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Abstract

A unified and comprehensive treatment of shape sensitivity that includes variations in the nodal coordinates, member cross-section
properties, and global shape parameters of inelastic frame structures is presented. A novelty is the consideration of geometric uncertainty
in both the displacement- and force-based finite element formulations of nonlinear beam-column behavior. The shape sensitivity equa-
tions enable a comprehensive investigation of the relative influence of uncertain geometrical imperfections on structural reliability assess-
ments. For this purpose, finite element reliability analyses are employed with sophisticated structural models, from which importance
measures are available. The unified approach presented herein is based on the direct differentiation method and includes variations in
the equilibrium and compatibility relationships of frame finite elements, as well as the member cross-section geometry, in order to obtain
complete shape sensitivity equations. The analytical shape sensitivity equations are implemented in the OpenSees software framework.
Numerical examples involving a steel structure and a reinforced concrete structure confirm that geometrical imperfections may have a
significant impact on structural reliability assessments.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

A number of applications in structural engineering
require the computation of the gradient of structural
response quantities with respect to input parameters. This
is referred to as response sensitivity analysis. The most
common applications of response sensitivity analysis are
to optimization problems, such as the minimization of
structural cost subject to constraints and minimization of
the difference between measured and numerical response
for system identification purposes. Yet another optimiza-
tion problem is posed in structural reliability analysis by
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the first and second-order reliability methods (FORM
and SORM). These methods rely upon the determination
of the ‘‘most probable failure point’’, which is the solution
to a constrained optimization problem in the space of ran-
dom variables. As a by-product, FORM analysis provides
importance measures to rank the uncertain parameters
according to their relative influence on the structural reli-
ability. Importance measures remedy the problem that
individual response sensitivities cannot be compared
directly due to differing units. It is also emphasized that
response sensitivities are useful as a stand alone product
in structural design because they indicate the sensitivity
of a structural response quantity to changes in the design
parameters.

Three requirements are put forward by the application
of response sensitivities in gradient-based optimization
algorithms: efficiency, accuracy, and consistency. Efficient
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computation of response sensitivities is required to make
gradient-based algorithms competitive with gradient-free
methods, including response surface methods, in terms of
computational cost. This is particularly important when
the optimization is performed in a high-dimensional space
of variables, in which case repeated runs to obtain gradi-
ents by finite differences is infeasible. Accuracy is impera-
tive to avoid convergence problems in the optimization
algorithms, which tend to perform poorly in the presence
of even small inaccuracies in the gradients. The consistency
requirement stems from the utilization of approximate
numerical models to obtain the structural response.
Because it is the approximate response that is employed
in the optimization problem, it is the gradient of the
approximate response that is required. Consequently, it is
not of interest to pursue the ‘‘exact’’ gradient of the theo-
retical boundary value problem. In fact, this would lead
to inconsistency between the function value and its
gradient.

Two approaches are available to obtain response sensi-
tivities: finite difference methods (FDMs) and the direct dif-
ferentiation method (DDM). The finite difference approach
employs re-runs of the structural analysis with perturbed
parameter values to estimate the response sensitivity. As
a result, it is a computationally inefficient approach. More-
over, FDMs suffer from accuracy concerns. It is a nontriv-
ial task to select the value of the parameter perturbation
for nonlinear problems. If the perturbation is too small,
round-off errors are introduced; while if the perturbation
is too large, local nonlinearities may lead to inaccurate esti-
mates of the sensitivity. The consistency requirement,
however, is satisfied by the FDMs because it is the approx-
imate response that is employed in the finite difference
equations.

The DDM provides an attractive alternative to FDMs.
At the one-time cost of deriving and implementing analyt-
ical sensitivity equations within the finite element response
algorithm, efficient, accurate, and consistent response sen-
sitivities are obtained. No finite difference computations
take place within the DDM; instead, the response equa-
tions are analytically differentiated and implemented on
the computer alongside the ordinary response computa-
tions. A number of researchers have contributed to the
development of such analytical equations, including Choi
and Santos [2], Tsay and Arora [24], Liu and Der Kiuregh-
ian [15], Zhang and Der Kiureghian [25], Kleiber et al. [13],
Conte et al. [3], Roth and Grigoriu [20], Scott et al. [22],
and Haukaas and Der Kiureghian [9]. The DDM is more
efficient than FDMs because repeated runs of the response
analysis are unnecessary. Accuracy is ensured at the same
precision as the response because the same equation solver
is employed to obtain both the response and the response
sensitivity. Consistency is achieved by differentiating the
response equations after they have been spatially and tem-
porally discretized by the finite element procedures. The
DDM is thus the preferred approach to computing
response sensitivities.
In this paper, the OpenSees software framework [16] is
extended and applied for shape sensitivity analysis. Open-
Sees (open system for earthquake engineering simulation)
is an open-source, object-oriented, general-purpose finite
element code specifically developed for earthquake engi-
neering analysis. OpenSees began as the computational
platform for testbed simulations in the Pacific Earthquake
Engineering Research Center (PEER) and has since been
adopted by the NSF-sponsored George E. Brown Jr. Net-
work for Earthquake Engineering Simulation (NEES).
Work by Haukaas and Der Kiureghian [8] extends Open-
Sees with response sensitivity and reliability analysis capa-
bilities which allow the analyst to characterize input
parameters as random variables and compute probabilities
of structural response events. This is termed finite element
reliability analysis (FERA), which differs from so-called
stochastic finite element methods that focus on second-
moment statistics of the response. In contrast, reliability
analysis and specifically FERA is suited to compute prob-
abilities of rare response events. This addresses the growing
demand in performance-based engineering to assess struc-
tural behavior during rare events of intense loading in a
probabilistic manner.

The response sensitivity implementations in OpenSees
are based on the DDM. The implementations are divided
into an overarching framework and object-specific imple-
mentations. The latter reflect the fact that OpenSees is
organized into element, section, and material objects. The
framework for sensitivity computations, as well as specific
implementations for selected elements, sections, and mate-
rials, is already in place. This includes sensitivities with
respect to nodal coordinates, which previous studies sug-
gest may be an important source of uncertainty in struc-
tural reliability, particularly when nonlinear structural
behavior is considered [9].

In this paper, the DDM shape sensitivity equations
include response sensitivities with respect to: (1) nodal
coordinates, (2) global structural or member shape param-
eters, and (3) the dimensions and details of fiber-discretized
cross-sections. Of particular significance is the development
of unified shape sensitivity equations for beam-column ele-
ments in both the displacement- and force-based formula-
tions. Gradient computations that incorporate shape
sensitivity at all levels (structure, element, and section)
are presented and their implementation in OpenSees allows
the inclusion of a wide range of uncertain geometrical
imperfections in a reliability analysis. Two numerical
examples involving a steel structure and a reinforced
concrete structure provide insight into the importance of
uncertain geometrical imperfections relative to other uncer-
tain structural properties.

2. The application of response sensitivities in finite element

reliability analysis

The need for response sensitivities in this paper stems
from structural reliability analysis. To achieve accurate
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reliability assessments, sophisticated structural models are
employed to simulate structural performance. Clearly, such
predictions can only be made in a probabilistic sense due to
uncertainties in the model and the input parameters. This
motivates the utilization of FERA to obtain probabilistic
predictions of response events. Indeed, the emerging per-
formance-based engineering approach is envisioned to be
implemented in a reliability framework [6,17]. The primary
objective in FERA is to obtain the probability of rare
response events that are identified by user-defined perfor-
mance functions. An important by-product of the analysis
is parameter importance measures to rank the variables
according to their relative importance. Response sensitivi-
ties represent an essential ingredient in the analysis, as
described in the following.

The reliability problem for the case of a single-
performance function is formulated as the multi-fold
integral

p ¼
Z
� � �
Z

g60

f ðHÞdH; ð1Þ

where p is the sought probability, g is the performance
function that identifies the response event for which the
probability is sought, and f(H) is the joint probability den-
sity function for the random variables, which are collected
in the vector H. In FERA the performance function is spec-
ified in terms of response quantities U = U(H) from a finite
element analysis. The random variables are commonly
specified by marginal probability distributions and correla-
tion coefficients. Analytical solutions to Eq. (1) are unavail-
able; however, methods such as FORM and SORM and
sampling techniques provide approximate solutions. Of
particular interest in finite element reliability analysis is
FORM, followed by efficient importance sampling to cor-
rect for potential nonlinearities. This analysis strategy is
beneficial because it requires relatively few evaluations of
the performance function and, in effect, few executions of
the finite element analysis. Moreover, FORM analysis gen-
erates the parameter importance measures that are utilized
in this paper.

In FORM, the integration boundary g = 0 in Eq. (1) is
approximated by a hyperplane in the transformed space
Y = Y(H) of uncorrelated standard normal random vari-
ables. For nonlinear performance functions, the ideal point
of approximation is the point on the surface g = 0 that is
closest to the origin in the Y-space. This point, termed
the most likely failure point (MPP) and denoted Y*, is
the solution to the constrained optimization problem

Y� ¼ argmin kYk j g ¼ 0f g: ð2Þ

The most efficient algorithms available to solve this optimi-
zation problem utilize the gradient of the performance
function; namely, $g = og/oY. The chain rule of differenti-
ation applied to the performance function yields

og
oY
¼ og

oU

oU

oH
oH
oY

: ð3Þ
The derivative og/oU is readily available since g is a simple
algebraic function of the response quantities U. The matrix
oU/oH signifies the need to compute response gradients,
which is the focus this paper, and the matrix oH/oY is
the Jacobian of the probability transformation. The Nataf
transformation [14] is applied in this work, for which the
required Jacobian matrix is already available in OpenSees.
This transformation is an attractive alternative to the
Rosenblatt transformation [19,10] because it allows a wider
range of correlation values for a variety of probability dis-
tribution types. The communication between the reliability
algorithm and the finite element module consists of updat-
ing the finite element model with realizations of the ran-
dom variables H and returning U and oU/oH each time
the performance function is evaluated.

Upon determination of Y*, the probability p according
to FORM is determined by

p ¼ Uð�bÞ; ð4Þ

where U is the standard normal cumulative distribution
function and b is the reliability index defined in FORM
as b = kY*k. Importance sampling with the sampling distri-
bution centered at Y* may subsequently be performed since
it is an efficient scheme compared with Monte Carlo sam-
pling centered at the mean realization of the random
variables.

The developments in this paper allow the characteriza-
tion of imperfections in nodal coordinates and member
cross-section geometry as random variables, in addition
to random material and load variables. Of particular inter-
est is the investigation of the importance of these variables
relative to other sources of uncertainty. Clearly, the com-
ponents of the vectors oU/oH cannot be employed for this
purpose due to the differing dimensions of the variables
h 2 H. Instead, importance measures from FORM are uti-
lized, in which the components have uniform dimensions.
The basis for these measures are presented by Hohenbich-
ler and Rackwitz [11] and Bjerager and Krenk [1]. Applica-
tions of importance measures in FERA is presented by
Haukaas and Der Kiureghian [9], where the following vec-
tor ranks the random variables:

c ¼ � og
oY

JY�;h�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
diag J�1

Y�;h�J
�T
Y�;h�

� �r
; ð5Þ

where og/oY is provided by Eq. (3), JY�;h� is the Jacobian
matrix of the probability transformation at the MPP, andffiffip implies the square root of each element of the argument
matrix. It is noted that c reduces to �og/oY, which is a
scaled version of the well known ‘‘alpha-vector’’ in reliabil-
ity analysis when no correlation between the random vari-
ables is present. Furthermore, it is common to scale the
c-vector so that kck = 1. The elements of c are interpreted
as the contributions from the individual random variables
on the reliability of the structure. Moreover, a negative
(positive) c-component indicates that the corresponding
random variable acts as a resistance (load) variable.
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3. Top-level response sensitivity equations

The gradient of the performance function in Eq. (3) sig-
nifies the need to compute sensitivities of the structural
response, oU/oH. To compute the response sensitivity by
the DDM, the equations that govern the structural
response are differentiated. For the set of parameters H
that describe the material, geometric, and load parameters
of a structural model, the global equations of static equilib-
rium have the form

PrðUðHÞ;HÞ ¼ PfðHÞ; ð6Þ

where Pr is the vector of internal resisting forces of the
structure. The internal forces may depend explicitly upon
H, as well as implicitly through the nodal displacement re-
sponse vector U. The vector Pf represents the external
loads applied to the structure. Inertial and damping forces
are omitted from Eq. (6) because dynamic equilibrium ef-
fects are independent of the element and section formula-
tions considered in this paper. The extension of Eq. (6) to
dynamic equilibrium and the computation of the corre-
sponding response sensitivity are straightforward [5].

To formulate the equations for response sensitivities at
the structural level, Eq. (6) is differentiated with respect
to any parameter h selected from the vector H:

oPr

oU

oU

oh
þ oPr

oh

����
U

¼ oPf

oh
: ð7Þ

The explicit and implicit dependence of Pr on h are taken
into account by the chain rule of differentiation. The vector
oPr/ohjU is the derivative of the resisting forces conditioned
upon fixed displacements. This vector is assembled from
element contributions in the same manner as the resisting
force vector itself. The vector oPf/oh is the derivative of
the external load, which is nonzero only when the parame-
ter h represents a load applied to the structure. Rearrange-
ment of Eq. (7) gives a linear system of equations for the
nodal response sensitivity oU/oh [13]:

KT
oU

oh
¼ oPf

oh
� oPr

oh

����
U

; ð8Þ

where KT = oPr/oU is the tangent stiffness matrix. For each
parameter in the vector H, assembly of the right-hand side
and solution of the factorized system of equations in Eq.
(8) gives the corresponding nodal response sensitivity
vector. The linear form of Eq. (8) and the reuse of the fac-
torized tangent stiffness matrix contribute to the computa-
tional efficiency of the DDM.

The sensitivity equation in Eq. (8) requires the assembly
of derivatives of the force vector p from each element, for
fixed nodal displacements:

oPr

oh

����
U

¼
[

num: el:

op

oh

����
u

; ð9Þ

where [ denotes the assembly procedure and u is the ele-
ment displacement vector. It is noted that assembly is
required over all elements that contain inelastic material re-
sponse, regardless of whether h corresponds to a parameter
for the individual elements. The one-to-one mapping that
exists between the vectors U and u is independent of h
and therefore does not require differentiation. The key to
computing response sensitivities by the DDM is to obtain
op/ohju from each element in the structural model. The
computation of op/ohju depends upon the element formula-
tion for inelastic material response, as described in the fol-
lowing sections.

4. Overview of element equilibrium and kinematic equations

An overview of the equilibrium and compatibility equa-
tions required to assemble the resisting force vector from
element contributions is shown in Fig. 1, where the presen-
tation follows that of Filippou and Fenves [4]. The equa-
tions on the left-hand side of Fig. 1 represent equilibrium
between the internal forces at the different levels while
those on the right-hand side of the figure represent the
compatibility relationships between the deformations at
each level. The middle column of Fig. 1 shows the consti-
tutive relationships that link the forces and deformations
at each level.

In the global system, the resisting forces and nodal dis-
placements of an element are contained in the vectors p and
u, respectively. It is common to formulate beam-column
elements in a basic system, free of rigid body displacement
modes, where the element deformations are collected in the
vector v and the corresponding forces in the vector q. For
small displacements, the compatibility relationship between
nodal displacements and element deformations is linear, as
described by the matrix–vector product v = Au. The matrix
A describes the transformation of forces and displacements
between the global and basic systems as defined by the
element orientation in the global coordinate system. The
contra-gradient relationship p = ATq gives equilibrium
between element forces in the basic and global systems.

The matrices ae and b shown in Fig. 1 describe the equi-
librium and compatibility relationships within the basic
system of the element, as discussed later in this paper.
The section compatibility matrix, as, relates section defor-
mations to material strain at any point on the cross-
sectional area.

5. Unified approach for sensitivity derivations

As indicated in Eq. (9), response sensitivity analysis by
the DDM requires the conditional derivative of p for fixed
u be computed for each element in the structural model.
When the parameter h represents a material property, and
standard finite element formulations are employed, it is suf-
ficient to differentiate directly the equilibrium equations and
the material constitutive law under the condition of fixed
displacements and strains [13] in order to determine op/ohju.
Furthermore, as recognized by Haukaas and Der
Kiureghian [7], in order to obtain correct sensitivity results
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Fig. 1. Governing equations for beam-column elements.
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in cases where h represents a geometric parameter, the kine-
matic relationships must also be differentiated under the
condition of fixed displacements.

Although the above approach provides correct results
for displacement-based finite elements, it is not applicable
in the force-based formulation, where the displacement
field is unspecified. The approach taken herein to deriving
the shape sensitivity equations is to combine the complete
derivatives of the element force vectors with the derivatives
of the equilibrium and compatibility relationships that link
each level in Fig. 1. Originally developed by Scott et al. [22]
for the case where h represents a material parameter, the
derivation is extended in this paper to include cases where
h represents a geometric parameter. This approach essen-
tially consists of combining four equations at each level
of Fig. 1. In summary, these equations are

(a) The derivative of the equilibrium equation.
(b) The derivative of the kinematic compatibility

equation.
(c) The complete derivative of the force vector at the

present level to include the constitutive law.
(d) The complete derivative of the force vector at the

level below to link to the lower level.

This approach is demonstrated for the conditional
derivative of the global element forces, op/ohju. The deriv-
atives of the equilibrium and compatibility relationships
between the global configuration and the basic system
are

op

oh
¼ AT oq

oh
þ oAT

oh
q; ð10aÞ

ov

oh
¼ A

ou

oh
þ oA

oh
u; ð10bÞ

while the complete derivatives of the global and basic
forces are

op

oh
¼ op

ou

ou

oh
þ op

oh

����
u

; ð10cÞ

oq

oh
¼ oq

ov

ov

oh
þ oq

oh

����
v

: ð10dÞ

First, Eq. (10a) is expanded by inserting the derivatives of
the global and basic forces, defined in Eqs. (10c) and (10d),
respectively:

kg

ou

oh
þ op

oh

����
u

¼ ATkb

ov

oh
þ AT oq

oh

����
v

þ oAT

oh
q; ð11Þ

where kg = op/ou and kb = oq/ov. This equation is then
combined with Eq. (10b)

kg

ou

oh
þ op

oh

����
u

¼ ATkbA
ou

oh
þ ATkb

oA

oh
uþ AT oq

oh

����
v

þ oAT

oh
q:

ð12Þ
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Then, the definition of the element stiffness matrix, kg =
ATkbA, simplifies this expression by cancellation of the
terms involving ou/oh, and the final expression for the con-
ditional derivative of the element forces is

op

oh

����
u

¼ ATkb

oA

oh
uþ AT oq

oh

����
v

þ oAT

oh
q: ð13Þ

The first and third terms on the right-hand side of Eq. (13)
represent the sensitivity of the element forces to changes in
the element length, as described by the matrix oA/oh. This
matrix is straightforward to compute from the direction co-
sines of the element and it is equal to zero for any param-
eter that does not represent a nodal coordinate for the
element. The second term represents the link to the next
level, the basic system, in which it is necessary to compute
oq/ohjv. This conditional derivative depends on the element
formulation for nonlinear material behavior, as shown in
the following sections for the displacement- and force-
based beam-column formulations.

6. Gradient computations for displacement-based elements

The formulation of displacement-based beam-column
elements follows standard finite element analysis proce-
dures where the element displacement field is interpolated
from the nodal displacements [12,26]. Compatible section
deformations are interpolated from the element deforma-
tions, e = aev, and there is weak equilibrium between the
section and basic forces, q ¼

R L
0

aT
e sdx, as indicated in

Fig. 1. For the standard interpolation fields of linear axial
displacement and cubic Hermitian polynomial transverse
displacement, the axial deformation is constant and the
curvature is linear along the element, and the matrix ae

is

ae ¼
1

L

1 0 0

0 6x=L� 4 6x=L� 2

� �
: ð14Þ

In the implementation of the displacement-based element
the equilibrium relationship is evaluated by numerical inte-
gration (typically two-point Gauss integration) over the
normalized domain n = [�1,1]. The coordinate transfor-
mation between the x-domain and the n-domain reads
x = L/2(n + 1), where L is the element length. Hence, the
Jacobian of the transformation is dx/dn = L/2, and the
numerical integration of the equilibrium relationship is

q ¼
XNp

i¼1

aT
e ðniÞsðniÞ

L
2

wi; ð15Þ

where Np is the number of integration points, ni is the loca-
tion of the ith integration point, and wi is the associated
integration weight. Both the points and weights are deter-
ministic for Gauss integration, thus their derivatives will
be equal to zero.

Further simplification of Eq. (15) is possible by substi-
tuting the x–n coordinate transformation into the matrix
ae, in which case the equilibrium relationship becomes:
q ¼
XNp

i¼1

~aT
e ðniÞsðniÞwi; ð16Þ

where the normalized interpolation matrix is

~ae ¼
1

2

1 0 0

0 3n� 1 3nþ 1

� �
: ð17Þ

The form of ~ae in Eq. (17) is independent of the element
length, thus o~ae=oh will be equal to zero for all parameters.
To obtain the conditional derivative oq/ohjv according to
the procedure established in the previous section, the ele-
ment equilibrium and compatibility relationships are differ-
entiated with respect to h:

oq

oh
¼
XNp

i¼1

~aT
e

os

oh
wi; ð18aÞ

oe

oh
¼ ae

ov

oh
þ oae

oh
v: ð18bÞ

The complete derivatives of the basic and section force
vectors are

oq

oh
¼ oq

ov

ov

oh
þ oq

oh

����
v

; ð18cÞ

os

oh
¼ os

oe

oe

oh
þ os

oh

����
e

: ð18dÞ

In Eq. (18a) use is made of the independence of ~ae and wi on
h. Analogous to the derivation for the conditional derivative
of the element forces in the global system, the derivatives of
the basic and section forces from Eqs. (18c) and (18d),
respectively, are inserted in Eq. (18a). Then, Eq. (18b) is
combined with the resulting expression and the definition
of the element stiffness matrix in the basic system, kb =
oq/ov, allows the cancellation of terms involving ov/oh. This
process results in the following equation for the conditional
derivative in the displacement-based formulation:

oq

oh

����
v

¼
XNp

i¼1

~aT
e ks

oae

oh
vþ ~aT

e

os

oh

����
e

� 	
wi; ð19Þ

where ks = os/oe is the section stiffness matrix. The vector,
os/ohje, is computed from the gradient of the section consti-
tutive response, and it will be discussed later in this paper.
The derivative, oae/oh, is a straightforward scaling of the
interpolation matrix in Eq. (14), where the only term that
depends on h is the common factor of 1/L:

oae

oh
¼ � 1

L2

1 0 0

0 6x=L� 4 6x=L� 2

� �
oL
oh
¼ �ae

1

L
oL
oh
:

ð20Þ

The derivative of the element length, oL/oh, is obtained by
differentiating the direction cosines that describe the ele-
ment orientation. This derivative is equal to zero when h
does not correspond to a coordinate of one of the element
nodes. Further simplification of the conditional derivative
of the basic forces is possible by inserting Eq. (20) into
Eq. (19):
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oq

oh

����
v

¼
XNp

i¼1

~aT
e

os

oh

����
e

wi � kbv
1

L
oL
oh
: ð21Þ

The forms of Eqs. (20) and (21) are specific to the assump-
tion of linear axial and cubic Hermitian transverse dis-
placement fields, for which it is possible to normalize the
interpolation matrix to ~ae in Eq. (17). This normalization
makes for an efficient numerical implementation because
it requires only one term in Eq. (21) to account for shape
sensitivity in the basic system. Terms involving the deriva-
tive of ae will appear in the conditional derivative when dis-
placement fields that are not normalized by the element
length are assumed.
7. Gradient computations for force-based elements

In the force formulation [23], it is the compatibility rela-
tionship rather than equilibrium that is stated in integral
form. The equilibrium and compatibility equations are
s = bq and v ¼

R L
0

bTedx, respectively, as indicated in
Fig. 1. The matrix b interpolates section forces from the
element end forces based on static equilibrium in the basic
system:

b ¼
1 0 0

0 x=L� 1 x=L

� �
: ð22Þ

Due to the normalization of the x-coordinate by the ele-
ment length in Eq. (22), the force interpolation matrix does
not depend on any parameter, therefore its derivative,
ob/oh, is equal to zero. The compatibility relationship is
evaluated by numerical integration

v ¼
XNp

i¼1

bTðniÞeðniÞ
L
2

wi: ð23Þ

Neuenhofer and Filippou [18] developed a state determina-
tion procedure for force-based elements that bypasses the
internal iterations required to satisfy the compatibility rela-
tionship in Eq. (23) while enforcing equilibrium at each sec-
tion along the element. Gauss–Lobatto quadrature is
standard for the implementation of force-based elements
because it places integration points at the element ends
where bending moments are known to be largest in the ab-
sence of element loads.

To establish the conditional derivative oq/ohjv in the
force-based formulation, the equilibrium and compatibility
relationships are differentiated with respect to h:

os

oh
¼ b

oq

oh
; ð24aÞ

ov

oh
¼
XNp

i¼1

bT oe

oh
L
2
þ bTe

1

2

oL
oh

� 	
wi: ð24bÞ

The complete derivatives of the basic and section force
vectors are
oq

oh
¼ oq

ov

ov

oh
þ oq

oh

����
v

; ð24cÞ

os

oh
¼ os

oe

oe

oh
þ os

oh

����
e

: ð24dÞ

The independence of b and wi on h is utilized in Eqs. (24a)
and (24b). The process of combining equations to arrive at
an expression for oq/ohjv is conceptually similar to that for
the displacement-based formulation, but slightly more in-
volved. First, the derivatives of the basic and section forces
from Eqs. (24c) and (24d) are inserted in Eq. (24a). The
resulting expression is rearranged to give an equation for
oe/oh:

oe

oh
¼ fsbkb

ov

oh
þ fsb

oq

oh

����
v

� fs

os

oh

����
e

; ð25Þ

where fs ¼ k�1
s is the section flexibility matrix. This expres-

sion is combined with Eq. (24b), then from the definition of
the element flexibility matrix, fb ¼

R L
0

bTfsbdx, and the
identity fbkb = I, the terms involving ov/oh cancel, and
the final expression for the conditional derivative is

oq

oh

����
v

¼ kb

XNp

i¼1

bTfs

os

oh

����
e

L
2
� bTe

1

2

oL
oh

� 	
wi: ð26Þ

From the element compatibility relationship of Eq. (23),
further simplification of the conditional derivative is
possible

oq

oh

����
v

¼ kb

XNp

i¼1

bTfs

os

oh

����
e

L
2

wi � kbv
1

L
oL
oh
: ð27Þ

It is important to note the functional equivalence of Eqs.
(21) and (27) for the displacement- and force-based formu-
lations, respectively, where only one term is required to ac-
count for shape sensitivity of the element basic system.

Additional terms involving ob/oh appear in Eq. (27)
when the interpolation of section shear forces is present;
however, for the common case where shear effects are
ignored, the form of Eq. (27) leads to an efficient numerical
implementation because ob/oh is zero. The conditional
derivative of the section forces, os/ohje, depends on the
constitutive model at each integration point along the ele-
ment, as discussed in the following section.

8. Gradient computations at the section and material levels

The response at every cross-section along the element is
defined in terms of the section deformations, e, and the
corresponding section forces, or stress resultants, s, as
indicated in Fig. 1. Regardless of the element formulation,
the conditional derivative of the section forces, os/ohje, is
required to determine the element contribution to the gra-
dient of the global resisting force vector, as seen in Eqs.
(21) and (27). This derivative can be obtained by either
direct differentiation of a closed-form stress-resultant plas-
ticity relationship or by numerical integration of the mate-
rial stress over the cross-section. In the former case, the
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problem reduces to deriving analytic gradient equations for
a section constitutive law; while in the latter case, the
section compatibility and equilibrium equations, e = ase

and s ¼
R

A aT
s rdA, respectively, must be differentiated.

The cross-section integral is evaluated by numerical inte-
gration over a user-defined number of fibers, Nf:

s ¼
XN f

i¼1

aT
s riAi; ð28Þ

where the section compatibility matrix for the assumption
of plane sections remain plane, as = [1 � yi], contains the
fiber locations, yi. The material stress at the ith fiber loca-
tion is ri, and Ai is the corresponding fiber area. Following
the same procedure as in previous sections, the conditional
derivative of the section forces is obtained by differentiat-
ing the section equilibrium and compatibility equations
with respect to h:

os

oh
¼
XN f

i¼1

oaT
s

oh
riAi þ aT

s

ori

oh
Ai þ aT

s ri
oAi

oh

� 	
; ð29aÞ

oei

oh
¼ as

oe

oh
þ oas

oh
e: ð29bÞ

The complete derivatives of the section force vector and the
material stress are

os

oh
¼ os

oe

oe

oh
þ os

oh

����
e

; ð29cÞ

ori

oh
¼ ori

oei

oei

oh
þ ori

oh

����
ei

; ð29dÞ

where ei is the strain at the ith fiber location. The substitu-
tion of the section force and material stress derivatives
from Eqs. (29c) and (29d), respectively, into Eq. (29a)
and subsequent combination of Eqs. (29a) and (29b) fol-
lowed by cancellation of terms involving oe/oh via the sec-
tion stiffness matrix, ks, gives the conditional derivative of
the section forces

os

oh

����
e

¼
XN f

i¼1

oaT
s

oh
riAi þ aT

s km
oas

oh
eAi þ aT

s

ori

oh

����
ei

Ai þ aT
s ri

oAi

oh

 !
;

ð30Þ
where km = or/oe is the material stiffness. The derivatives
oas/oh and oAi/oh correspond to variations in the location
and size, respectively, of the ith fiber in the cross-section.
These terms are important in computing the structural re-
sponse sensitivity to the dimensions and details of member
cross-sections. The computations of oas/oh and oAi/oh are
demonstrated in Appendix I for a fiber-discretized wide
flange section. A similar approach is performed for rein-
forced concrete sections in which it is particularly impor-
tant to determine the response sensitivity to the amount
and placement of steel reinforcement, as demonstrated in
the numerical examples at the end of this paper.

The remaining task in computing the structural response
sensitivity is to obtain ori=ohjei

for the material response at
each fiber location. A number of references provide
detailed derivations of the response sensitivity for particu-
lar constitutive laws, including Zhang and Der Kiureghian
[25], Kleiber et al. [13], Roth and Grigoriu [20], and
Haukaas and Der Kiureghian [8]. Implementations in
OpenSees include the J2 plasticity model and a number
of uniaxial material models for inelastic behavior of steel
and concrete.

9. Response gradients with respect to global shape

parameters

The derivations in the previous sections include element
response sensitivities with respect to nodal coordinates.
However, it is frequently of interest to obtain sensitivities
with respect to global shape parameters, which include
the end coordinates of frame members that are discretized
into several finite elements, as well as parameters that
describe the global geometrical imperfection of a structure.
Thus, the perturbation of a global shape parameter will
perturb several nodal coordinates.

To obtain response sensitivities with respect to a global
shape parameter, an explicit relationship between the
dependent nodal coordinates, eH, and the shape parameters
is required. For the case of one shape parameter, denoted
~h, which may coincide with a nodal coordinate of a mem-
ber, this relationship is the expressed aseH ¼ f ð~hÞ; ð31Þ
where eH is the set of nodal coordinates that depend on the
global shape parameter ~h.

As an example, consider a straight multi-element mem-
ber with n nodes in 2-D space. The coordinates of the mem-
ber ends are denoted (x1,y1) and (xn,yn). Any of these four
parameters can be the parameter ~h for which the response
sensitivity is sought. To establish the explicit form of Eq.
(31), the other nodal coordinates of the member are
expressed in terms of the end coordinates:

xi ¼ x1 þ ðxn � x1Þ
i� 1

n� 1
; i ¼ 1; 2; . . . ; n; ð32aÞ

yi ¼ y1 þ ðyn � y1Þ
i� 1

n� 1
; i ¼ 1; 2; . . . ; n; ð32bÞ

where n � 1 is the number of elements into which the mem-
ber is discretized.

To obtain response sensitivities with respect to the glo-
bal shape parameter, the chain rule of differentiation is
applied to the nodal response sensitivity:

oU

o~h
¼ oU

o eH o eH
o~h

: ð33Þ

The matrix oU=o eH is available from the derivations in pre-
vious sections, while the vector o eH=o~h is obtained by differ-
entiation of Eq. (31). For the example in Eq. (32), when the
sensitivity of a response quantity u is sought with respect to
the x-coordinate of node 1 of the member, Eq. (33)
becomes
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ou
ox1

¼
Xn

i¼1

ou
oxi

1� i� 1

n� 1

� 	
: ð34Þ

When ~h represents a global structural shape imperfection,
the vector o eH=o~h is established by computing the imperfec-
tion at each node due to a unit global imperfection. Thus,
the vector o eH=o~h is interpreted as a vector of influence
coefficients.

Global structural shape imperfections, as well as the end
coordinates of multi-element members are uncertain quan-
tities. Thus, they should be considered as random variables
in a structural reliability analysis, as demonstrated in the
following numerical examples of a steel and a reinforced
concrete frame.
10. Numerical examples

The response sensitivity equations derived in this paper
have been implemented in OpenSees and verified by finite
difference calculations. To investigate the importance of
uncertain geometrical imperfections relative to other uncer-
tain structural parameters, static pushover reliability anal-
yses are performed for two types of structures: a steel frame
and a reinforced concrete frame. Static pushover analysis is
the prevalent analysis approach for capacity assessment in
earthquake engineering since it assesses the ability of the
structure to reach a target displacement demand. Hence,
the analyses in this paper are intended to address probabi-
listic assessments of structural capacity.

10.1. Finite element reliability analysis of steel structure

The first structure considered is the three-bay, three-
story steel frame in Fig. 2. Each member is discretized into
four displacement-based elements to represent the nonlin-
ear distribution of curvature along the member length. A
fiber-discretization represents the response of the wide-
flange steel cross-sections of the frame members, as shown
Fig. 2. Steel frame structure. Node numbers and
in Fig. 2. There are two fibers in each flange and ten fibers
in the web. The stress–strain behavior of each steel fiber is
represented by the uniaxial material model shown in
Fig. 5a, for which there are three material parameters: (1)
elastic modulus, E; (2) yield strength, fy; and (3) second-
slope stiffness ratio, a.

All material and geometric parameters of the structural
model are considered uncertain. The dimensions d, tw, bf,
and tf of the cross-section of each member are modeled
as uncorrelated normal random variables with means
250, 20, 250, and 20 mm, respectively, and 2% coefficient
of variation (cov). The elastic modulus, E, of each member
is a lognormal random variable with mean 200,000 MPa,
5% cov, and correlation coefficient 0.6 with the elastic mod-
ulus of the other members. The steel yield strength, fy, of
each member is a lognormal random variable with mean
300 MPa, 10% cov, and correlation coefficient 0.6 with fy

of the other members. The stiffness ratio, a, of each mem-
ber is a lognormal random variable with mean 0.02, 10%
cov, and correlation coefficient 0.6 with a of the other
members. In total, 21 members · 7 parameters = 147 ran-
dom variables represent the material and cross-section
geometry parameters. Additionally, the two coordinates
of each of the 16 connection nodes are considered to be
uncorrelated normal random variables, giving a grand total
of 179 random variables. The standard deviation of the
vertical coordinates is 10 mm, while the standard deviation
of the horizontal coordinates varies from 10 mm at the
base to 25 mm at the roof. The variation of the standard
deviation with the height is due to the potential for a global
sway of the building due to geometrical imperfection. It is
noted that each member is assumed to remain straight, that
is, the location of the internal member nodes is described
by Eq. (32).

To investigate the importance of geometrical imperfec-
tions relative to other structural parameters deterministic
loads are applied to the structure. The gravity loads are
50 kN at the external connections and 100 kN at internal
element numbers (in parentheses) are shown.



Table 1
Ranking of the 25 most important parameters in the steel frame example

Object Parameter c-Value

Member 5 fy �0.38034
Member 7 fy �0.37828
Member 3 fy �0.32439
Member 2 fy �0.32253
Member 10 fy �0.27291
Member 6 fy �0.27279
Member 9 fy �0.26853
Member 4 fy �0.22111
Member 1 fy �0.2168
Member 8 fy �0.13287
Member 11 fy �0.13264
Member 5 d �0.11495
Member 7 d �0.11403
Member 3 d �0.10055
Member 2 d �0.09987
Member 10 d �0.08305
Member 9 d �0.08215
Member 6 d �0.08194
Member 5 bf �0.07104
Member 7 bf �0.07054
Member 1 d �0.07005
Member 4 d �0.06978
Member 3 bf �0.0614
Member 2 bf �0.061
Member 5 tf �0.05928
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connections. The lateral loads vary with the height as
shown in Fig. 2, with maximum value 400 kN at the roof
level.

To assess the lateral displacement demand on the struc-
ture, a finite element reliability analysis is undertaken in
order to obtain the probability that the total drift of the
roof exceeds 3%. The performance function for this
response event is

g ¼ 3%� 12 m� u13; ð35Þ
where u13 is the horizontal displacement at node 13. The
MPP in the FORM analysis is obtained after five evalua-
tions of the performance function and its gradient. That
is, five runs of the finite element analysis with different real-
izations of the random variables are required. The resulting
reliability index, b, is 2.01, which implies a 0.022 probabil-
ity of exceeding the 3% target drift. Fig. 3 shows the dis-
placement response at node 13 versus the load factor at
the mean realization and the MPP realization of the ran-
dom variables. As expected, moderate nonlinearity is
observed at the mean, while significant yielding occurs at
the failure displacement.

Of particular interest in this paper is the ranking of the
random variables according to the importance measure in
Eq. (5). The 25 most important variables as the 179 ran-
dom variables are shown in Table 1. The yield strengths
of the column members, except that of member 12, which
ranks 34th, rank among the most important parameters.
This emphasizes the fact that yielding takes place in the col-
umns in this example. The web depth, d, and flange width,
bf, of several column members rank 12 through 25 in Table
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alizations of the random variables for the steel structure.
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thus indicating a relatively high importance of imperfection
in the global geometry of the structure.

10.2. Finite element reliability analysis of reinforced concrete

structure

It is of interest to investigate whether the observations
made for the steel frame are also valid for a reinforced con-
crete frame. For this purpose, a reliability analysis of the
two-bay, two-story structure in Fig. 4 is performed. Each
frame member is represented by a single force-based ele-
ment to capture the variation in curvature that results from
the interaction of axial and moment forces. Each fiber in
Fig. 4. Reinforced concrete frame structure. Node numb

Fig. 5. Material models for (a) steel, (b) unconfined concrete in girders and
the cross-sections shown in Fig. 4 is modeled by a uniaxial
material model. The core and cover concrete material fibers
are described by a uniaxial model with a modified Kent–
Park backbone curve [21] with zero stress in tension and
linear unloading/reloading, as shown in Fig. 5b and c,
respectively. The bilinear model used in the previous exam-
ple represents the stress–strain response of the reinforcing
steel.

All material and geometry parameters are considered
uncertain. The cross-sectional dimensions b and h of the
members are uncorrelated normal random variables with
the mean values given in Fig. 4 and 5% cov. The area of
each reinforcing bar is a normal random variable with
ers and element numbers (in parentheses) are shown.

column cover regions, and (c) confined concrete in column core regions.
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Fig. 6. Load–displacement response at the mean and MPP realizations of the random variables for the reinforced concrete structure.

Table 2
Ranking of the 25 most important parameters in the reinforced concrete
frame example

Object Parameter c-Value

Member 3 h �0.34697
Member 7 h �0.34339
Member 4 h �0.32343
Member 8 h �0.31364
Member 4 fy �0.2853
Member 5 h �0.24275
Member 8 fy �0.23581
Member 7 fy �0.23421
Member 3 fy �0.17896
Member 3 Cover depth 0.15903
Member 1 h �0.15483
Member 4 Cover depth 0.14254
Member 7 Cover depth 0.1311
Member 5 Cover depth 0.12401
Member 4 �cover

cu 0.12336
Member 8 Cover depth 0.12045
Member 5 fy �0.12021
Member 1 fy �0.09227
Node 2 x-coordinate �0.0902
Member 1 Cover depth 0.07958
Node 5 x-coordinate 0.07674
Member 10 fy �0.07497
Member 4 f 0core

c 0.07103
Member 9 fy �0.06721
Node 3 x-coordinate �0.06562
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the mean value shown in Fig. 4 and 2% cov. The thickness
of the cover concrete in each member is a normal random
variable with mean 75 mm and 10% cov.

The elastic modulus, E, of the reinforcing steel of each
member is a lognormal random variable with mean
200,000 MPa, 5% cov, and correlation coefficient 0.6 with
E of the other members. The reinforcing steel yield
strength, fy, for each member is a lognormal random vari-
able with mean 420 MPa, 10% cov, and correlation coeffi-
cient 0.6 with fy of the other members. The stiffness ratio, a,
of the reinforcing steel of each member is a lognormal ran-
dom variable with mean 0.05, 10% cov, and correlation
coefficient 0.6 with a of the other members. All concrete
material parameters in Fig. 5b and c are lognormal random
variables with the mean values shown in the figures and
10% cov. The concrete strength parameters, f 0c and f 0cu,
are inter-correlated by 0.6, as are the corresponding strains,
ec and ecu. The two coordinates of each node are considered
to be uncorrelated normal random variables. The vertical
coordinates are assigned a standard deviation of 10 mm,
while the horizontal coordinates are assigned standard
deviations that vary from 10 mm at the base to 20 mm at
the roof. There are a total of 142 random variables for this
reliability analysis. The gravity loads are G4 = G6 = G8 =
850 kN, G5 = 1700 kN, and G7 = G9 = 430 kN, while the
lateral loads are P4 = 450 kN and P7 = 900 kN. All of
the applied loads are deterministic.

The performance function for this example is defined to
determine the probability the roof displacement will exceed
2% drift:

g ¼ 2%� 8:3 m� u7; ð36Þ
where u7 is the lateral displacement of node 7. A FORM
finite element reliability analysis converges in nine itera-
tions to the reliability index 2.76 with corresponding prob-
ability 0.0029. Significant nonlinearity occurs at the most
likely failure realization of the random variables, as shown
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in Fig. 6. The 25 most important random variables are
listed in Table 2. Remarkably, it is found that the cross-sec-
tion height h of the members adjacent to the inner connec-
tion are the most important parameters, followed by the
yield strength of the reinforcing steel of the same members.
These results indicate a high influence of geometrical
imperfections on the reliability of the reinforced concrete
structure. It is also noted that the depth of the cover con-
crete ranks high in importance. This finding may justify
further investigation of the dispersion in the amount of
cover in reinforced concrete structures. As in the previous
example, the global structural shape imperfection repre-
sented by the horizontal nodal coordinates also ranks high
in importance with nodes 2, 3, and 5 listed among the 25
most important random variables.
Fig. 7. Wide flange section dimensions and fiber discretization.
11. Conclusions

A comprehensive and unified treatment of response sen-
sitivity equations by the direct differentiation method was
developed. Geometric, material, and load parameters are
included in both the force-based and the displacement-
based formulations of inelastic beam-column response. Sen-
sitivity equations for global shape parameters account for
geometric imperfections of structural members discretized
into multiple finite elements. The analytical equations have
been implemented and verified in the OpenSees software.
The finite element reliability analysis of a three-bay, three-
story steel frame demonstrated the member cross-sectional
dimensions, particularly the section depth and the flange
width, rank high in importance. For the two-bay, two-story
reinforced concrete structure, the cross-section depth, as
well as the thickness of the cover concrete, are important
parameters relative to the material parameters. In each
example, the importance ranking of geometrical imperfec-
tions relative to other structural parameters indicates a sig-
nificant influence of uncertain geometrical parameters on
reliability assessments, even when the dispersion in the
probability distribution is small.
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Appendix I. Wide flange section shape sensitivity equations

As indicated in Eq. (30), it is necessary to compute the
derivatives oas/oh and oAi/oh at each fiber location in order
to account for variations in the geometric parameters that
define a fiber-discretized cross-section. The derivative of
the section compatibility matrix at the ith fiber location is
oas=oh ¼ ½ 0 �oyi=oh �.

The section is defined by the following geometric param-
eters, as shown in Fig. 7 the overall section depth, d; the
web thickness, tw; the flange width, bf; and the flange thick-
ness, tf. The number of fibers through the depth of the web
is Nfw, and Nff is the number of fibers through the thickness
of each flange. Each of the derivatives, od/oh, otw/oh,
obf/oh, and otf/oh is equal to either one or zero depending
on the property h represents in the structural model. Both
Nfw and Nff are deterministic parameters.

I.1. Web fibers

From the section dimensions and the number of fibers,
the area of each fiber in the web is the web area divided
by the number of web fibers:

Aw ¼
dwtw

N fw

; ð37Þ

where the depth of the web, dw is

dw ¼ d � 2tf : ð38Þ
The distance from the reference axis to the centroid of the
ith web fiber is

yi ¼
d
2
� tf

� 	
� i� 1

2

� 	
dw

N fw

; i ¼ 1; . . . ;N fw: ð39Þ

The differentiation of Eq. (37) with respect to h gives the
sensitivity of the size of the web fibers to the parameter

oAw

oh
¼ 1

N fw

dw

otw

oh
þ odw

oh
tw

� 	
; ð40Þ

where the sensitivity of the web depth is

odw

oh
¼ od

oh
� 2

otf

oh
: ð41Þ

Similarly, the differentiation of Eq. (39) gives the sensitivity
of the web fiber centroid locations
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oyi

oh
¼ 1

2

od
oh
� otf

oh

� 	
� i� 1

2

� 	
1

N fw

odw

oh
; i ¼ 1; . . . ;N fw:

ð42Þ
I.2. Flange fibers

For the fibers in the flange regions, the size of each fiber is

Af ¼
bf tf

N ff

; ð43Þ

and the centroid location of the ith fiber is

yi ¼
d
2
� i� 1

2

� 	
tf

N ff

; i ¼ 1; . . . ;N ff : ð44Þ

The sensitivity of the size of each flange fiber to h is

oAf

oh
¼ 1

N ff

bf

otf

oh
þ obf

oh
tf

� 	
; ð45Þ

while the sensitivity of the ith flange fiber centroid location is

oyi

oh
¼ 1

2

od
oh
� i� 1

2

� 	
1

N ff

otf

oh
; i ¼ 1; . . . ;N ff : ð46Þ
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