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O. Murat Hamutçuoğlu, Michael H. Scott *

School of Civil and Construction Engineering, Oregon State Univ., Corvallis, OR 97331, United States

a r t i c l e i n f o

Article history:
Received 20 August 2007
Received in revised form 30 January 2009
Accepted 16 February 2009
Available online 29 March 2009

Keywords:
Bridge girder
Reinforced concrete
Moving loads
Sensitivity
Reliability
OpenSees

a b s t r a c t

Reliability analysis is necessary in bridge design to determine which parameters have the most signifi-
cant influence on the structural response to applied loadings. To support finite element reliability appli-
cations, analytical response sensitivities are derived with respect to uncertain material properties, girder
dimensions, reinforcing details, and moving loads by the direct differentiation method (DDM). The result-
ing expressions have been implemented in the general finite element framework OpenSees which is well
suited to the moving load analysis of bridges. Numerical examples verify the DDM response sensitivity
equations are correct, then a first-order reliability analysis shows the effect uncertain parameters have
on the interaction of negative moment and shear force near the supports of a continuous reinforced con-
crete bridge girder. A unique contribution is the treatment of moment–shear interaction using Lamé
curves with foci calculated from MCFT equations. In addition, the analysis demonstrates non-seismic
bridge engineering applications that have been developed in the OpenSees framework.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

The prediction of structural performance and modeling the re-
sponse of girder members under moving vehicle loads are essential
in bridge design. Modeling assumptions and natural randomness in
material properties, geometry, and loading make the girder re-
sponse uncertain. This uncertainty is taken into account by load
and resistance factors [1]; however, these aggregate factors do
not indicate how the bridge response will change as a function of
changes in individual parameters that may be of interest to a de-
signer. Reliability analysis is required to assess the effect parame-
ter variations will have on bridge response and to determine which
parameters control the response. Repeated analyses with per-
turbed parameters lead to the response sensitivity; however, when
there is a large number of parameters, this approach can be com-
putationally intense [2].

Several researchers have used reliability methods based on
Monte Carlo simulation as an assessment tool for highway bridges
[3–5]. First- and second-order reliability methods (FORM and
SORM) represent alternative approaches to probabilistic assess-
ment. In these methods, it is necessary to find the most probable
failure point by solving a constrained optimization problem. Sev-
eral algorithms are available to solve such problems and their com-
mon characteristic is the need to compute the gradient of the

structural response, or response sensitivity, in order to find the fail-
ure point. When finite element analysis is used to evaluate the per-
formance function for reliability methods, it is often difficult to
implement the software that is necessary to compute gradients
of the finite element response.

Most gradient-based finite element software instead rely on fi-
nite difference calculations where the analysis is called repeatedly
for every realization of the uncertain parameters. In addition to the
computational inefficiency of repeated analyses, this approach can
lead to inaccurate search directions depending on the size of the
parameter perturbations. A more accurate and efficient approach
to evaluate gradients in reliability analysis is the direct differenti-
ation method (DDM), which is based on the exact differentiation of
the equations that govern the structural response [6]. The response
sensitivity equations are implemented alongside the ordinary fi-
nite element response equations and are computed at the same
precision rate without repeated analyses.

The development of the finite element software framework
OpenSees [7] represents one of the first attempts to characterize
all major sources of uncertainty in finite element analysis and to
compute analytic response sensitivity using an object-oriented ap-
proach [8,9]. OpenSees was developed for earthquake engineering
applications and several researchers have used the framework to
assess the seismic response of bridges. The OpenSees framework
is suitable to the repetitive nature of moving load analysis since
users build and analyze models via commands added to the fully
programmable Tcl scripting language [10]. As a result, OpenSees
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is suited to developing applications for moving load reliability
analysis.

The objective of this paper is to use the well-established re-
sponse sensitivity modules of OpenSees to assess the reliability
of bridge girders subjected to moving loads. The presentation be-
gins with a derivation of the sensitivity formulation for material
properties, section dimensions, reinforcement details, and moving
load parameters in bridge girders. The DDM approach for moving
loads is verified by comparison with finite difference calculations
and a first-order reliability analysis of bridge girder moment–
shear interaction concludes the paper. In the reliability analysis,
a third-order Lamé curve whose foci are determined from MCFT
equations represents the limit state function for moment–shear
interaction.

2. Governing response sensitivity equations

Response sensitivity calculations by the DDM consist of analyt-
ical differentiation of the equations that govern the structural re-
sponse. In this study, the structural response is found by solving
the equations of static equilibrium. Impact factors approximate dy-
namic load effects. The equilibrium equations are described in
terms of the vector, H, which contains the uncertain material, geo-
metric and load parameters of a structural model

PrðUðHÞ;HÞ ¼ Pf ðHÞ ð1Þ

The nodal displacement vector, UðHÞ, depends on the parameters,
H, and load history. The resisting force vector, Pr , which is assem-
bled from element contributions by standard finite element proce-
dures, depends on the structural parameters explicitly, as well as
implicitly via the nodal displacements. The vector, Pf , contains no-
dal loads, which also may depend on the parameters in H.

Considering the chain rule of differentiation, the derivative of
Eq. (1) with respect to a single parameter, h, in H, is:

KT
@U
@h
þ @Pr

@h

����
U
¼ @Pf

@h
ð2Þ

where the tangent stiffness matrix, KT ¼ @Pr=@U, is the partial
derivative of the resisting force vector with respect to the nodal dis-
placements. The derivative of the nodal load vector, @Pf =@h, is non-
zero only if the parameter, h, represents a nodal load. The vector,
@Pr=@hjU, is the conditional derivative of the resisting force vector
under the condition that the nodal displacements U are held fixed.
This vector is assembled from the conditional derivative of local
forces, @q=@hjv , from each element in the structural model in the
same manner as the resisting force vector itself. The nodal response
sensitivity is then found by solving the following system of linear
equations:

@U
@h
¼ K�1

T
@Pf

@h
� @Pr

@h

����
U

� �
ð3Þ

This solution is repeated for each parameter in the vector H, reusing
the factorization of KT . Full details of the DDM equation assembly
and solution procedures are given in [11], including the recovery
of other response derivatives from the nodal solution in Eq. (3).

3. Bridge girder modeling approach

In a general finite element setting, the most common approach
to compute the moment and shear response of bridge girders is to
subdivide each span into multiple elements with nodes corre-
sponding to critical locations. Moving loads are taken into account
as statically equivalent nodal forces and the bending moment and
shear force at each critical location are determined from rigid body
equilibrium at the element ends.

An alternative approach is taken in this study, where each span
is considered as one force-based element [12] whose integration
points coincide with critical locations. Using this integration ap-
proach, it is straightforward to link bending moment and shear
forces to a constitutive model rather than relying on rigid body
equilibrium [13]. Furthermore, moving loads are taken into ac-
count as part of the element, rather than nodal, equilibrium equa-
tions. The force-based formulation and its associated response
sensitivity are described in the remainder of this section.

3.1. Force-based element formulation

Force-based beam elements are formulated in terms of vectors,
q ¼ ½MI MJ�T and v ¼ ½hI hJ�T , that represent the end moments and
end rotations, respectively, of the beam, as shown in Fig. 1. At
every section along the element, there is a bending moment and
shear force, sðxÞ ¼ ½MðxÞ VðxÞ�T , and the corresponding curvature
and shear deformation, eðxÞ ¼ ½jðxÞ cðxÞ�T . Without loss of general-
ity, axial effects are omitted.

Equilibrium between section forces, basic forces, and moving
loads is satisfied in strong form:

sðxÞ ¼ bðxÞqþ spðxÞ ð4Þ

The matrix, b, contains interpolation functions for the moment and
shear forces along the beam.

bðxÞ ¼
x=L� 1 x=L

1=L 1=L

� �
ð5Þ

The vector, sp, in Eq. (4) describes the section forces due to member
loads. For the case of a moving point load, this vector is described in
terms of the location and magnitude of the load in the statically
determinate basic system. Since moving loads are considered part
of the element equilibrium equations in the force-based formula-
tion, they are taken into account in Pr and @Pr=@hjU rather than Pf

and @Pf =@h when assembling Eqs. (1) and (3), respectively.
Based on the principle of virtual forces, the element deforma-

tions, v, are obtained in terms of section deformations, e, along
the element.

v ¼
XNp

j¼1

bT
j ejwj ð6Þ

where bj � bðxjÞ and ej � eðxjÞ are the interpolation function and
the deformation evaluated at the jth section along the element, with
location, xj, and integration weight, wj.

The element flexibility matrix is obtained by linearization of Eq.
(6) with respect to basic forces:

f ¼ @v
@q
¼
XNp

j¼1

bT
j fsj

bjwj ð7Þ

where fs is the section flexibility matrix. The flexibility matrix in Eq.
(7) is inverted to give the element stiffness matrix, k ¼ f�1, for sub-
sequent assembly in the tangent stiffness matrix, KT , of Eq. (2). Full
details of the force-based element implementation are given in [14].

Fig. 1. Simply supported basic system for beam finite elements.
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3.2. Force-based element response sensitivity

Response sensitivity equations have been derived for force-
based elements using the direct differentiation method by
[15,16]. Following the former derivation, the section equilibrium
relationship of Eq. (4) is differentiated with respect to a single
parameter, h:

@s
@h
¼ b

@q
@h
þ @sp

@h
ð8Þ

The derivative of the force interpolation matrix, b, is assumed to be
equal to zero. Eq. (8) is expanded in terms of the derivatives
@q=@h ¼ k@v=@hþ @q=@hjv and @s=@h ¼ ks@e=@hþ @s=@hje of the ba-
sic and section forces, respectively:

ks
@e
@h
þ @s
@h

����
e
¼ b k

@v
@h
þ @q
@h

����
v

� �
þ @sp

@h
ð9Þ

where ks ¼ @s=@e and k ¼ @q=@v define the section and element
stiffness matrix, respectively. The conditional derivative @q=@hjv
cannot be obtained directly from Eq. (9). To circumvent this restric-
tion, the derivative of the element compatibility relationship in Eq.
(6) is differentiated with respect to h:

@v
@h
¼
XNp

j¼1

bT
j
@ej

@h
wj ð10Þ

Then, the derivative of the section deformations is obtained from
Eq. (9)

@e
@h
¼ fsbk

@v
@h
þ fs b

@q
@h

����
v
þ @sp

@h
� @s
@h

����
e

� �
ð11Þ

and combined with Eq. (10) to give the following expression:

@v
@h
¼
XNp

j¼1

bT
j fsj

bjk
@v
@h
þ bj

@q
@h

����
v
þ
@spj

@h
� @sj

@h

����
e

� �
wj ð12Þ

From the definition of the element flexibility matrix in Eq. (7), the
expression ð

P
bT fsbwÞk is equal to the identity, and the conditional

derivative of the basic forces can be reduced to

@q
@h

����
v
¼ k

XNp

j¼1

bT
j fsj

@sj

@h

����
ej

�
@spj

@h

 !
wj ð13Þ

The section force gradient, @sp=@h, is non-zero when h corresponds
to either the load magnitude or location, e.g., for uncertain axle
spacing. These derivatives of moment and shear are obtained by
analytic differentiation of the internal moment and shear functions
of a simply supported beam with a point load. The conditional
derivative, @s=@hje, depends on how the section forces are com-
puted, as described in the following section.

4. Section response sensitivity

There are a variety of approaches to compute the forces at each
girder cross-section: elastic constants, closed-form solutions for a
particular reinforcing pattern, and fiber discretizations. To facili-
tate DDM computations for a wide array of longitudinal reinforcing
details and material properties, a fiber discretization is employed
to compute the section bending moment. The numerical integral
is evaluated over a user-defined number of fibers, Nf , with area,
Ak, and distance, yk, from a reference axis. The fiber stress, rk, is
computed from the fiber strain, which is a function of the section
curvature, ek ¼ ykj. The section shear force is assumed to be lin-
ear-elastic, as described by the shear modulus, G, and shear area,
F. The bending moment and shear force are combined to form
the section force vector:

s ¼
MðxÞ
VðxÞ

� �
¼

PNf

k¼1
ykrkAk

GðxÞFðxÞcðxÞ

2
64

3
75 ð14Þ

The aggregation of section forces in Eq. (14) highlights the ease with
which shear deformation is included in force-based elements [17].
Approximate displacement fields are not necessary, as is the case
with a Timoshenko formulation of combined flexural and shear
response.

It can easily be shown that the derivative of Eq. (14) under the
condition of fixed section deformations is equal to:

@s
@h

����
e
¼

PNf

k¼1

@yk
@h rkAk þ yk

@rk
@h

��
ek

Ak þ ykrk
@Ak
@h

h i
@G
@h F þ G @F

@h

� �
c

2
64

3
75 ð15Þ

For a single parameter, h, most derivatives in Eq. (15) will be equal
to zero. For example, when h corresponds to the width or depth of a
section, @yk=@h, @Ak=@h, and @F=@h will be non-zero while all other
derivatives with respect to h in Eq. (15) will be zero. Similar conclu-
sions are drawn for the case where h corresponds to reinforcing de-
tails and material properties.

5. Numerical examples

To demonstrate the application of response sensitivity analysis
in assessing uncertainty, numerical examples are presented for an
interior girder of the McKenzie River Bridge, which carries the
northbound lanes of Interstate-5 just north of Eugene, OR. Each
span of this reinforced concrete deck girder (RCDG) bridge is
15.2 m long, as shown in Fig. 2. The depth, d, of the interior girder
is uniform at 122 cm while the girder width, b, is tapered from
33 cm at quarter spans to 50 cm at the continuous supports.

For the two-dimensional analyses presented herein, each span
is described as a single force-based element with integration points
that correspond to critical locations at midspan and at distances d,
2 d, and 3d from the supports:

x ¼ f1:22;2:44;3:66;7:60;11:6;12:8;14:0gm ð16Þ

These locations dictate where section forces, s, and the correspond-
ing response sensitivity, @s=@hje, are evaluated during the analysis.
The associated integration weights are computed from the average
distance between adjacent integration points:

w ¼ f1:83;1:22;2:58;4:00;2:58;1:22;1:83gm ð17Þ

There is little advantage to using high order integration methods,
such as Gauss–Lobatto, in moving load analysis of force-based ele-
ments [13]. Accordingly, this low order approach is sufficient for the
following set of numerical examples. Section dimensions, reinforc-
ing details, and material properties for the critical sections are listed
in Fig. 3 where the labels, ij, indicate the span number, i, and the
section number, j, as shown in Fig. 2.

5.1. Verification of DDM equations

To verify the DDM equations for section force response sensitiv-
ity, finite difference calculations are carried out with successively
smaller parameter perturbations. As the perturbation decreases,
the finite difference approximation should converge to the analytic
derivative:

lim
e!0

sðhþ ehÞ � sðhÞ
eh

¼ @s
@h

ð18Þ

For the DDM solution, @s=@h is recovered from terms on the right-
hand side of Eq. (9), each of which is known after the DDM equa-
tions have been solved during the analysis.
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The three axle AASHTO HS-20 design truck [18] shown in Fig. 4a
moves across the bridge in 100 load increments. The derivatives of
bending moment at Section 17 (on span 1 closest to the interior
support) with respect to concrete material properties, section
dimensions, area of reinforcement, axle spacing and load magni-
tudes are presented in Fig. 5. As anticipated, the results obtained
by the FDM converge to those obtained by the DDM at every load
increment of the analysis.

The sensitivities are multiplied by the initial value of the corre-
sponding parameter such that absolute changes in response can be
estimated from Fig. 5 for a relative (%) parameter change. The mo-
ment of Section 17 is much more sensitive to the load parameters
than to the material and geometric parameters; however, the sec-
tion moment is nearly as sensitive to relative changes in section
depth as it is to the axle load. Similar analyses indicate that the
shear force response is much less sensitive to the chosen parame-
ters than that for bending moment.

5.2. First-order reliability analysis

A first-order reliability (FORM) analysis is carried out to assess
the effect of uncertain girder properties and moving loads on the
interaction of negative moment and shear force at the critical loca-
tion investigated in the verification example. While conservative in
design, treating moment and shear separately can lead to non-con-
servative estimates of reliability. The approach taken herein is to
define the limit state as a smooth Lamé curve

g ¼ 1� M
M�

n

����
����
3

� V
Vn

����
����
3

ð19Þ

where M ¼ IF � DFM �MFE is the bending moment from the finite
element analysis, MFE, modified by the impact factor, IF, and mo-
ment distribution factor, DFM . Similarly, the shear, V ¼ IF � DFV�
VFE, is obtained from the finite element analysis, impact factor,
and shear distribution factor, DFV . The impact and moment and

Fig. 2. Span lengths and critical locations for an interior girder of the McKenzie River Bridge.

Fig. 3. Typical reinforcing layout and details for an interior girder of the McKenzie River Bridge.

O.M. Hamutçuoğlu, M.H. Scott / Structural Safety 31 (2009) 356–362 359
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shear distribution factors are treated as random variables with
mean values 1.1, 0.854, and 0.884, respectively, obtained from
LRFR specifications [19]. Field testing and three-dimensional anal-
ysis of the McKenzie River Bridge [20] offer more realistic esti-
mates of the impact and distribution factors; however, the use
of LRFR values does not affect the analysis methodology presented
herein.

The nominal capacities, M�
n and Vn, that describe the shape of

the Lamé curve are given by peak values from MCFT analysis:

M�
n ¼ A�s fyl d� a

2

	 

; a ¼ A�s fyl

0:85f 0cb
ð20aÞ

Vn ¼ b
ffiffiffiffi
f 0c

q
bdþ Av fyvd

s tan h
ð20bÞ

Fig. 4. Axle weights and spacings of vehicles used in sensitivity and reliability analyses: (a) HS-20 truck; (b) OR-STP-4D single-trip permit truck.

Fig. 5. Verification of DDM response sensitivity computations for moving load analysis of an interior girder of the McKenzie River Bridge.
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As shown in Fig. 6, the smooth Lamé curve closely approximates the
general shape of a multi-linear MCFT interaction surface. The expo-
nent in Eq. (19) can be adjusted to change the shape of the curve.

All parameters that define M�
n and Vn at Section 17 are treated

as random variables with distribution properties shown in Table 1.
The material properties and dimensions are taken as random vari-
ables with descriptors based on available literature [21,22]. This
example constitutes a component reliability analysis of Section
17; however, for a system reliability analysis for all critical sec-
tions, the material properties and dimensions at all sections would
be correlated. For the mean values of material properties and rein-
forcing details, the MCFT parameters b and h in Eq. (20b) are found
to be 1.8 and 42�, respectively. These parameters remain determin-
istic during the analysis; however, the moment and shear capaci-

ties, and accordingly the shape of the Lamé curve, will change
during the analysis for every realization of the uncertain parame-
ters in Eq. (20).

An eight-axle single-trip permit truck, type OR-STP-4D [23]
shown in Fig. 4b, moves across the bridge in 100 load increments.
All axle weights are assumed to be correlated lognormal random
variables, with descriptors based on WIM specifications [24]. The
correlation between all axle weights is 0.4, while the correlation
between axles in the tandem and triple groups (axles 2-3, 4-5-6,
and 7-8) is 0.8 [25]. Coefficients of variation for the impact and dis-
tribution factors available in the literature [26,27] are used in the
analysis.

The improved HLRF algorithm [28] is employed to find the de-
sign point during the moving load reliability analysis in OpenSees.
This algorithm requires the gradient of the performance function
with respect to the uncertain parameters

@g
@Y
¼ @g
@s

@s
@H

JH;Y ð21Þ

where @g=@s is the gradient of the performance function with re-
spect to the section forces, @s=@H is obtained by the previously ver-
ified DDM procedures, and JH;Y is the Jacobian matrix of the
transformation of random variables to standard normal space [29].

Using the DDM to evaluate @s=@h, the iHLRF algorithm requires
five iterations and six g-function evaluations to converge to the
minimum reliability index, bcr ¼ 2:39, shown in Fig. 7a. This is in
contrast to the 126 g-function evaluations required to reach the
same failure point using finite differences of the girder response
to compute @s=@h. This critical reliability index corresponds to a
0.84% probability of failure.

For the critical load position, the ranking of the RVs with impor-
tance measures (c-values presented by [30]) greater than 0.1 is
shown in Table 2. The random variables that characterize the im-
pact factor and shear distribution factor rank highest in impor-
tance, which reflects the large amount of epistemic uncertainty
in estimating dynamic effects and three-dimensional load distribu-
tion in this simplified 2D girder analysis. The transverse steel yield

Fig. 6. Performance functions for the interaction of negative moment and shear at a
girder cross-section.

Table 1
Random variable descriptions for the finite element reliability analysis of an interior
girder of the McKenzie River Bridge.

RV no. Parameter Distribution Mean COV

1 d, Section depth Normal 122 cm 0.015
2 b, Section width Normal 45 cm 0.015
3 A�s , Neg. r/f steel area Normal 60.4 cm2 0.024
4 Aþs , Pos. r/f steel area Normal 30.2 cm2 0.024
5 Ec , Concrete modulus Lognormal 22.6 GPa 0.08
6 G, Concrete shear modulus Lognormal 9.41 GPa 0.08
7 Es , Steel modulus Lognormal 200 GPa 0.06
8 f 0c , Concrete strength Normal 22.8 MPa 0.15
9 Av , Shear r/f area Normal 2.58 cm2 0.024
10 fyv , Transverse yield stress Lognormal 276 MPa 0.12
11 s, Stirrup spacing Normal 23 cm 0.10
12 fyl , Long. yield Stress Lognormal 276 MPa 0.12
13 IF, Impact factor Normal 1.10 0.08
14 DFM , Moment distr. factor Normal 0.854 0.10
15 DFV , Shear distr. factor Normal 0.884 0.10
16 P1, Axle Load Lognormal 53 kN 0.20
17–23 P2-P8, Axle Load Lognormal 96 kN 0.20

30 32 34 36 38 40 42 44 46 48 50
0

1

2

3

4

5

6

Load Increment

B
et

a

Reliability Index

2.39

Fig. 7. First-order reliability indices for moment–shear interaction at Section 17 for load increment 30–50 on an interior girder of the McKenzie River Bridge.

Table 2
Ranking of random variables with importance measure exceeding 0.1 in the McKenzie
Bridge girder example.

RV no. Parameter c-Value

13 IF 0.698
15 DFV 0.363
10 fyv �0.236
1 d �0.145
19 P4 0.132
21 P6 0.131
20 P5 0.130
12 fyl �0.110

O.M. Hamutçuoğlu, M.H. Scott / Structural Safety 31 (2009) 356–362 361
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stress, fyv , is the most important resistance variable in the analysis,
followed by the section depth, d, and the longitudinal yield stress,
fyl. Although changes in section depth have little effect on finite
element demand calculations, the high importance of this variable
shown in Table 2 is due to its presence in the capacity equations
(Eq. (20)) for moment and shear. The high ranking of both trans-
verse and longitudinal yield stress highlights the interaction of mo-
ment and shear at the failure point. Due to the strong correlation
assigned to axle loads 4 through 6, each random variable assigned
to these axles has approximately the same importance factor.

6. Conclusions

The direct differentiation method (DDM) of response sensitivity
has been applied in the reliability analysis of continuous bridge
girders subjected to moving loads. Sensitivity analyses indicated
how girder response will change as a function of parameters that
are of interest in bridge design. In addition to design consider-
ations, the response sensitivity was used in a first-order reliability
analysis of moment–shear interaction at a critical girder cross-sec-
tion. The interaction of girder bending moment and shear force
was directly formulated in the limit state function using a smooth
curve that approximated the features of an MCFT interaction sur-
face. Ranking of importance measures for the random variables
indicated the presence of moment–shear interaction in the most
probable failure state. The implementation of DDM response sensi-
tivity analysis in the OpenSees finite element framework make it
an ideal platform for other gradient-based applications (optimiza-
tion, system identification, and damage detection), the assessment
of epistemic uncertainty associated with bridge modeling, and the
evaluation of bridge reliability under combined seismic and live
load hazards. Furthermore, the first-order reliability analyses pre-
sented in this paper are an essential component to system reliabil-
ity and downcrossing analysis of time-variant girder moment–
shear interaction via finite element methods.
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