of am and the set of134

children of an in the path traveling order, respectively. For our path that goes from the135

prediction back to the JFR layer, Pm refers to all neurons in the layer closer to the prediction,136

and Cn refers to all neurons in the layer closer to the JFR layer.137
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Figure 5: Example results on VSB100. In each row from left to right we present (a) input image, (b) ground
truth annotation, (c) edge detection

ExcitationBP efficiently identifies which neurons are responsible for the final prediction. In138

our approach, ExcitationBP can be run in parallel for each edgelet (see next subsection) of a139

predicted boundary. Starting from boundary predictions in frame t, we compute the marginal140

winning probability of all neurons along the path to the JFR. Once the JFR is reached, these141

probabilities are forward-propagated in the decoder branch of FCSN for finally estimating142

the pixel-wise excitation attention scores in frame t+ 1. For a pair of boundary points, we143

obtain the attention score si→j . Conversely, starting from boundary predictions in frame144

t+ 1, we compute the marginal winning probability of all neurons along the path to JFR,145

and feed them forward through the decoder for computing the excitation attention map in146

frame t. Then we can obtain the attention score sj→i. The attention score between a pair of147

boundary points 〈xi
t,y

j
t+1〉 is defined as the average of si→j and sj→i, which we denote148

denoted as sij . An example of our ExcitationBP in shown in Fig. 4.149

3.3.2 Edgelet-based DTW Matching150

After estimating the excitation attention scores sij of boundary point pairs 〈xi
t,y

j
t+1〉, as151

described in Sec. 3.3.1, we use them from matching corresponding boundaries that have152

been predicted in frames t and t+1. While there are many boundary matching methods that153

would be suitable, in this work we use the classical Dynamic Time Warping (DTW) which154

not only finds good boundary correspondences, but also produces the detailed point matches155

along the boundaries, as needed for our BF estimation. To this end, we first decompose156

the predicted boundaries into smaller edgelets, then apply DTW to pairs of edgelets, as157

illustrated in Fig. ??.158

From predicted boundaries to edgelets. Given the two input images and their boundary159

predictions from FCSN, we oversegment the two frames using sticky superpixels160

Edgelet matching. We apply DTW to each edgelet pair, et in frame t and e
′

t+1 in frame161

t+ 1, that fall within a reasonable spatial neighborhood (empirically set to 60 pixels around162

the edgelet as sufficient to accommodate for large motions). DTW minimizes the total163

cost of matching points 〈xi
t,y

j
t+1〉 on et and e

′

t+1, expressed in terms of their respective164

excitation attention scores as exp(−sij), while also respecting the point ordering along165

the edges. The pair 〈et, e
′

t+1〉 with the minimum total cost identifies the corresponding166

boundaries in the two frames as well as the matching boundary points.167

4 Training168

FCSN is implemented using Caffe169

The loss function is specified as the weighted binary cross-entropy loss common in boundary170

detection171

5 Results172

This section presents our evaluation of boundary detection, BF estimation, and utility of BF173

for optical flow estimation.174
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Table 1: Results on VSB100.
Method ODS OIS AP

CEDN 0.563 0.614 0.547
FCSN 0.597 0.632 0.566

Table 2: Results on VSB100 with fine-tuning
on both BSDS500 and VSB100 training sets.

Method ODS OIS AP
SE 0.643 0.680 0.608

HED 0.677 0.715 0.618
CEDN 0.686 0.718 0.687

FCSN 0.698 0.729 0.705

Table 3: Quantitative results of boundary flow on Sintel training dataset in EPE metric.
Method FLANN RANSAC Greedy Edgelet-based Matching

EPE 23.158 20.874 25.476 9.856
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Figure 6: (a) PR curve for object boundary detection on VSB100. (b) PR curve for object boundary detection
on VSB100 with fine-tuning on both BSDS500 and VSB100 training sets.

5.1 Boundary Detection175

After FCSN generates boundary predictions, we apply the standard non-maximum sup-176

pression (NMS). The resulting boundary detection is evaluated using precision-recall (PR)177

curves and F-measure.178

VSB100. For the benchmark VSB100 test dataset179

Finetuning on BSDS500 and VSB100. We also evaluate another training setting when180

FCSN and CEDN are both fine-tuned on the BSDS500 training dataset181

5.2 Boundary Flow Estimation182

Boundary flow accuracies are evaluated by average end-point error (EPE) between our183

boundary flow prediction and the ground truth boundary flow (as defined in Sec. 3.1) on the184

Sintel training dataset.185

In order to identify a good competing approach, we have tested a number of the state-of-art186

matching algorithms on the Sintel training dataset, including coarse-to-fine PatchMatch187

(CPM)188

Therefore, we compare our edgelet-based matching algorithm with the following baselines:189

(i) greedy nearest-neighbor point-to-point matching, (ii) RANSAC190

5.3 Dense Optical Flow Estimation191

We also test the utility of our approach for optical flow estimation on the Sintel testing192

dataset. After running our boundary flow estimation, the resulting boundary matches are193

used to augment the standard input to the state of the art CPM-Flow194

Fig. 7 shows qualitative results of CPM-AUG on Sintel testing dataset with comparison195

to two state-of-the-art methods: CPM-Flow and EpicFlow. As it can be seen, CPM-AUG196

performs especially well on the occluded areas and benefits from the boundary flow to197

produce sharp motion boundaries on small objects like the leg and the claws as well as the198

elongated halberd.199
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Figure 7: Example results on MPI-Sintel test dataset. The columns correspond to original images,
ground truth, CPM-AUG (i.e., our approach), CPM-Flow

Table 4: Quantitative results on Sintel final test set.

Method EPE
all

EPE
all

EPE
all

CPM-AUG 5.645 2.812 30.004
FlowFields 5.810 2.621 31.799

Full Flow 5.895 2.838 30.793

Method EPE
all

EPE
all

EPE
all

CPM-Flow 5.960 2.990 30.177
DiscreteFlow 6.077 2.937 31.685

EpicFlow 6.285 3.060 32.564

6 Conclusion200

We have introduced a new problem of boundary flow estimation in videos. For this problem,201

we have specified a new end-to-end trainable FCSN which takes two images as input and202

produces boundary detections in each image. We have also used FCSN to generate excitation203

attention maps in the two images as informative features for boundary matching, thereby204

unifying detection and flow estimation. For matching points along boundaries, we have205

decomposed the predicted boundaries into edgelets and applied DTW to pairs of edgelets206

from the two images. Our experiments on the benchmark VSB100 dataset for boundary207

detection demonstrate that FCSN is superior to the state- of-the-art, succeeding in detecting208

boundaries both of foreground and background objects. We have presented the first results of209

boundary flow on the benchmark Sintel training set, and compared with reasonable baselines.210

The utility of boundary flow is further demonstrated by integrating our approach with the211

CPM-Flow for dense optical flow estimation. This has resulted in an improved performance212

over the original CPM-Flow, especially on small details, sharp motion boundaries, and213

elongated thin objects in the optical flow.214
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