
13
th

World Conference on Earthquake Engineering
Vancouver, B.C., Canada

August 1-6, 2004
Paper No. 1492

AN OBJECT-ORIENTED SOFTWARE ENVIRONMENT FOR

COLLABORATIVE NETWORK SIMULATION

Gregory L. FENVES
1
, Frank McKENNA

2
, Michael H. SCOTT

3
,

and Yoshikazu TAKAHASHI
4

SUMMARY

The Open System for Earthquake Engineering Simulation (OpenSees) is a software environment for
the network-based simulation of structural and geotechnical systems. The software design of the
structural and geotechnical models in OpenSees is modular and hierarchical to mirror the equations of
structural mechanics. The mathematical software components for computational simulation are also
modular, allowing new components to be added to the framework. The ability to perform network-
based structural simulation with OpenSees follows directly from the modular software design because
the components necessary for network-based simulation can be added to the framework as another
implementation of an object than can be communicated between processors over a network.
Modules for network-based simulation derive their behavior from the existing components in
OpenSees, which are also movable objects that can be sent over communication channels during a
computational simulation. New networked-based applications in OpenSees include parallel
computation, databases, and hybrid experimental methods.

INTRODUCTION

The simulation of a structural and geotechnical system is a crucial step in its design and assessment.
The purpose of an earthquake simulation is to estimate the performance of the system under seismic
excitation or loads that represent the effects of an earthquake. Structural and geotechnical
simulation has a long history of development in earthquake engineering with advances moving in
parallel with an increased understanding of the behavior of materials, components, and systems under
cyclic loads. With the increased emphasis on performance-based earthquake engineering
methodologies that are concerned with estimates of damage, there is an increasing need for more
realistic models that represent the cyclic degradation of materials and components. There are
significant challenges in the simulation of complex systems, such as soil-foundation-structure

1Professor, Department of Civil and Environmental Engineering, University of California, Berkeley,
USA. Email: fenves@ce.berkeley.edu

2Research Engineer, Department of Civil and Environmental Engineering, University of California,
Berkeley, USA. Email: fmckenna@ce.berkeley.edu

3Graduate Student Researcher, Department of Civil and Environmental Engineering, University of
California, Berkeley, USA. Email: mhscott@ce.berkeley.edu

4Research Associate, Kyoto University, Yoshida-Honmachi, Kyoto, Japan. Email:
yos@catfish.kuciv.kyoto-u.ac.jp

interaction for structural systems subjected to liquefaction and lateral spreading of soil, or the loss of
lateral load carrying capacity of reinforced concrete frames with poorly confined columns.

In the past decade there have been rapid advances in computing and information technology. These
advances include an increase in processor speed, an increase in memory, parallel computers with
high-speed networks, grid-based computing, and visualization. Other fields in science and engineering
have taken advantage of these computing advances, but earthquake engineering simulation
development has lagged behind.

To address the needs for improved modeling capabilities for performance-based earthquake
engineering while taking advantage of the rapid advances in computing, the Pacific Earthquake
Engineering Research Center (PEER) is developing the Open System for Earthquake Engineering
Simulation (OpenSees). The goal of the OpenSees project is to develop and utilize a new software
framework for simulating the seismic response of structures and geotechnical systems to support
PEER’s research mission in performance-based earthquake engineering (PBEE). The methodologies
for PBEE require improved models of systems, methods of simulation, particularly for degrading
systems, and large scale computations, all of which OpenSees is intended to address.

OpenSees is a software framework that consists of a set of cooperating modules that can be used t o
construct applications, in this case for earthquake engineering simulation. The design of a software
framework is based on assumptions about the applications, and OpenSees is based on the finite
element method [1], which is the most general approach for the computational simulation of
structural and geotechnical systems. OpenSees is designed in a modular fashion to support the finite
element method with loose coupling between modules. This allows users and developers in different
fields, including engineering, computer science, and numerical analysis, to develop and modify
specific modules with relatively little dependence on other modules. A developer does not need t o
know everything that is in the framework, allowing them to concentrate on making improvements
in areas of their own expertise. Furthermore, modules can be modified and optimized to take
advantage of computing hardware, communication, and visualization without the changes
propagating throughout the software system.

Most users of OpenSees will utilize a “glue language” to develop a model and analysis procedure for
the simulation of a structural and geotechnical system. We currently use the language Tcl [2] as a
method for selecting the specific modules and software objects for a simulation. There are many
advantages of giving users a fully programmable, interpreted language for defining models and
solution methods, including the ability to conduct parameter studies, to provide network access t o
data and storage, and to communicate with graphical user interfaces.

From the outset of PEER’s effort, it was intended that OpenSees would be a community-based
endeavor, in which the development team would grow to include a wide range of researchers and users
in earthquake engineering. To allow this to happen, the OpenSees software is open-source. That is,
the code is available at http://opensees.berkeley.edu for those outside the core development team t o
read, redistribute and modify. Also, web based applications are provided to allow users to interact with
each other and other developers. This is in contrast to the traditional closed model, where only a
few developers have access to the code, and there is not a support system for ongoing community-
based development.

With this introduction to OpenSees, the objective of this paper is to present the software
architecture and show how it addresses the goals of flexibility and extensibility for simulation
applications. These characteristics are then utilized to develop network applications for simulation
that are briefly described in the final section.

OPENSEES SOFTWARE ARCHITECTURE

High-level Architecture
The traditional design for finite element software is based on procedures to perform specific
computations, such as material constitutive evaluation, element integration, and equation solution.
Procedural-oriented design tends to de-emphasize the organization of data needed to represent the
software components, such as the material and element state and the system of equations. As a
result, procedural software components are often tightly bound to each other with data structures
that are either stored in common memory or other global data stores. The procedures must interact
with the global data structures, thereby limiting the flexibility and reusability of the software
components. The high-level view of traditional software architecture is represented in Figure 1(a), in
which the base code includes procedures for materials, elements, solution algorithms, and equation
solvers. Many finite element programs allow users to develop elements (or materials) as long as the
specific forms of the data structures are communicated with the base code. In most software the base
code is tightly linked to the user interface and processors for the input, and the software is
implemented for a specific compute technology (types of processors and communication methods).
With the traditional design of finite element software, it is often difficult to extend or add new
solution methods, solvers, interfaces with databases, and other modifications because of the
dependence of the procedures on global data structures. The linking also makes it difficult to take
advantage of improved and emerging compute technologies, such as solvers, parallel processing,
database interfaces, and grid-based computing.

A more flexible approach for the high-level architecture of finite element software is illustrated in
Figure 1(b). The concept is to provide loose coupling between the important components with an
application program interface (API). The API is a set of calls that tell the component to perform
specific operations. Generally, each component is responsible for maintaining the state (and hence,
data representing the state) and only essential information need be communicated with other
components. This approach provides flexibility for constructing simulation applications and
extensibility because the components are fairly independent. A central component is the Domain
that represents the state of a finite element model at any point in a simulation. Different
ModelBuilders may be used to construct the Domain for a model, such as a text based model-building
language or a graphical user interface. A Domain interacts with the Elements, Materials, and other
aspects of the model that will be described in the following. A simulation may use one of a variety of
Solution Procedures that invoke Solvers to solve systems of equations. The Solvers and Solution
Procedures can take advantage of different Compute Technologies (multiple processors, vector
processors, etc.). Several of the components interact with Databases and Visualization software for
storing and viewing the results of a simulation.

A collection of components, interacting through an API, to solve a class of problems is termed a
software framework. A framework allows the construction of specific applications within the
assumptions about what class of problems is addressed. In this regard, OpenSees is a software
framework for developing applications to simulate structural and geotechnical systems using finite
element methods with the high-level components illustrated in Figure 1(b).

Object-Oriented Framework Design
The design of the OpenSees framework is based on the concept of objects. Objects represent the
state and behavior of components in a system being modeled computationally. The software design
process involves specifying computational abstractions and defining objects and relationships
between objects to represent the abstractions [3]. An abstraction is the essential function that must
be represented for other components to utilize it. An object implements the abstraction for other
components to utilize, but it hides the specific data and computational procedures. Objects contain
the internal data necessary to represent the state of the object and to perform the required
operations on the data. This is in contrast to the procedural approach in which the operations

implemented by a procedure are defined separately from the data necessary for accomplishing the
operation.

a) Traditional finite element
analysis code

b) Framework of components

Figure 1. Software design approach for finite element analysis software. Arrows
represent application program interfaces (API) for communication

between software components.

The objects in OpenSees have been designed to represent the governing equations of mechanics using
the finite element method and to use algorithms to solve the equations. The most basic example of
an abstraction in finite element analysis is of an element. Abstractly, an element must provide the
resisting force and tangent stiffness matrix for a specified trial displacement at the nodes defining the
element. In OpenSees, the Element is a key object that is responsible for maintaining its state (as
data stored in the object) independently of all other objects and for operations on the element that
are functions of the state, such as computing the resisting force, computing the tangent matrix, and
committing its state when accepted. In addition to objects, the software architecture must represent
associations between objects. For example, to compute its resisting forces, the element object must
interact with other objects that represent the constitutive behavior at integration points. As another
example, a root finding object interacts with a linear equation solver as it iterates toward the solution
to the equations of structural equilibrium.

An important relationship between objects is one of inheritance. Returning to the example of
elements, all objects must support state determination operations, but there are many types of finite
elements, such as beam-column elements for frames, planar elements (membrane and plate bending),
and continuum elements for solids. Elements can be organized by dimensionality (2d or 3d) or by
formulation (displacement, force, or mixed). These are examples that can be organized in an
inheritance hierarchy, with increasing specificity of the operations and data needed to represent the
different types of elements.

With this summary of object-oriented software design, the fundamental objects and their
relationships in OpenSees are defined in Figure 2. The Domain object represents the entire state of a
finite element model, which changes as a result of the Analysis object advancing the state. Domains
are created by the ModelBuilder object, which can be changed at any time. Recorder objects report
information from the Domain for post-processing and visualization of the simulation results. These
high-level objects are each composed of more detailed information. For example, Figure 3 shows
that the Domain object is an aggregation of the abstractions for a finite element model, such as

Compute Technology

Base Code

Elements

Input Language

User Interface

Model Domain

Materials

Solvers

Compute Technology

Elements

Databases

Solution Procedures

Other

V
is

u
a
liz

a
ti
o
n

Model Builders

nodes, boundary conditions, loads, and constraints (single-point and multi-point). An example
inheritance hierarchy is exemplified for Element, and the LoadPattern object is itself an aggregation
of loads applied to elements and nodes, and single-point constraints. Figures 2 and 3 give the
fundamental OpenSees objects and relationships needed to accomplish the general representation in
Figure 1(b).

creates the model

and current trial state of model

records information at converged
states for postprocessing

stores last converged state

converged state to another
moves model from

Domain Analysis

Recorder

ModelBuilder

Figure 2. High-Level OpenSees objects in the software framework

Shell
BeamColumn

ElementalLoad
NodalLoad
SP Constrnt

Element LoadPattern

Domain

Node MP_Constrnt SP_Constrnt

Figure 3. Domain as an aggregation of objects in a finite element model

Software Design Patterns
The previous section illustrated important types of relationships between objects such as aggregation
and inheritance. The design of objects to represent an element is relatively straightforward because
there is direct correspondence with the mathematical requirements for an element. As discussed in
reference to Figure 1(a), traditional finite element software recognizes that an element must be
clearly defined so that new elements can be added according to the API. For a flexible and extensible
framework, however, there are many other objects and relationships that can be used to provide the
components in Figure 1(b). The modern approach for designing the objects and relationships uses
software design patterns. Software design patterns are standard relationships between objects that are
needed to represent the aspects of the model, processes, transformations, and control. Gamma [4]
has formalized the specification and application of design patterns.

s

e

q2

v2

Element

Section

v1

v3

q1q3

Figure 4. Basic system for 2d
beam-column elements

To provide flexibility and extensibility, several components of OpenSees have been designed using
software design patterns. One example is the aggregation of uniaxial material relationships in series
and parallel to form a general relationship using a Composite pattern. Another example of a
Composite pattern is the Domain object can be built-up hierarchically from sub-domains, which not
only is a useful modeling approach but also supports domain decomposition solution methods for
parallel processing. An application of a design pattern for a process is the Strategy pattern for
mapping a time integration method to a solution method for solving the resulting equations
discretized in time.

EXAMPLES OF OPENSEES SOFTWARE DESIGN

This section presents selected examples of the modeling approaches and applications supported by
the OpenSees framework. It is not intended to be exhaustive, but rather to illustrate the flexibility
provided by the software architecture for implementing a wide-range of approaches for simulation.

Modeling
Returning to the familiar example of elements, beam-column elements are the most common models
of behavior in the computational simulation of frame structures. The formulation of the beam-
column elements in OpenSees takes place in a basic system, free of rigid-body displacement modes.
In the two-dimensional simply supported basic system, there are three basic element deformations
and three basic forces, as illustrated in Figure 4. At cross-sections along the element are the section
deformations and forces. The compatibility relationship between the element and section
deformations, and the equilibrium relationship between the section and basic forces, depends on the
beam-column element formulation, for which there are two approaches: displacement-based and

force-based. Regardless of the element formulation, the
element response depends on the response at each of its
sections. The use of a software abstraction to represent
the force-deformation response of a section facilitates
the implementation of the beam-column element models
in OpenSees. Each section object encapsulates the force-
deformation response by either a resultant plasticity
model or by the numerical integration of the material
stress-strain response over the section area to describe
the interaction of section forces. Therefore, the
software design proceeds hierarchically from element t o
section, and in turn from section to material, which
follows directly from the equations of structural
mechanics.

The displacement-based formulation follows the standard finite element procedure of specifying an
approximate displacement field over the element domain, from which compatible deformations are
computed at each section along the element. The equilibrium relationship between the section forces
and the basic forces is satisfied in an average sense or weak form under the displacement-based
formulation. In contrast, the force-based formulation exactly satisfies equilibrium between the basic
forces and section forces in a strong form, whereas the compatibility relationship between section
deformations and basic element deformations is stated in integral form (using the principle of virtual
forces). The force-based element state determination procedure, where the section deformations are
computed under the condition such that section equilibrium is always satisfied, as well as the
advantages of the force-based formulation over the standard displacement-based formulation, are
described by Neuenhofer and Filippou [5].

One advantage of the force-based beam-column element formulation is the ease with which the shear
force-deformation behavior is taken into account. The shear forces at each section along the
element are computed from the basic forces in the same manner as the axial force and the bending

−3 −2 −1 0 1 2 3
−80

−40

0

40

80

DISPLACEMENT, U (in)

FO
R

C
E

, F
 (

ki
p)

 Shear Effects Ignored

Experiment
Simulation

−3 −2 −1 0 1 2 3
−80

−40

0

40

80

DISPLACEMENT, U (in)

FO
R

C
E

, F
 (

ki
p)

 Shear Effects Included

Experiment
Simulation

Figure 5. Comparison of experimental
behavior of columns with OpenSees model

including shear deformation.

moments, and the relationship between the shear deformations and the element deformations come
from the average compatibility inherent in the force-based formulation. The simulation of the
cyclic response of a shear critical reinforced concrete column demonstrates the modeling capabilities
in OpenSees, as shown by comparison of the simulation results with experimental data from Lynn [6]
in Figure 5. The integration of the uniaxial stress-strain response of the steel and concrete materials
over the column cross-section captures the axial-moment interaction, while a uniaxial hysteretic
relationship describes the shear force-deformation behavior of the column. The hysteretic models in
OpenSees are built from simpler components that represent the backbone, or envelope of the cyclic
response, and the cyclic degradation of stiffness and strength.

Analysis of a Model
As shown in Figure 3, Analysis is a high-level
class that is invoked on a Domain to advance
the state. The object represents the
mathematical abstractions for performing an
analysis to solve the governing equations, as
represented by the current state of the
Domain. To accomplish this, an Analysis
object is an aggregation of five objects that are
responsible for important aspects of an
analysis (illustrated in Figure 6):

Algorithm: The solution Algorithm object is responsible for orchestrating the steps
performed in the analysis.

Integrator: The Integrator object is responsible for defining the contributions of the
Elements and Nodes to the system of equation and for updating the response
quantities at the Nodes with the appropriate responses, given the solution to the
system of equations.

CHandler: The CHandler object is responsible for ensuring that the single and multi-point
constraints in the Domain are enforced.

Numberer: The Numberer object is responsible for mapping equation numbers in the system
of equations to the degrees-of-freedom.

SystemOfEqn: The SystemOfEqn object encapsulates the system of equations and provides
operations to solve the system.

To perform a simulation, an analyst creates a procedure by specifying the objects for an Analysis.
This approach offers great flexibility because the analysis can be changed by creating new objects at
different times in the solution. The software design for Analysis is extensible because new procedures
can be implemented by introducing specific objects to implement an Integrator, an Algorithm, or
other components of an analysis.

An example of this approach for an analysis is as shown Figure 7(a) for 9-story moment-resisting
steel frame using nonlinear beam-column elements with the force-formulation. Figure 7(b) shows the
script for creating an Analysis object for transient analysis as an aggregation of the Newton-Raphson
algorithm and Newmark time integration method. The equations are numbered using the Reverse
Cuthill-McKee (RCM) method, constraints are enforced by transformation, and a banded system of
equations is used. The convergence test is based on the relative change in the displacement norm.
The example script is set up to invoke the analysis object for each time step. If the analysis fails
because of a lack of convergence, the algorithm is switched to a modified Newton method with the
initial stiffness and a large number of iterations. The combination of an analysis object and a
programmable scripting language provides a great deal of flexibility in creating robust simulations.
For the example, the transient analysis gives the response of the frame; Figure 7(c) shows the
residual deformation of the frame and the maximum plastic rotation in the plastic hinges of the
beam-column elements.

RCM
MinDegree

Newton
Krylov

Newmark
HHT
LoadConrol
DispControl
ArcLength

ProfileSPD
BandSPD
BandGEN
SparseSYM
SparseGEN

RCM
MinDegree

Lagrange
Penalty

StaticAnalysis
TransientAnalysis

Algorithm Integrator SystemOfEqnCHandlerNumberer

Analysis

Figure 6. Analysis object as an aggregation

numberer RCM
constraints Transformation
system BandGeneral
test RelativeNormDispIncr 10 1.0e−6
algorithm Newton
integrator Newmark 0.5 0.25
analysis Transient
while {$t < $tFinal} {

}

 set ok [analyze 1 $dt}
 if {$ok != 0) {
 algorithm Newton −initial
 test RelativeNormDispIncr 1000 1.0e−6
 analyze 1 $dt
}

����
����
����

����
����
����

b) Script for performing analysis

0 1 2 3 4 5 6 7 8 9
−2

−1

0

1

2

time (sec)

ac
ce

le
ra

tio
n

(g
)

a) Frame model and uniform horizontal
support acceleration

0.01

0.02

0.03

c) Plastic-rotations in members and residual
deformation of frame

Figure 7. Example OpenSees analysis of 9-story steel moment-resisting frame

Sensitivity of the Solution
The simulation of the response of a structural system to an applied loading depends on the
parameters that define the system, which include the properties of the materials, the geometric
properties of the structural model, as well as the applied loading itself. The computation of the

0 0.5 1 1.5
−10

−8

−6

−4

−2

0

P / (M
y
/L)

(∂
 U

/∂
 M

y)
/ (

L
2 /E

I)

Exact
N

p
 = 3

N
p
 = 5

N
p
 = 20

0 0.5 1 1.5
0

200

400

600

800

P / (M
y
/L)

(∂
 U

/∂
 L

)
/ (

L
2 /E

I)

Figure 8. Example of sensitivity computation
for a cantilever beam

gradient of the structural response with respect to these parameters lends insight into how sensitive
the response is to changes in the parameters that define the structural system. In addition to the
determination of the structural response sensitivity, gradient computations are essential for
applications in structural reliability, optimization, and system identification where the convergence
to an optimal design point depends on accurate derivatives of the structural response. To support
applications for response sensitivity, structural reliability, optimization, and system identification,
gradient computations have been incorporated into the OpenSees framework [7]. The computation
of gradients in OpenSees is another demonstration of the extensibility of the software architecture
with minimal effects on the existing components.

Two approaches to the computation of response gradients are implemented in OpenSees. First is the
finite difference method (FDM) where the structural simulation is repeated with a perturbed value of
a chosen parameter and the gradient is the difference in response divided by the perturbation.
Although it is conceptually simple, the FDM is computationally inefficient because it requires the
entire simulation to be repeated for each parameter that defines the structural model and it is subject
to numerical roundoff error for small parameter perturbations. A second, more computationally
efficient and numerically accurate approach to the computation of response gradients is the direct
differentiation method (DDM). The DDM is based on the exact differentiation of the governing
equations of structural equilibrium and compatibility [8] and it gives the response gradients for all
parameters as the simulation proceeds rather than by simulations with perturbed parameter values.

The computation of the gradients of the simulated structural response by the DDM necessitates
additional behaviors from the objects that define the system configuration and the element and
material objects that represent the structural behavior, as well as the solution strategies that enable
the structural simulation. For example, in addition to computing its resisting forces for assembly into
the equations of structural equilibrium, an element object must also be able to compute the gradient of
its resisting forces for assembly into the equations that yield the gradient of the structural response.
The application of the DDM to compute the gradient of the simulated response for structural
systems comprised of both displacement-based and force-based beam-column elements is described by
Scott [9].

The gradient computations by the DDM in
OpenSees are demonstrated for a cantilever
beam of length L. The cantilever is loaded
monotonically at its free end by a
transverse load, P, and the gradient of the
resulting transverse displacement, U , is
computed. The moment-curvature
behavior along the element length is
bilinear with yield moment My. A single
force-based beam-column element with Np
Gauss-Lobat to integrat ion points
represents the cantilever. The gradient of
the load-displacement response is computed with respect to the yield moment and the element
length, the results of which are shown in Figure 8. As the number of integration points increases, the
computed gradients converge to the exact derivative of the closed form load-displacement response
for the cantilever. In general, closed form solutions are not easily attained, and the verification of
the DDM takes places by comparison with FDM computations for successively smaller parameter
perturbations.

Everything

sendSelf(Channel, tag)
recvSelf(Channel, tag)

Element

MovableObject

IntegratorNode Algorithm

Figure 9. Inheritance hierarchy for MovableObject

NETWORK-BASED SIMULATION

The OpenSees framework was designed to support distributed and parallel computation [10].
Computation using a distributed memory model requires the ability to move an object from one
processor (or memory space) to another, and moving requires a communication method. T o
accomplish these functions, most OpenSees objects are specific forms of MovableObject as illustrated
in Figure 9. All MovableObjects have the ability to send and receive themselves over a
communication channel. Every component required for a structural simulation, such as a beam-
column element, its sections, and the material models in each section, is a MovableObject. Shown
later in Figure 11 is the Channel object, which is responsible for communication of movable objects.
OpenSees Channels can be implemented using standard protocols such as TCP/IP sockets or MPI.
The ability to move objects between processors is a key requirement for network-based simulation
applications. This section briefly describes three of these applications in OpenSees

Parallel Computation
Parallel processing, including
distributed computing on a
network, offers the ability t o
both solve large problems faster
than they can be solved on a
single processor and to solve
much larger problems than can
be solved on a single processor
machine. Parallel processing is
typically performed on a
multiprocessor (shared memory)
or multi-computer (distributed memory) system, where communication distances between processors
are short. Distributed computing is typically performed on multiple computers in which the
communication distance between machines is large and the validation of user and the reliability of
communication is an issue. Distributed computing has been explored by McKenna [11] using domain-
decomposition.

In a parallel/distributed program, the computation to be performed must first be broken down into a
number of tasks which are then assigned to processes. The object-oriented paradigm is ideally suited
to the development of parallel programs because the tasks can be identified as the invocation of the
operations on objects, and the assignment of tasks that share common data to a process can be
identified as assigning an object to a process. This is accomplished by the MovableObject in Figure 9,
along with channels for communicating the objects between processors.

Databases
The ability to store the results of a simulation and to checkpoint the model at various stages in the
analysis is essential for nonlinear analysis. Databases are used to store simulation results (response,
performance measures, damage indices) for post-processing and consistent storage of state for
checkpoints. In a network environment, remote access of the database facilitates collaboration
among users, as illustrated in Figure 10.

To provide this functionality, OpenSees includes a Database object. As shown in Figure 11, the
Database is a subclass of Channel. As with Channel, a database represents a point in the local process
through which an object, typically Recorders, can send or receive information to and from a
database. The advantage of subclassing a Channel object is that the sendSelf() and recvSelf()
operations provided by every object in a simulation and hence a variety of database services can be
provided.

Figure 10. Schematic of communication of
MovableObjects with a Database

Figure 11. Inheritance hierarchy for
Channel objects

Hybrid Experimentation
A final example of the network capabilities of OpenSees is the ability to implement hybrid
experimental methods, which combine physical testing with computational simulation. For example,
it is possible to combine a simulation model with an experimental component and apply boundary
conditions to the experimental component as if it were integral with the larger system represented by
the computational model. This can be accomplished within the OpenSees framework because of the
object-oriented design. An Element may be an experimental specimen with actuators and data
acquisition. From the viewpoint of OpenSees, as long as the experimental object can determine the
resisting forces when the element is subjected to a set of displacements, there is no distinction
between the physical component and mathematical elements for the rest of the system. The
information is communicated over a Channel, which allows for network-based hybrid
experimentation.

As a specific example of this approach, the pseudodynamic test method is a computer controlled
(on-line) experimental technique for simulating the response of structures. This test method requires
the software to solve the equations of motion by a step-by-step time integration scheme t o
determine the loading path in the next step, which can be accomplished with the OpenSees Integrator
objects. Moreover since the Analysis object can manage the simulation, including the time step
control, a pseudodynamic test can be conducted in the same way as a numerical simulation in
OpenSees.

For the pseudodynamic test method, an ExperimentalElement is introduced so that it inherits the
functionality of the Element object. Since this object relates the middleware for controlling
experimental facilities, it can calculate the resisting force vector from the experimental data. If the
Channel object is used in the middleware, a distributed pseudodynamic test can be carried out as a
parallel simulation in OpenSees, as illustrated in Figure 12.

CONCLUSIONS

The Open System for Earthquake Engineering Simulation (OpenSees) is a software framework for
developing simulation applications for structural and geotechnical systems. Its modular design allows
extensibility and flexibility for modeling and analysis. This has been demonstrated by extensions of
OpenSees for applications involving parallel computation, databases for simulation, and hybrid
experimentation.

As open-source software, OpenSees has become a powerful collaboration mechanism for exchanging
and implementing software implementations of research for nonlinear models of structural and
geotechnical materials, components, and systems, and also for solution methods and equation solvers.

A

Channel

Database

User

User

Process M

MPI_Channel Database

MySQL
Oracle

TCP_Channel

Channel

Recorder

NodeRecorder
ElementRecorder

is analyzed by

Experimental Facilities
Middleware for Controlling

Integrator

Analysis

Element Node

ExperimentalElement

Domain

Figure 12. High-level OpenSees software architecture for hybrid experimentation

ACKNOWLEDGEMENTS

The development of OpenSees has been supported since 1997 by the Pacific Earthquake Engineering
Research Center (PEER), headquartered at the University of California. PEER is an Earthquake
Engineering Research Center supported by NSF under grant number 9701578. The authors thank
NSF Program Directors Joy Pauschke and Lynn Preston and PEER Director Jack Moehle for their
continued support of OpenSees. Significant contributions to OpenSees have been made by Filip C.
Filippou (UC Berkeley), Boris Jeremic (UC Davis), Gregory G. Deierlein (Stanford), and Terje
Haukaas (Univ. of British Columbia). Jaesung Park performed the simulations for the 9-story
building example.

REFERENCES

1. Bathe, K.J. Finite element procedures. Prentice Hall, 1996.
2. Welch, B., Jones, K., and Hobbs, J. Practical Programming in Tcl and Tk. 4th edition, Prentice
Hall, 2003.
3. Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., and Lorensen, W. Object-oriented modeling
and design. Prentice Hall, 1991.
4. Gamma, E., Helm, R., Johnson, R., and Vlissides, J.. Design patterns: elements of reusable object-
oriented software. Addison-Wesley, 1995.
5. Neuenhofer, A., and Filippou, F.C. “Geometrically nonlinear flexibility-based frame finite
element,” Journal of Structural Engineering, 1998, 124:6, 704-71.
6. Lynn, A.C., Moehle, J.P., Mahin, S.A., and Holmes, W.T. “Seismic evaluation of existing
reinforced concrete buildings,” Earthquake Spectra, 1996, 12:4, 715-739.
7. Haukaas, T. “Finite element reliability and sensitivity methods for performance-based
engineering.” Ph.D. dissertation, University of California, Berkeley, 2003.
8. Kleiber, M, Antunez, H., Hien, T.D., and Kowalczyk, P. Parameter sensitivity in nonlinear
mechanics. John Wiley & Sons, 1997.
9. Scott, M.H., Franchin, P., Fenves, G.L., and Filippou, F.C. “Response sensitivity for nonlinear
beam-column elements,” Journal of Structural Engineering, 2004, accepted for publication.
10. McKenna, F. “Object-oriented finite element analysis: frameworks for analysis, algorithms and
parallel computing.” Ph.D. dissertation, University of California, Berkeley, 1997.
11. McKenna, F., Fenves, G.L. “An object-oriented software design for parallel structural analysis,”
Proceedings, ASCE Structures Congress 2000, Philadelphia, Pennsylvania, May 8-10, 2000.

