ECE 353 Final Exam
Spring 2006

Instructions: Please make sure to justify your answers in order to receive any credit for your work. This is a closed-notes, closed-book exam and no electronic aids of any kind are permitted.

1. Consider a double sideband amplitude modulated signal described by
 \[X(t) = M(t) \cos(\omega_c t + \Theta), \]
 where \(\omega_c \) is a known constant frequency, \(\Theta \) is a uniformly distributed random variable in the range \((0, 2\pi)\), and the signal \(M(t) \) is a zero mean random process with autocorrelation
 \[R_M(t_1, t_2) = E\{M(t_1)M(t_2)\} = \frac{\sin^2(10\pi(t_2 - t_1))}{(10\pi(t_2 - t_1))^2}. \]
 Furthermore, at any time \(t \), \(M(t) \) and \(\Theta \) are two statistically independent random variables.
 a) (15 pts.) What is the autocorrelation function of \(X(t) \), i.e., \(R_X(t_1, t_2) = E\{X(t_1)X(t_2)\} \)?
 b) (10 pts.) Is the random process \(X(t) \) wide-sense stationary (WSS)?

2. (25 pts.) Let \(Z = X + Y \), where both \(X \) and \(Y \) are two statistically independent random variables which are uniformly distributed in the interval \((-2, 2)\). What is the probability density function of the random variable \(Z \)?

3. (25 pts.) Consider the following circuit

 ![Circuit Diagram]

 where the resistance \(R \) is a uniformly distributed random variable in the range \((9, 11)\). What is the probability that the current \(I \) is greater than 1 Amp, i.e., what is \(P(I > 1) \)?

4. A discrete random variable \(X \) has probability mass function (PMF) described by
 \[p_X(x) = \begin{cases}
 c \left(\frac{1}{2} \right)^x, & x = 0, 1, 2, 3 \\
 0, & \text{otherwise}
 \end{cases} \]
 a) (15 pts.) What should \(c \) be for \(p_X(x) \) to be a valid PMF?
 b) (10 pts.) What is the mean value of \(X \)?