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Abstract

An analysis method for moving loads computes the internal force history in a structural member at the integration points of force-based
finite elements as opposed to the end forces of a refined displacement-based finite element mesh. The force-based formulation satisfies strong
equilibrium of internal section forces with the element end forces and the moving load. This is in contrast with displacement-based finite
element formulations that violate equilibrium between the section forces and the equivalent end forces computed for the moving load. A new
approach to numerical quadrature in force-based elements allows the specification of integration point locations where the section demand is
critical while ensuring a sufficient level of integration accuracy over the element domain. Influence lines computed by numerical integration in
force-based elements converge to the exact solution and accurate results are obtained for practical applications in structural engineering through
the new low-order integration approach. The proposed methodology for moving load analysis has been incorporated in automated software to
load rate a large number of bridges efficiently.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Moving load analysis requires an accurate computation of
structural response quantities in order to determine the posi-
tion or combination of live loads that will produce the highest
demand at critical locations in a structure. Examples of critical
locations are flexural bar cutoffs or changes in stirrup spacing in
reinforced concrete members and section transitions in built-up
steel members. Influence lines show the variation of a particu-
lar response quantity (shear force, bending moment, etc.) at a
location as a unit load moves across the structure. An influence
line can then be used to evaluate the magnitude of the response
quantity for more complex loading events. Influence lines
are particularly useful for the analysis of vehicle loads on
bridge structures, loads on crane runways, and live load pat-
terns in multi-story frame structures.
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Qualitative influence lines can be constructed using the
Müller–Breslau principle described in structural analysis texts;
however, it is often necessary to generate quantitative in-
fluence lines for structural design and assessment. Classical
structural analysis methods, such as moment distribution and
slope-deflection, become relatively time consuming when used
to construct quantitative influence lines. Computerized struc-
tural analysis programs provide a more efficient alternative by
allowing repeated analyses for several positions of a moving
load.

The most common approach to compute internal forces is
to use displacement-based finite elements, which prescribe an
approximate displacement field along the element [1–3]. The
displacement fields for standard beam-column finite element
implementations, e.g., assumed linear axial displacement and
cubic Hermitian transverse displacement fields, do not account
for interior element loads, such as a point load that moves
across the element domain. Consistent with the principle of
virtual displacements, the computation of equivalent end forces
for the finite element solution produces a weak equilibrium
error between the element end forces, the moving load, and the
internal section forces along the element. This error is mitigated
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Nomenclature

b section force interpolation matrix
e section deformation vector
fs section flexibility matrix
ks section stiffness matrix
N number of element integration points
q element basic force vector

s section force vector
sp section force vector due to interior element loads
v element deformation vector
w integration point weight
x integration point location

by placing a node at each critical location along the member
(h-refinement) and treating the internal forces of the member
as the end forces of the elements in the refined mesh. The
drawback to this rigid body equilibrium calculation is that it
decouples the internal member forces from a constitutive rela-
tionship that accounts for interaction, e.g., moment and shear,
at the critical location. Timoshenko beam elements account for
moment–shear interaction along the element length, but this
approach still suffers from the aforementioned error in weak
equilibrium in the presence of interior loads and thus requires
refinement of the finite element mesh.

An alternative approach to simulate beam-column response
is the force-based formulation [4], which imposes strong equi-
librium of internal section forces with the element end forces
and loads applied on the element interior. This equilibrium
condition alleviates the need for mesh refinement in order to
compute the internal forces in a structural member subjected
to a moving load. The internal forces are computed at the
integration points of the finite element and only a numerical
integration error is present in the analysis. The drawback to the
force-based approach, however, is the integration point loca-
tions seldom coincide with critical locations along the structural
member. As a result, it is difficult to compute the internal section
forces at specified critical locations when using force-based
elements to simulate the response of a structure to moving loads.
Neuenhofer and Filippou [5] give details on how force-based
elements are implemented in a general stiffness-based finite
element setting and describe the advantages of using force-
based elements to simulate nonlinear material response.

This paper explores additional advantages of force-based
elements in analyzing planar structures for moving loads. A
new approach to numerical integration in force-based finite
elements, where the specification of critical section locations
as the element integration points makes mesh refinement un-
necessary, is also developed. These objectives are addressed by
performing static, two-dimensional analyses of moving loads,
the results of which can be modified by impact and distribu-
tion factors in order to approximate dynamic effects of vehi-
cle loading and three-dimensional effects of load transfer, e.g.,
through a bridge deck. This modeling approach reflects the
state of practice in the design and load rating of bridge girders.
State of the art finite element models that account explicitly
for vehicle–bridge dynamic interaction have been developed
by several researchers, e.g., Tan et al. [6], Ju et al. [7], and
Kwasniewski et al. [8] to name a few, but are not addressed
herein.

This paper begins with an overview of the force-based
element formulation, along with a comparison of the internal
equilibrium conditions that arise in displacement- and force-
based elements due to a point load that moves along a simply
supported structural member. Optimal quadrature methods that
have a high order of integration accuracy are summarized next,
followed by the development of the new low-order integration
approach that allows the location of each integration point to
be specified along with the associated integration weights at a
selected number of points. The remaining integration weights
are computed in order to ensure numerical integration accuracy
over the entire element domain. This paper concludes with
example applications that demonstrate the numerical accuracy
of the new integration approach in force-based elements is on
par with that offered by optimal quadrature rules, but with the
important advantage of computing the internal force history
at user-defined critical locations along a structural member
during a moving load analysis.

2. Force-based finite element formulation

The force-based beam elements considered in this paper are
formulated in a two-dimensional basic system, free of rigid
body displacement modes [9]. The simply supported basic sys-
tem is shown in Fig. 1, where the basic forces (axial force and
end moments) are collected in the vector

q = [q1 q2 q3 ]T. (1)

The corresponding element deformations are the change in
length and the end rotations

v = [v1 v2 v3 ]T. (2)

The internal forces at any location, x, along the element are
collected in the section force vector

s(x) = [P(x) M(x) V (x) ]T, (3)

where P is the section axial force, M is the section bending
moment, and V is the section shear force (Fig. 1). The corre-
sponding section deformations, or section strains, are collected
in the vector

e(x) = [ �(x) �(x) �(x) ]T, (4)

where � is the axial deformation, � is the curvature, and �
is the shear deformation of the section, each of which is
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Fig. 1. Simply supported basic system and section forces for two-dimensional
beam-column elements.

work-conjugate to the corresponding value in s(x). Equilibrium
between section forces and the basic forces and applied element
loads is expressed in strong form:

s(x) = b(x)q + sp(x). (5)

The matrix b(x) contains the force interpolation functions that
represent the homogeneous solution to beam equilibrium (con-
stant axial and shear forces with linearly varying bending mo-
ment):

b(x) =
⎡
⎣1 0 0

0 x/L − 1 x/L

0 1/L 1/L

⎤
⎦ . (6)

The vector sp(x) in Eq. (5) represents the particular solution
to beam equilibrium for an interior element load applied in the
basic system. Expressions for sp(x) considering several types
of element loading are found in structural analysis texts. For a
transverse point load, F, located a distance x0 along an element,
this vector is

sp(x) =
⎡
⎣0

FL�0(1 − �0)(1 − (�0 − �)/�∗)
F�0(1 − �0)/�

∗

⎤
⎦ , (7)

where � = x/L and �0 = x0/L, as shown in Fig. 2, and

�∗ =
{

�0, ���0,

�0 − 1, � > �0.
(8)

For a transverse load that moves across the element, the section
forces in Eq. (7) evolve as a function of the position variable
�0. An important advantage of the force-based formulation is
the ability to account for section shear force directly in the
element equilibrium relationship [10]. For moving load analy-
sis, the section shear force is computed from static equilibrium
of the basic forces and the interior point load applied at a given
location.

The section forces are related to the section deformations
through a constitutive relationship. In this paper, linear-elastic

Fig. 2. Bending moment and shear force developed in the simply supported
basic system for a transverse point load.

section response is considered, where the section forces are ex-
pressed as a matrix–vector product of the section deformations:

s(x) = ks(x)e(x), (9)

where ks is the matrix of section stiffness coefficients derived
from the material properties and dimensions of the cross-
section. In the force-based formulation, it is necessary to
express the section force–deformation relationship of Eq. (9)
in compliance form:

e(x) = fs(x)s(x), (10)

where fs(x) = k−1
s (x) is the section flexibility matrix.

According to the principle of virtual forces, along with
Eqs. (5) and (10), the element compatibility relationship in the
force-based formulation is expressed in integral form:

v =
(∫ L

0
bT(x)fs(x)b(x) dx

)
q +

∫ L

0
bT(x)fs(x)sp(x) dx.

(11)

It is assumed in this paper that Eq. (11) is evaluated by an
N -point numerical integration rule as a summation of N dis-
crete function evaluations at locations, x1, . . . , xN , with asso-
ciated integration weights, w1, . . . , wN :

v =
(

N∑
i=1

bT(xi)fs(xi)b(xi)wi

)
q +

N∑
i=1

bT(xi)fs(xi)sp(xi)wi .

(12)

For a prismatic element, fs(x) is constant along the length, and
quadratic polynomials appear in the first term on the right-hand
side of Eq. (12) from the squaring of the linear interpolation
functions in b(x), thus it is possible to evaluate this term ex-
actly with a quadrature rule that exactly integrates quadratic
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Fig. 3. Comparison of the computed and exact solutions to the influence line for the midspan bending moment of a simply supported beam using: (a) a single
displacement-based element; (b) a single force-based element.

polynomials. The second term on the right-hand side of Eq. (12)
contains a discontinuity in sp(x) when a transverse point load
is applied on the element interior, which is evident from the
jump in the shear diagram of Fig. 2. Consistent with numerical
analysis theory, an error will appear from evaluating this term
by numerical integration because the stated accuracy of any
quadrature method is based on the assumption of continuity, of
the integrand and its derivatives [11].

With the overview of the force-based formulation complete,
the difference between the displacement- and force-based for-
mulations is illustrated in the moving load analysis of the sim-
ply supported beam shown in Fig. 2. The analysis is performed
with a single displacement-based element (cubic Hermitian
polynomials for the transverse displacement field), and then the
analysis is repeated using a single force-based element. The
governing equations in each element formulation are evaluated
by three-point Gauss–Lobatto quadrature in order to compute
an influence line for the midspan bending moment. As seen in
Fig. 3, there is a significant error in the influence line com-
puted with one displacement-based element since the internal
bending moment is constrained to the equivalent end moments
computed from the transverse displacement field. On the other
hand, the analysis with one force-based element captures the
exact solution. There is no numerical integration error in the
force-based solution because the structure is statically determi-
nate, i.e., no compatibility equations have to be satisfied by the
analysis. The exact solution for the midspan moment influence
line in the displacement-based formulation can be obtained by
subdividing the span into two elements with an additional node
at midspan. The midspan moment is then equal to the end mo-
ments of the adjacent elements; however, this approach is less
than ideal because it requires refinement of the finite element
mesh and it decouples the internal force computation from a
constitutive model that accounts for the interaction of section
forces at the element integration points.

3. Optimal element integration methods

This section contains an overview of two optimal numerical
integration methods that integrate the highest order polynomial

possible under the given constraints on the integration point lo-
cations and weights. First is Gauss–Lobatto quadrature, which
is commonly used in the implementation of force-based finite
elements. This is followed by the method of undetermined co-
efficients, of which Newton–Cotes quadrature is a special case.

3.1. Gauss–Lobatto quadrature

Gauss–Lobatto quadrature [12] is the standard approach to
evaluate the element integral (Eq. (12)) in the force-based for-
mulation because it places sample points at the element ends,
where bending moments are largest in the absence of interior
element loads. This quadrature method exactly integrates poly-
nomials up to order 2N − 3, i.e., from x0 to x2N−3, where N

is the number of sample points. In addition to its high order
of accuracy, Gauss–Lobatto quadrature is numerically stable
since all integration weights are positive for any selection of N .
The primary disadvantage to this approach is the locations and
weights of the sample points are determined from optimality
conditions for the integration of high-order polynomials that are
rarely encountered in practical structural engineering applica-
tions. Accordingly, neither the locations nor the weights of the
sample points (excluding those at the element ends) have any
correlation to the physical characteristics of a structural sys-
tem, e.g., the location of bar cut-offs, changes in stirrup spac-
ing, or observed plastic hinge lengths [13]. Furthermore, the
high order of integration accuracy for this quadrature method
in the force-based formulation is compromised because discon-
tinuities appear in the integrand of Eq. (12) in the presence of
interior point loads.

3.2. Method of undetermined coefficients

To alleviate the optimality constraints imposed by the
Gauss–Lobatto quadrature method, it is possible to specify
the location of each sample point and construct a quadrature
method of a lower order of integration accuracy. This approach
treats the N sample point locations, x1, . . . , xN , as known val-
ues while the associated weights, w1, . . . , wN , are computed
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in order to ensure exact integration of polynomials up to order
N − 1. The integration weights are found by the solution for
the undetermined coefficients in the Vandermonde system [14]:⎡
⎢⎢⎢⎢⎣

1 1 · · · 1

x1 x2 · · · xN

...
...

. . .
...

xN−1
1 xN−1

2 · · · xN−1
N

⎤
⎥⎥⎥⎥⎦ ·

⎡
⎢⎢⎢⎢⎣

w1

w2

...

wN

⎤
⎥⎥⎥⎥⎦=

⎡
⎢⎢⎢⎢⎣

b−a

(b2−a2)/2
...

(bN−aN)/N

⎤
⎥⎥⎥⎥⎦ ,

(13)

where [a, b] is the interval of integration. Although this ap-
proach to constructing a quadrature rule permits complete con-
trol over the location of sample points in a force-based element,
there is no control over the resulting integration weights. In fact,
this approach is generally unstable because negative integration
weights can appear for any N �2, i.e., the sum of the absolute
values of the integration weights is greater than the length of the
integration domain. Negative integration weights can lead to a
non-unique solution where the computed response can change
significantly as a function of the number and location of sam-
ple points. It is noted that the solution of the Vandermonde
system in Eq. (13) for equally spaced sample point locations
generates the Newton–Cotes quadrature method [12], which is
stable for any N < 9.

4. Low-order approach to undetermined coefficients

As discussed in the previous section, neither Gauss–Lobatto
quadrature nor the method of undetermined coefficients permits
complete control over the location and weight of each sample
point. Furthermore, negative integration weights can appear via
the method of undetermined coefficients by forcing the resulting
quadrature rule to represent polynomials up to order N − 1,
thereby leading to numerical instability and non-uniqueness of
the computed solution.

In this section, an alternative approach is taken to the method
of undetermined coefficients to construct an N -point quadrature
rule with specified point locations. This approach is based on
the following observations:

1. There will be a numerical integration error for any quadra-
ture method that is used to evaluate the force-based element
compatibility relationship when a transverse point load is
applied on the element interior and causes a discontinuity
of the integrand in Eq. (12).

2. For the common case of a prismatic element without interior
loads (sp(x) = 0), the integration of quadratic polynomials
is sufficient to represent the product of a linear curvature
distribution with the linear bending moment interpolation
functions in Eq. (12).

From these observations, it is seen that for an N -point quadra-
ture rule with specified locations, only three integration weights
need to be treated as unknown in order to integrate up to
quadratic polynomials, i.e., x0, x1, and x2, which are necessary
to represent a linear curvature distribution along an element.
As a result, the remaining N − 3 weights can be specified in

addition to the N locations while maintaining a sufficient level
of numerical accuracy for elements without interior point loads.

To formalize this procedure of constructing an N -point
quadrature rule with specified locations and partially specified
weights, the integration points are divided into two groups,
those constrained to have a specified weight and those where
the weight is treated as unknown. The number of integration
points where the corresponding weight is specified is Nc, while
Nf = N − Nc is the number of integration points where the
associated weight is unknown. Accordingly, the integration
point locations are denoted xf and xc, while the weights are
wf and wc. A Vandermonde system on the order of Nf can
then be solved to obtain the unknown weights, which will
ensure accurate integration of polynomials up to the order of
Nf − 1. Consequently, Eq. (13) is modified by moving to the
right-hand side the contributions of the Nc integration points
for which both the location and weight are specified

⎡
⎢⎢⎢⎢⎣

1 1 · · · 1

xf 1 xf 2 · · · xf Nf

...
...

. . .
...

x
Nf −1
f 1 x

Nf −1
f 2 · · · x

Nf −1
f Nf

⎤
⎥⎥⎥⎥⎦ ·

⎡
⎢⎢⎢⎢⎣

wf 1

wf 2

...

wf Nf

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(b − a) −
Nc∑
j=1

wcj

(b2 − a2)/2 −
Nc∑
j=1

xcjwcj

...

(bNf − aNf )/Nf −
Nc∑
j=1

x
Nf −1
cj wcj

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (14)

To ensure that the integration rule can represent a linear cur-
vature distribution, which occurs in the analysis of prismatic
structural members without interior loads, Nf �3 is required.
Although this approach does not guarantee that all integration
weights computed via Eq. (14) will be positive, it makes the
resulting quadrature rule physically significant by allowing the
integration weights to be specified at selected locations and
removes the constraints of integrating high-order polynomials
that are rarely encountered in structural engineering applica-
tions. Thus, in addition to moving load analysis, this numerical
integration approach is suited to represent nonlinear material
response over prescribed lengths in a structural member, e.g.,
in plastic hinge zones of beam-column members and in shear
critical D-regions adjacent to continuous beam supports.

5. Numerical examples

The low-order approach to the method of undetermined co-
efficients presented in this paper has been implemented in
the OpenSees finite element software framework [15] to com-
plement the existing implementation of force-based elements
using Gauss–Lobatto integration. The convergence behavior
of each approach to numerical integration in the force-based
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formulation is investigated for computing influence lines in the
first example. Then, applications to the moving load analysis
of a bridge structure are explored in the second example.

A B

L=15m L=15m

1.0 kN

Fig. 4. Two-span structure with a single force-based element along each span
and internal forces computed at section A (middle of span 1) and section B
(end of span 1) for a moving unit load.
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Fig. 5. Integration point locations used in the undetermined coefficients and
low-order undetermined coefficients approaches to demonstrate the conver-
gence behavior of the moment and shear influence lines computed using a
single force-based element in each span of the two-span structure in Fig. 4.

Table 1
Integration weights computed by undetermined coefficients and the low-order approach to undetermined coefficients in order to investigate the convergence
behavior of each quadrature method

Undetermined coefficients Low-order

i xi/L, 1.0 − xN−i+1/L wi , wN−i+1(/L) wi , wN−i+1 (/L)

N = 3 1 0.0 0.1667 0.1667
2 0.5 0.6667 0.6667∑ |wi |/L 1.0 1.0

N = 5 1 0.0 −0.07357 0.05
2 0.075 0.3325 0.1615
3 0.5 0.4821 0.5770∑ |wi |/L 1.294 1.0

N = 7 1 0.0 0.08781 0.05
2 0.075 −0.2783 0.05
3 0.125 0.4977 0.1432
4 0.5 0.3857 0.5136∑ |wi |/L 2.113 1.0

N = 9 1 0.0 −0.001350 0.05
2 0.075 0.3714 0.05
3 0.125 −0.6366 0.05
4 0.175 0.6101 0.1241
5 0.5 0.3219 0.4519∑ |wi |/L 3.561 1.0

5.1. Convergence of influence lines for each quadrature
method

In this example, moment and shear influence lines computed
by the integration methods presented in this paper are compared
to the exact solution for the bending moment and shear forces
developed at sections A and B in the two-span structure shown
in Fig. 4. Section A is at the middle of span 1, a location of
high moment and low shear; whereas section B is located at the
right end of span 1, just to the left of the continuous support, at
a negative moment location with high shear. The structure has
a prismatic cross-section and linear-elastic material properties
for flexural and shear deformations at each section. Poisson’s
ratio is assumed to be 0.3 and the radius of gyration for the
cross-section is 0.394 m. Each span length is L = 15 m.

The convergence of the computed influence lines is demon-
strated using a single force-based finite element per span with
N =3, 5, 7, and 9 integration points in each quadrature method.
An odd number of integration points in the Gauss–Lobatto and
Newton–Cotes methods will ensure that internal forces will be
sampled at sections A and B of the structure. For the quadra-
ture approaches based on undetermined coefficients, integration
points are placed at the middle and at the ends of each element
with successive integration points placed on the interior of the
domain for N > 3. For the low-order approach, the weights at
the middle three integration points are treated as undetermined
coefficients, while the weights at the remaining N − 3 inte-
gration points are set equal to 0.05L. These integration point
locations are shown in Fig. 5, and the associated integration
weights computed by Eqs. (13) and (14) for each approach are
listed in Table 1.
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Fig. 6. Moment and shear influence lines for the two-span structure of Fig. 4 computed with the five point (N =5) Gauss–Lobatto and low-order undetermined
coefficients approaches: (a) middle of span 1; (b) right end of span 1.

The results of the moving load analysis using the Gauss–
Lobatto and the low-order undetermined coefficients integration
methods with N=5 are shown in Fig. 6 as influence lines for the
internal moment and shear at sections A and B of the two-span
structure. As seen in Fig. 6(a), the computed solution matches
the exact solution for the moment and shear influence lines at
section A, where flexural response dominates. At section B,

with negative moment and high shear, there is a noticeable error
in the computed solution for the moment influence line shown
in Fig. 6(b). This error is significant in both the Gauss–Lobatto
and the low-order integration approaches, and it arises from the
change in sign of the section shear force interpolated from the
moving load as the load moves across each integration point.
As seen in the shear diagram of Fig. 2, when the load is just
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Fig. 7. Percent errors for the internal moment and shear computed at section A of the two-span structure in Fig. 4 for each numerical integration approach
with an increasing number of integration points.

to the left of a particular section, the section shear force is
positive. Then the load moves just to the right of the section
and the shear force suddenly changes to a negative value. These
errors are more significant at the shear critical section B than
at section A because the effect of shear deformation on the
element compatibility relationship is negligible at midspan. It is
noted that numerical errors occur at the critical sections in the
first span even as the load moves across the second span because
the numerical error of the element compatibility relationship in
the second span will propagate throughout the structure.

To summarize the convergence behavior of each integra-
tion approach (Gauss–Lobatto, Newton–Cotes, undetermined
coefficients, and low-order undetermined coefficients) as the
number of integration points increases, the error between
the computed and exact solution is determined according to
the definition

E(i) =
∣∣∣∣R(i) − Rexact(i)

Rmax

∣∣∣∣ · 100, (15)

where i indicates a location ordinate as the load moves across
the structure, R is the response ordinate, and Rmax is the maxi-
mum response over all location ordinates in the exact solution.
Scaling the absolute error by Rmax rather than Rexact(i) avoids
spuriously large relative errors when the exact solution for the
response ordinate is close to zero. The maximum percent er-
ror over all values of the location ordinate is shown in the
bar charts in Figs. 7 and 8 for sections A and B, respectively.
Each integration method gives identical results with N = 3, for
which the well-known Simpson’s rule is recovered in all cases.
Gauss–Lobatto quadrature has the highest rate of convergence

for increasing N , while the low-order approach converges at
the slowest rate because the integration accuracy stays constant
with increasing N . Newton–Cotes quadrature shows a reduc-
tion in the percent error up to N = 9, in which case a negative
integration weight appears, causing the error to increase. There
is a lack of convergence of the computed result to the exact so-
lution with the method of undetermined coefficients for N �5
due to the appearance of negative integration weights from the
solution to Eq. (13) for the locations specified in Fig. 5.

5.2. Application to bridge analysis

The application of the low-order undetermined coefficients
integration method in the force-based element formulation to
computing the moment-shear demand history at critical sections
in a structure is presented in this example for the moving load
analysis of a conventionally reinforced concrete deck girder
bridge. The structure is the McKenzie River Bridge, located on
Interstate-5 just north of Eugene, OR, and shown schematically
in Fig. 9. Each span is 15.25 m long and the girder is 1.22 m
deep, and 0.33 m wide. Prismatic, linear-elastic response is as-
sumed along each span using the elastic properties of concrete
and the girder cross-section dimensions. A three-axle AASHTO
HS-20 design truck [16] moves across the bridge.

A single force-based element is used to compute the response
of each span, and the integration points for each element cor-
respond to the seven span locations identified as critical for
rating [17]. These critical locations, shown in Fig. 9, repre-
sent changes in stirrup spacing, flexural reinforcing steel cut-off
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Fig. 8. Percent errors for the internal moment and shear computed at section B of the two-span structure in Fig. 4 for each numerical integration approach
with an increasing number of integration points.

Span 1 Span 2 Span 3

6 754321
N = 7

15.25m 15.25m 15.25m

1.22m

1.22m1.83m 1.22m 1.83m

2.44m 3.81m 7.62m

2.74m 2.74m3.67m

4.3m 4.3m HS-20

Sp d Computed Sp d

1.22m

0.33m

Cross-section

Critical sections in each span

145kN 145kN 35kN

11.44m 12.81m 14.03m

Fig. 9. Model of the McKenzie river bridge with seven section locations identified along each span as critical for rating.

locations, and locations of diagonal cracks from inspection data.
To construct a quadrature method that uses these locations in
the low-order approach to numerical integration, an integra-
tion weight of 1.83 m is assigned to sections 1 and 7, while a
weight of 1.22 m (equal to the depth of the bridge girder) is as-
signed to sections 2 and 6. The remaining integration weights
at sections 3–5 are determined by the solution of Eq. (14) to
be approximately 2.74, 3.67, and 2.74 m, respectively.

The internal moment and shear demand history at each crit-
ical location due to the moving load pattern is computed using
one force-based beam element in each span with the locations
and weights of the integration points described above. The anal-
ysis results are shown in Fig. 10 for the moment and shear at
the middle of span 1 and at the farthest right location (section 7)
in span 2, 29.3 m from the left abutment. The computed mo-
ment and shear demand histories are very close to the exact



Author's personal copy

A. Kidarsa et al. / Finite Elements in Analysis and Design 44 (2008) 214 – 224 223

0 15.25 30.5 45.75 54.35
−200

0

200

400

600

800

M
om

en
t (

kN
.m

)

Exact
Low Order

0 15.25 30.5 45.75 54.35
−150

−100

−50

0

50

100

Front Axle Location from Left Abutment (m)

Sh
ea

r 
(k

N
)

0 15.25 30.5 45.75 54.35
−400

−300

−200

−100

0

100

M
om

en
t (

kN
.m

)

Exact
Low Order

0 15.25 30.5 45.75 54.35
−250

−200

−150

−100

−50

0

50

Front Axle Location from Left Abutment (m)

Sh
ea

r 
(k

N
)

Fig. 10. Comparison between the computed and exact solution for the moment and shear demand histories at: (a) middle of span 1; and (b) span 2 at 29.3 m
from the left abutment of the McKenzie river bridge.

solution, as shown in Fig. 10. The errors for the moment and
shear at the middle of span 1 are 1.63% and 1.18%, respectively.
Similarly, the errors for the moment and shear at 29.3 m from
the left abutment are 4.93% and 0.785%, respectively. Consid-
ering the large amount of uncertainty in estimating structural
capacity from design drawings, material properties, and field
inspection data, this small difference between the computed
and exact solution indicates that specifying critical sections as
integration points within a force-based element using low-order

integration is an accurate and reliable approach to computing
the internal forces of a structure subjected to moving loads.

6. Conclusions

The advantages of using force-based finite elements in the
moving load analysis of structures have been demonstrated.
Since the force-based formulation imposes strong equilibrium
between the section forces and the end moments and interior
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element loads, only a single force-based finite element is
required to simulate the response of a structural member to
moving loads. Further discretization of the finite element
model is not necessary, even as additional critical locations are
included in the analysis. A new numerical integration approach
was presented that allows the specification of critical locations
in a structural member as the integration points of a force-based
element. This integration approach maintains a low order of
integration accuracy that is sufficient for practical applications
in structural engineering. Accurate results for the moment and
shear demand history at specified locations in a structure were
obtained using force-based elements in conjunction with the
new integration approach. Although the numerical examples
focused on linear-elastic structural response, further applica-
tions of this integration approach include the representation,
using a single force-based finite element, of the spread of plas-
ticity across prescribed plastic hinge lengths and the smearing
of moment–shear interaction over D-regions at continuous
structural supports. The results of this research have been in-
corporated in load rating software developed for the Oregon
Department of Transportation to rate the large number of
bridges in the state inventory in an efficient manner [18].
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