
Nonlinear Finite-Element Analysis Software Architecture
Using Object Composition

Frank McKenna1; Michael H. Scott2; and Gregory L. Fenves3

Abstract: Object composition offers significant advantages over class inheritance to develop a flexible software architecture for finite-
element analysis. Using this approach, separate classes encapsulate fundamental finite-element algorithms and interoperate to form and
solve the governing nonlinear equations. Communication between objects in the analysis composition is established using software design
patterns. Root-finding algorithms, time integration methods, constraint handlers, linear equation solvers, and degree of freedom numberers
are implemented as interchangeable components using the Strategy pattern. The Bridge and Factory Method patterns allow objects of the
finite-element model to vary independently from objects that implement the numerical solution procedures. The Adapter and Iterator
patterns permit equations to be assembled entirely through abstract interfaces that do not expose either the storage of objects in the
analysis model or the computational details of the time integration method. Sequence diagrams document the interoperability of the
analysis classes for solving nonlinear finite-element equations, demonstrating that object composition with design patterns provides a
general approach to developing and refactoring nonlinear finite-element software.

DOI: 10.1061/�ASCE�CP.1943-5487.0000002

CE Database subject headings: Computer programming; Computer software; Finite element method; Nonlinear analysis.

Author keywords: Computer programming; Computer software; Finite element method; Nonlinear analysis.
Introduction

Performance-based methodologies in structural engineering
have increased the need for high-fidelity simulation of structural
response under extreme loads, such as earthquake, blast, and
other events that may cause damage or lead to progressive col-
lapse �Moehle and Deierlein 2004�. Simulation software for
performance-based engineering must be able to accommodate so-
phisticated constitutive models for conventional and novel mate-
rials and soils, large displacement analysis methods, and robust
solution algorithms for dynamic loads, among many other re-
quirements. The finite-element method provides a general meth-
odology for simulating the response of structural and geotechnical
systems to arbitrary loading. To incorporate future developments
and specific user needs, simulation software must provide inter-
faces for new finite-element formulations, solution algorithms,
equation solvers, and support for advanced computing, modeling,
visualization, and data mining. For example, parallel computing
is becoming common in engineering, and structural simulation

1Research Engineer, Dept. of Civil and Environmental Engineer-
ing, Univ. of California, Berkeley, CA 94720. E-mail: fmckenna@
ce.berkeley.edu

2Assistant Professor, School of Civil and Construction Engineering,
Oregon State Univ., Corvallis, OR 97331 �corresponding author�. E-mail:
michael.scott@oregonstate.edu

3Dean, Cockrell School of Engineering, Univ. of Texas at Austin,
Austin, TX 78712. E-mail: dean@engr.utexas.edu

Note. This manuscript was submitted on April 21, 2008; approved on
November 2, 2008; published online on December 15, 2009. Discussion
period open until June 1, 2010; separate discussions must be submitted
for individual papers. This paper is part of the Journal of Computing in
Civil Engineering, Vol. 24, No. 1, January 1, 2010. ©ASCE, ISSN

0887-3801/2010/1-95–107/$25.00.

JOURNAL OF COMPUTING

Downloaded 02 Feb 2010 to 128.193.50.33. Redistribution subject to
software needs to be able to take advantage of hardware systems
that range from multicore processors to massively parallel com-
puters �Modak and Sotelino 2002; Peng et al. 2004�.

To address these requirements, finite-element simulation soft-
ware must be designed for computational efficiency, flexibility,
extensibility, and portability. The traditional focus of simulation
software development has been efficiency, but the other goals are
equally important when considering the complete software life-
cycle. Flexibility means that software components can be com-
bined to provide new capability, even if it was not anticipated in
the original design. Extensibility means that both the design and
implementation of software components can be made more spe-
cific or to provide additional functionality. Portable software is
designed to run on a variety of computer architectures and oper-
ating systems to take advantage of new computing capability.

To address these needs, this paper presents a new object-
oriented architecture in which the goals of flexibility, extensibil-
ity, and portability of finite-element software are achieved by
emphasizing object composition over implementation inheritance
in the software design. The major contribution is the use of
composition of software components that implement solution pro-
cedures for the nonlinear governing equations of a finite-element
model. Object composition is shown to provide a superior soft-
ware design compared with the more common use of class in-
heritance. In addition to composition, the software architecture
uses software design patterns to organize communication between
the components of a nonlinear finite-element analysis. The archi-
tecture allows these components to be combined to create cus-
tomized simulation applications, further enhancing flexibility,
extensibility, and portability.

The modular nature of the finite-element method results
from its mathematical formulation �Hughes 1987; Bathe 1996;
Zienkiewicz and Taylor 2005�. Several researchers have devel-

oped object-oriented software designs and implementations for

IN CIVIL ENGINEERING © ASCE / JANUARY/FEBRUARY 2010 / 95

 ASCE license or copyright; see http://pubs.asce.org/copyright

structural analysis and finite-element methods. The encapsulation
of data and methods allows object-oriented programs more flex-
ibility and extensibility than equivalent procedure-oriented pro-
grams �Rumbaugh et al. 1991; Booch 1994; Sommerville 1995�,
which can be exploited in engineering software development
�Fenves 1990; Baugh and Rehak 1992�. A bibliographic listing of
object-oriented finite-element implementations between 1990 and
2003 is given by Mackerle �2004�. Early works �Forde et al.
1990; Miller 1991; Mackie 1992� demonstrated that object-
oriented structural analysis software has shorter development
times and is easier to maintain and extend than procedural soft-
ware. The main drawback to object-oriented software is the com-
putational expense of dynamic memory management, which can
account for up to 30% of program execution time �Chang et al.
2001�, and random utilization of the memory heap which can
cause excessive page faulting in larger programs. This expense
can be mitigated by effective programming techniques such as
passing references to objects to avoid the dynamic allocation of
temporary objects, which is an important consideration for pro-
grams written in C�� �Meyers 1997�. With effective memory
management, the increase in computation time for object-oriented
finite analysis over procedural implementations ranges from 10 to
15% �Dubois-Pelerin and Zimmermann 1993; Rucki and Miller
1996�.

Recent work to advance research in performance-based earth-
quake engineering has been organized around the object-oriented
software framework OpenSees for structural and geotechnical
simulation applications �McKenna et al. 2000�. A software frame-
work is a set of classes that a developer can combine and reuse to
create an application. The framework defines the abstract classes
and provides many of the concrete classes that implement specific
functionality for an application space. The abstract classes define
a common interface for all users of the class, e.g., an abstract
Element class defines methods to compute and return its resisting
forces and tangent stiffness. This set of methods is often referred
to as an “abstract interface.” The concrete classes provide the
implementation of the methods declared in the abstract class,
or if a method has been implemented in the abstract class, the
concrete class can override the method by providing its own
implementation.

<<interface>>
ModelBuilder Domai

populates

TclModelBuilder

Node

MP ConSP Constraint

1

U2 =

0..*

2..*

Fig. 1. Class diagram of high-level domain, analysis, and model build
notation
Developers add functionality by implementing new subclasses

96 / JOURNAL OF COMPUTING IN CIVIL ENGINEERING © ASCE / JANUA

Downloaded 02 Feb 2010 to 128.193.50.33. Redistribution subject to
or by creating new interfaces that derive or combine behavior
from existing components in the framework. The OpenSees
framework has classes for representing finite-element models and
enabling the solution of the governing equations �McKenna
1997�. Fig. 1 shows the high-level classes using the graphical
Unified Modeling Language notation �Booch et al. 1998�, a stan-
dard for expressing object-oriented designs. Central to the frame-
work is the Domain class, which encapsulates the finite-element
model, an aggregation of element, node, load pattern, and single-
and multipoint constraint objects, whose state determines the
structural response.

Although aggregation in the form of the Domain class is a
basic example of object composition, the design of a framework
for solving finite-element equations to meet the goals of flexibil-
ity, extensibility, and portability is more challenging. The first
section of the paper presents a finite-element analysis as a com-
position of loosely coupled algorithms. The subsequent sections
are organized around three fundamental concepts in finite-element
analysis: representing, forming, and solving the governing equa-
tions. Loose coupling is maintained between the software repre-
senting these concepts by using design patterns, as demonstrated
through the use of the sequence diagrams for assembly and solu-
tion of the governing equations. The software design patterns are
presented in the context of the OpenSees framework where they
have been extensively tested and used by researchers and devel-
opers �Miller et al. 2003; Jeremić et al. 2004; Haukaas and Der
Kiureghian 2007�. The concepts and the specific aspects of the
design can be applied to any other finite-element software.

Fundamental Components of a Finite-Element
Analysis

The finite-element method discretizes the governing partial differ-
ential equations of equilibrium, kinematics, and constitution for a
structural problem into a system of nonlinear ordinary differential
equations �ODEs� Zienkiewicz and Taylor 2005�. The ODEs
need to be solved by a time stepping procedure, which is
the computationally intensive phase. At a high level, the major

<<interface>>

<<interface>>

StaticAnalysis

Analysis

LoadPattern

t Element

1..*

0..*

TransientAnalysis

computes state

sses in the OpenSees framework using the unified modeling language
n

strain

2

U1

0..*

ing cla
steps in a simulation are modeling �including the finite-element

RY/FEBRUARY 2010

 ASCE license or copyright; see http://pubs.asce.org/copyright

discretization�, solving the governing equations, and response
interpretation.

The most important operation during the solution phase is to
compute the new state of a domain caused by an applied load or
the addition or removal of elements. A simple object-oriented
approach is to provide a method for the Domain class to imple-
ment an analysis procedure to compute its state. The problem
with giving the domain responsibility to analyze itself is that there
are many types of solution procedures depending on whether the
problem is time-dependent or time-independent, whether the
equations are assembled or handled locally at nodes, whether a
system of equations is solved iteratively or directly, how con-
straints are included in the governing equations, and other char-
acteristics of nonlinear finite-element analysis procedures.

Uncoupling the analysis procedure from the representation of
a domain leads to the need for an analysis class that is separate
and distinct from the domain �Rucki and Miller 1996�. A common
approach to defining the solution procedures is to encapsulate
several components of an analysis in a single class in which the
programmer creates the necessary data structures to solve the
governing equations �Archer et al. 1999�. The disadvantage of
this approach is that a new analysis class would have to be de-
veloped for each combination of analysis components, e.g., time
integration method, nonlinear solution algorithm, and constraint
handling method. If the solution procedure is changed during the
simulation, such as switching from Newton–Raphson to Modified
Newton near local extrema of the response, an entirely new analy-
sis object would need to be instantiated. This may require signifi-
cant overhead if the data structures need to be copied or
reorganized for the new solution procedure. Class inheritance
may be used to specialize analysis procedures for the many solu-
tion combinations; however, this results in a flat hierarchy where
many classes have similar implementations, making the system
difficult to maintain. It is recognized in object-oriented design and
programming that, as a means of extending and reusing code,
class inheritance is best used when inheriting an interface of
specified operations rather than for inheriting implementations of
the operations �Rumbaugh et al. 1991; Booch 1994�.

To overcome the problems with class inheritance for solving
finite-element equations, a flexible and extensible approach of
object composition is used to construct an analysis procedure. In
this architecture, illustrated in Fig. 2, an Analysis object is a com-
position of objects from other classes, each of which is respon-
sible for performing a fundamental operation in determining the
state of the finite-element model. This state determination is ac-

<<interface>>

<<interface>>

<<interface>>

<<interface>>

<<interface>> <<interface>>

Solver

Integrator

ConvergenceTest

Analysis

SystemOfEqn SolutionAlgorithm

Fig. 2. Analysis class as composition of objects that represent th
complished by the interaction between the objects in the compo-

JOURNAL OF COMPUTING

Downloaded 02 Feb 2010 to 128.193.50.33. Redistribution subject to
sition. The Analysis class is abstract and has concrete subclasses
that implement a range of analysis procedures, such as for static
and transient nonlinear structural analysis. Upon construction, the
Analysis object establishes the associations between the objects in
its composition, verifies they are interoperable for the analysis
procedure, and invokes initialization operations requesting the ob-
jects to allocate private data based on the model size. In addition,
methods in the Analysis class allow the objects in the aggregation
to be changed by the user at any instance in time.

The most important method for the Analysis class is analyze��,
which advances the state of the domain for one or more load steps
by invoking operations on the objects in its composition entirely
through abstract classes rather than the concrete classes with
specific implementations. As illustrated in Fig. 3, the implemen-
tation of the analyze�� method for a static analysis loops over a
specified number of steps, forming and solving the equations then
committing the solution after the criterion for convergence is sat-
isfied. The only difference in the code for StaticAnalysis and a
TransientAnalysis is that the integrator is supplied a time incre-
ment for the latter.

A fundamental contribution of this architecture is the use of
composition to establish the relationships between the finite-
element analysis components to solve the governing equations.
Object composition provides greater extensibility and flexibility
than is possible when using class inheritance for defining specific
finite-element analysis procedures. From a software engineering
perspective, this loose coupling of the components in an analysis
allows researchers and developers to focus on specific aspects of
a finite-element solution procedure with minimal consideration of
other aspects. From a user perspective, an analysis can be defined
�or redefined� at runtime by providing different combinations of
the objects that make up the Analysis composition. For example,
in a blast analysis, the first few time steps could be performed
using the explicit Central Difference method with a diagonal
solver, which could then be switched to an implicit Newmark
method and a sparse direct solver for subsequent larger time
steps. This is accomplished by the user creating the appropriate
objects and passing them to the Analysis object, and it is a process
that can be automated via scriptable finite-element analysis where
characteristics of the response determine when to switch solution
procedures.

There are two important issues to consider when designing
classes to perform an analysis. The first is defining the communi-

<<interface>> <<interface>>
ConstraintHandler

DOF GroupFE Element

DomainAnalysisModel

DOF Numberer

GraphNumberer

damental components in the solution of finite-element equations
e fun
cation between the analysis objects and the domain objects, and

IN CIVIL ENGINEERING © ASCE / JANUARY/FEBRUARY 2010 / 97

 ASCE license or copyright; see http://pubs.asce.org/copyright

the second is organizing the analysis objects to represent a wide
range of solution methods. As described in the following section,
software design patterns provide useful approaches to address
these issues.

Software Design Patterns

Design patterns emerged from Alexander �1977�, who developed
a system to generate modular architectural designs that were
adaptable to a wide range of needs. Beck and Cunningham �1987�
were the first to utilize design patterns in software development,
and patterns have since been applied to several engineering prob-
lems �Peckham and MacKellar 2001; Goel and Bhatta 2004; Chen
and Adomaitis 2006�. Software design patterns abstract the essen-
tial relationships between classes, involving both data and opera-
tions, that can be adapted to many different situations. A pattern
includes the class definitions, relationships, and interactions for a
generic problem from which specific implementations can be pro-
duced with the desired functionality as well as the flexibility and
extensibility offered by the pattern. Gamma et al. �1995� provided
an influential catalog of software design patterns that have ap-
peared in many object-oriented designs. By using the recurring
mathematical structure in the finite-element method, developers
can adapt design patterns to create flexible and extensible finite-
element software.

One of the most important software design patterns for com-
putational software is Strategy �Gamma et al. 1995�, where one of
many interchangeable algorithms can be used independently of an
application. By encapsulating the algorithms in separate classes,
this pattern avoids the code duplication and flat class hierarchy
that would result from implementing nearly identical classes that
only differ by their strategy. This pattern has appeared in nearly
all object-oriented finite-element implementations, e.g., where an
element uses interchangeable constitutive models �Scott et al.
2008�. In this work, whose focus is nonlinear solution methods,
the software patterns described in the following sections are ap-
plied to the representation, formation, and solution of governing
equations in the finite-element method.

In addition to implementing interchangeable numerical algo-

� �

...

-theModel

1

+analyze(num

-theIntegrator1

...

+setMo

AnalysisModel

+commitDomain()

StaticAnafor (int i=0; i<numIncr; i++) {
theIntegrator->newStep()
theAlgorithm->solveCurrentStep()
theModel->commitDomain()

}

StaticIntegrator

+newStep()

Fig. 3. Class diagram for the analysis showing
rithms using Strategy, the software design of the Analysis class

98 / JOURNAL OF COMPUTING IN CIVIL ENGINEERING © ASCE / JANUA

Downloaded 02 Feb 2010 to 128.193.50.33. Redistribution subject to
to address the communication and organization of the classes in
Fig. 2 is based on the following design patterns:
• Iterator—An iterator pattern is used to hide the internal rep-

resentation of objects in the finite-element model, which is
important for uncoupling finite-element formulations from the
way they are used in solving the governing equations.

• Adapter—An adapter pattern modifies the response of a finite-
element object according to the selected constraint handling
and time integration methods such that finite-element imple-
mentations are blind to their specific contributions of mass,
stiffness, and damping in the governing equations.

• Factory Method—The factory method pattern allows the cor-
rect adapter objects to be added to the analysis model accord-
ing to the selected constraint handling method.

• Bridge—The bridge pattern decouples the implementation of
finite elements from time integration and constraint handling
methods such that they can inter-operate independently.
The following three sections describe fundamental aspects of a

finite-element analysis, each of which is implemented by classes
interacting to represent, form, and solve the governing equations.

Composition of Classes for Representing
Finite-Element Equations

Before the governing equations can be solved during an analysis,
they must be ordered according to the nodal definition and
element connectivity. In addition, all declared constraints must
be taken into account in the equation ordering. To avoid tight
coupling of finite-element implementations and the analysis
methods, the AnalysisModel provides a layer of abstraction be-
tween objects in the domain and the governing equations. The
AnalysisModel is a composition of DOF_Group and FE_Element
objects, which allow developers of finite-element classes to not be
concerned with the specific operations that form and solve the
governing equations.

DOF_Group Class

A DOF_Group object represents and operates on the nodal de-

rface>> � �

+analyze(numIncr, dT)

for (int i=0; i<numIncr; i++) {
theIntegrator->newStep(dT)
theAlgorithm->solveCurrentStep()
theModel->commitDomain()

-theIntegrator1

...

theAlgorithm
1

lysisModel &)

TransientAnalysis

}

EquiSolnAlgo

veCurrentStep()

TransientIntegrator

+newStep(double dT)

lysis

alyze�� method for static and transient analysis
<<inte

Incr)

...

-

del(Ana

lysis

+sol

Ana

the an
grees of freedom �DOFs� in the domain. The default implemen-

RY/FEBRUARY 2010

 ASCE license or copyright; see http://pubs.asce.org/copyright

tation contains a connectivity vector that gives the equation
numbers for the DOFs at a single Node object in the domain, as
shown in Fig. 4. Methods are provided to relate response quanti-
ties between the nodal and structural DOFs. Subclasses of DOF-
_Group override this default behavior for the case where the
system of equations must be modified to handle constraints, such
as by transforming nodal response before assembly or by intro-
ducing additional equations involving Lagrange multipliers. This
design, based on the Adapter pattern �Gamma et al. 1995�, keeps
the implementation of the Node class separate from the imple-
mentation of constraint handling procedures, thereby alleviating
the need to develop subclasses of Node for every type of con-
straint handler.

FE_Element Class

The FE_Element class processes finite-element response quanti-
ties prior to their assembly in the governing equations. As shown
in Fig. 5, the FE_Element class maintains a reference to a single
finite-element object in the domain. A FE_Element obtains the
element residual vector and stiffness, mass, and damping matri-
ces, and may modify them before assembling their contributions
to the tangent stiffness for the connected nodes, whose DOFs and
equation numbers are accessed via the DOF_Group object. Simi-
lar to DOF_Group, the FE_Element class is based on the Adapter
pattern. It provides a great deal of flexibility in how the finite-
element formulation is incorporated into the governing equations.
Considering the software life cycle, this flexibility outweighs the
cost of additional memory and method calls required to adapt the

� � �

� � � �
� � � �

TransformationDOF Group

DOF G

Lagrang

+addPtoUnbalance(doub
+zeroUnbalance()
+getUnbalance(Integrato
// methods dealing with

// methods dealing with
+getTangent(Integrator
+zeroTangent()
+addMtoTangent(double
+addCtoTangent(double

T = [I C]
C = theConstraint->getConstraint()

+getUnbalance(

numDOF, theID, localVe

+setNodeIncrAccel(golba
+setNodeIncrVel(globalV

// methods for setting n

+getTangent(Int

+setNodeIncrDisp(glob

+getUnbalance(Integrator *theInt)
+getTangent(Integrator *theInt)

return unbalance
unbalance = TTp
p = DOF Group::getUnbalance(theInt)

un
ret

q =

-theNode

1

for (i=0; i<numDOF; i++)
if (theID(i) >= 0)

theNode->setTrialDisp(localVect)

else
localVect(i) = 0

localVect(i) = globalVect(theID(i))

Node

+setTrialDisp(localVect)
. . .

+getUnbalance()
+getMass()

Fig. 4. Class diagram of the DOF_Group class showing default metho
for transformation and Lagrange constraint handlers
finite-element response.

JOURNAL OF COMPUTING

Downloaded 02 Feb 2010 to 128.193.50.33. Redistribution subject to
Since the procedure for forming the tangent depends on the
integration method and the resulting contributions of mass, damp-
ing, and stiffness, an FE_Element object delegates to the integra-
tor the task of forming the tangent for the element by providing
callback functions such as addKtoTang��. Similar callback opera-
tions form the element residual vector. Other FE_Element opera-
tions add terms to the tangent matrix for the element accounting
for damping and mass. Subclasses of FE_Element implement pro-
cedures for modifying the element residual and stiffness to ac-
count for constraints in the finite-element model.

AnalysisModel Class

The AnalysisModel is a container class that stores and provides
access to the FE_Element and DOF_Group objects that have been
created for an analysis. The methods getFEs�� and getDOFs�� use
the Iterator pattern �Gamma et al. 1995� for sequential access to
the FE_Element and DOF_Group objects in the model without
exposing their internal representation in the analysis model. This
approach is advantageous for assembling contributions from ele-
ments that do not reside in main memory, such as for parallel
processing or hybrid simulation �Takahashi and Fenves 2006�.
Other methods in the interface query and modify the state of the
domain. A reference to the Domain is maintained such that the
AnalysisModel can commit the state of all components in the
domain upon convergence of the numerical solution at each time
step. The AnalysisModel is also responsible for building and re-
turning a graph of the connectivity of all DOFs that have been

� � �
� � �

� � �
� � �

� � �

� � �

� � �
� � �

Group

nt)
l

t

theInt->formNodUnbalance(this)
return unbalance

theInt->formNodTangent(this)
return tangent

unbalance += fact * theNode->getUnbalance()

tangent += fact * theNode->getMass()

or *theInt)

alance, tangent

ponses

*theInt)

= q
alance

nstraint->getConstraint()

MP Constraint

+getConstraint()

C, q

1

-theConstraint

orm nodal unbalance and tangent, as well as specific implementations
roup

eDOF

le fact)

r *theI
residua

tangen
*theInt)

fact)
fact)

Integrat

ct, unb

lVect)
ect)

odal res

egrator

alVect)

balance
urn unb

theCo

ds to f
added to the model.

IN CIVIL ENGINEERING © ASCE / JANUARY/FEBRUARY 2010 / 99

 ASCE license or copyright; see http://pubs.asce.org/copyright

In addition to storing the representation of the finite-element
equations, the AnalysisModel uses a DOF_Numberer to number
the equations in order to take advantage of the sparsity of the
stiffness matrix. As shown in Fig. 6, the DOF_Numberer obtains
the connectivity graph from the AnalysisModel, then uses a strat-
egy, e.g., minimum degree �Tinney and Walker 1967� and reverse

<<interface>>

� �
� �

PenaltyFE LagrangeFE

+getStiffness()
+getMass()
+getResidual()

. . .

// methods dealin
+getResidual(Inte
+zeroResidual()
+addRtoResidual(

// methods dealin
+getTangent(Integ
+zeroTangent()
+addKtoTang(dou
+addCtoTang(dou
+addMtoTang(dou

-theConstraint

MP Constraint

+getConstraint()

C, q

1

FE E

theID, theTangent

+getResidual(Integrato
+getTangent(Integrator+getTangent(Integrator *theInt)

+getResidual(Integrator *theInt)

α

C = theConstraint->getConstraint()
theResidual = CT αq
return theResidual

q = theConstraint->g
theResidual = q
return theResidual

-theElement

1

-theDOFs

2..*

Element

DOF Group

Fig. 5. Class diagram of the FE_Element class showing implem
techniques

<<interface>>

...

Graph &theGraph=the
theNumberer->number(
DOF GrpIter theDOFs
while (dofPtr = theDOF

FE EleIter theFEs = th

fePtr->setID()
while ((fePtr = theFEs(

set the values for the

+number(aGraph) +number(aGraph)

+number(aGraph) +number()
-theNumberer

1

MinDegree RCM

GraphNumberer DOF Numberer

Fig. 6. Implementation of the AnalysisModel class as a container cla
using a graph numbering strategy
100 / JOURNAL OF COMPUTING IN CIVIL ENGINEERING © ASCE / JANUA

Downloaded 02 Feb 2010 to 128.193.50.33. Redistribution subject to
Cuthill-McKee �Cuthill and McKee 1969�, encapsulated by sub-
classes of GraphNumberer in order to assign equation numbers
for each DOF_Group. The DOF_Numberer then iterates over all
FE_Element objects and determines their DOF mapping of con-
nected nodes based on the numbering assigned to the DOF_Group
objects.

� � �

� �

� �
� �

� � �

theResidual += theElement->getResidual()

TransformationFE

esidual
theInt)

angent
heInt)

)
)
)

return theResidual
theInt->formEleResidual(this)

idual

t)
t)

+getResidual(Integrator *theInt)
+getTangent(Integrator *theInt)

traint()

return theResidual
theResidual = TT r
r = FE Element::getResidual(theInt)
T = [I C]
C = theConstraint->getConstraint()

ns of the getResidual�� method for different constraint handling

� � �
� � �

getDOF Graph()
ph)
odel->getDOFs()
0)

->getFEs
ed on the vertex color

+getDOFs
+getDOFGraph()
+getDOFGroupGraph()
+applyLoadDomain()
+getTime()
+commitDomain()

+commit()

theDomain->commit()

2..*

1..*

-theDomain

1

eModel

1 Domain

FE Element

DOF Group

...
AnalysisModel

+getFEs()

FE_Element and DOF_Group objects and the DOF_Numberer class
g with r
grator *

)

g with t
rator *t

ble fact
ble fact
ble fact

lement

, theRes

r *theIn
*theIn

etCons

entatio
Model->
theGra
= theM
s()) !=

eModel
)) != 0)

ID bas

-th

ss for
RY/FEBRUARY 2010

 ASCE license or copyright; see http://pubs.asce.org/copyright

Pattern-Based Implementation of Forming
Finite-Element Equations

With mechanisms in place to map element and nodal response to
the governing equations, classes are defined in this section to
assemble the equations and to process single- and multipoint con-
straints. The Bridge and Factory Method patterns make the equa-
tion assembly flexible and extensible such that the framework can
accommodate a wide range of time integration and constraint han-
dling methods.

Integrator Class

The Integrator class is the main link between the numerical solu-
tion procedures and the state of the finite-element model. It is
responsible for assembling the governing equations, as well as
recovering nodal response quantities and updating the state of the
finite-element model after obtaining the equation solution from
the analysis composition.

As shown in Fig. 7, the Integrator class is abstract with meth-
ods to form the residual and tangent of FE_Element and DOF-
_Group objects. Subclasses of Integrator extend the interface with
additional operations for the particular type of equations to be
formed during an analysis. For example, the IncrementalIntegra-
tor class includes methods to form the tangent and residual during

<<interface>><<interface>>

<<interface>>

� � �

U += dU
theModel->updateModel(

ArcLength

HH

AnalysisModel

...

...

+formTangent()
+formUnbalance()

+formEleTangent()
+formEleResidual()
+formNodTangent()

+newStep()

dLambda

+

+newStep()

+zeroA()

+formNodUnbalance()

+update(Vector dU)

+update(Vector dU)

+addB(Vector, ID)
+zeroB()
+addA(Matrix, ID)

+getFEs()
+getDOFs()
+updateModel(U,Ud,Udd)

...

+

-theSOE

1

1

-theModel

IncrementalIntegrato

StaticIntegrator

LoadControl

LinearSOE

theEle->addKtoTang(1.0)
theEle->zeroTang()

Fig. 7. Class diagram for the IncrementalIntegrat
a nonlinear analysis. The tangent matrix of the residual equilib-

JOURNAL OF COMPUTING

Downloaded 02 Feb 2010 to 128.193.50.33. Redistribution subject to
rium equations is formed by first zeroing the matrix, then iterating
over all FE_Element objects in the analysis model and assembling
their contributions. The getTangent�� method invoked on the
FE_Element objects initiates a sequence of callback functions to
assemble the element tangent matrix in accordance with the pa-
rameters for the time integration method. A similar system of
callback methods is used to assemble nodal contributions via the
DOF_Group objects in the analysis model.

The implementation of the callback methods to form the
element and nodal contributions to the tangent and residual of the
finite-element model is delegated to subclasses of Incremental-
Integrator. In the case of a static analysis, the element residual
vector and tangent matrix do not need to be modified prior
to assembly. This functionality is implemented in the Static-
Integrator class while the calculation of the load increment is
deferred to its subclasses, e.g., LoadControl and ArcLength. On
the other hand, the modification of the element residual and tan-
gent is deferred to subclasses of TransientIntegrator for dynamic
analyses that require a time integration method such as the
implicit Newmark, Wilson-�, Hilber-Hughes-Taylor �HHT�-�,
and Collocation methods, and the explicit Central Difference and
explicit variations of the Newmark and HHT-� methods. A Tran-
sientIntegrator object uses the nodal displacement vector to up-

<<interface>>

<<interface>>

� �
� �

theModel->updateModel(U,Udot,Udotdot)

U += dU
Udot += gamma/(beta*dT) * dU
Udotdot += 1/(beta*dT*dT) * dU

theSOE->zeroA()
FE EleIter theFEs = theModel->getFEs()
while((fePtr = theFEs()) != 0)

theSOE->addA(k, fePtr->getID())
k = fePtr->getTangent(this)

IncrementalIntegrator::formTangent()
DOF Iter theDOFs = theModel->getDOFs()
while((dofPtr = theDOFs()) != 0)

k = dofPtr->getTangent(this)
theSOE->addA(k, dofPtr->getID())

See Fig. 10

EleTangent(FE Element *)

NodTangent(DOF Group *)

...

Newmark

+formEleTangent()
+formEleResidual()
+formNodTangent()

+newStep(newDt)

dT, gamma, beta

(dT)

+formNodUnbalance()
+update(Vector dU)

theEle->zeroTang()
theEle->addKtoTang(1.0)
theEle->addMtoTang(gamma/(beta*dT))
theEle->addCtoTang(1/(beta*dT*dT))

ngent()

EleResidual(FE Element *)

NodUnbalance(DOF Group *)

Integrator

ansientIntegrator

wing key implementations for equation assembly
U)

T

+form

+form

newStep
formTa

+form

+form

r

Tr

or sho
date the finite-element model consistent with the aforementioned

IN CIVIL ENGINEERING © ASCE / JANUARY/FEBRUARY 2010 / 101

 ASCE license or copyright; see http://pubs.asce.org/copyright

time integration methods. Further details of the architecture for
equation assembly are given in a subsequent section using se-
quence diagrams.

The communication between integrator, element, and node ob-
jects is based on the Bridge design pattern �Gamma et al. 1995�,
where the implementations of these objects are completely un-
coupled, which is an important consideration when extending the
framework to problems with different types of nodal DOFs. Fur-
thermore, it allows the integrator to be changed at runtime with-
out affecting other components of the analysis or the objects in
the finite-element model.

Constraint Handler Class

Depending on how constraints are included in the analysis, modi-
fications to the system of equations and/or to the element contri-
butions during equation assembly may be necessary. While the
specific constraint handling methods can be implemented using
the Strategy design pattern shown in Fig. 8, the use of an addi-
tional pattern, Factory Method �Gamma et al. 1995�, provides
the desirable loose coupling between the constraint handling
method and the nodes and elements in the analysis model. To this
end, the ConstraintHandler class declares functionality to return
DOF_Group and FE_Element objects of the type corresponding
to the constraint handling method used in the analysis. Subclasses
of ConstraintHandler instantiate and return to the AnalysisModel

<<interface>>

� � �
� � �

...

......
+handle() +handle()+handle()

...

while ((nodePtr = theNodes()) != 0)
dofPtr = new DOF Group(nodePtr)

while ((elePtr = theEles()) != 0)
feEle = new FE element(elePtr)

while ((spPtr = theSPs()) != 0)
feEle = new PenaltyFE(spPtr)

while ((mpPtr = theMPs()) != 0)
feEle = new PenaltyFE(mpPtr)

assign initial numbering to DOFs

NodeIter theNodes = theDomain->getNodes()

theModel->addDOF Group(dofPtr)
ElementIter theEles=theDomain->getElements()

SPIter theSPs=theDomain->getSPs()

theModel->addFE Element(feEle)
MPIter theMPs=theDomain->getMPs()

theModel->addFE Element(feEle)

theModel->addFE Element(feEle)

...

Domain

...
+addDOF Group()
+addFE Element()

+getMPs()
+getSPs()
+getNodes()
+getElements()

-theModel

1

1

-theDomain

ConstraintHandler

+handle()

PenaltyCHLagrangeCHTransformationCH

AnalysisModel

Fig. 8. Class diagram for the ConstraintHandler where subclasses are
responsible for populating the AnalysisModel with the adapter ob-
jects that correspond to the constraint handling method
the FE_Element and DOF_Group objects that will enforce con-

102 / JOURNAL OF COMPUTING IN CIVIL ENGINEERING © ASCE / JANUA

Downloaded 02 Feb 2010 to 128.193.50.33. Redistribution subject to
straint equations in the element and nodal response using the
selected constraint handling method.

The design decision to construct DOF_Group and FE_Element
objects within subclasses of ConstraintHandler keeps the imple-
mentation of the AnalysisModel blind to the constraint handling
method and the associated adapter objects it contains. The objects
created by subclasses of ConstraintHandler are completely decou-
pled from implementations of the Integrator class, as well as from
the element and node implementations in the domain.

Strategies for Solving Finite-Element Equations

Once the governing equations have been formed during an analy-
sis time step, several algorithms can be used to obtain a solution.
For the solution to residual equilibrium equations in a nonlinear
analysis, classes encapsulating root-finding algorithms and linear
equation solvers work in concert to determine the primary nodal
unknowns of the system. The implementation of these classes
follows the Strategy design pattern.

Solution Algorithm Class

A solution algorithm object is responsible for specifying the steps
to solve the equations at the current time step. The SolutionAlgo-
rithm class is abstract; each subclass provides a specific imple-
mentation of an algorithm. For the incremental solution of
equilibrium equations in static and transient analysis, the subclass
is EquiSolnAlgorithm. This class implements the solution to de-
termine the root of the residual equilibrium equation

R�U�t�� = P f�t� − Pr�U�t�� = 0 �1�

where P f =time-dependent nodal load vector and Pr=resisting
force vector which is a nonlinear function of the nodal displace-
ments U, and is assembled from element contributions. An itera-
tive approach is taken to find the root of Eq. �1� at time step k

Uk
j+1 = Uk

j + �Uk
j+1 �2�

where j counts the iterations for the time step.
Subclasses of EquiSolnAlgorithm implement the solveCur-

rentStep�� in order to solve Eq. �1�, e.g., using the Newton–
Raphson algorithm for implicit methods or a linear algorithm �one
solve with no subsequent iteration� for explicit methods. An
EquiSolnAlgorithm object defines the strategy for StaticAnalysis
and TransientAnalysis classes to solve the equilibrium equations.
The encapsulation of the solution algorithm in a separate class
allows the algorithm to be changed during an analysis with only
the data associated with the algorithm needing to be reallocated.

SystemOfEqn and Solver Classes

The solution to a linearized system of equations is an essential
step to finding the solution of Eq. �1� by iterative root-finding
algorithms. For this class of algorithms, the displacement incre-
ment �Uk

j+1 of Eq. �2� is obtained from the solution to the follow-
ing linear system of equations:

K�Uk
j+1 = Rk

j �3�

where K=stiffness matrix of the structure, which may be as-
sembled from elements prior to or during the equation solution
depending on the solver.

There are many direct and iterative equation solvers that can

be used to solve Eq. �3�. However, encapsulating in a single class

RY/FEBRUARY 2010

 ASCE license or copyright; see http://pubs.asce.org/copyright

the equation storage and the operations to solve the system can
lead to code duplication of the matrix storage scheme when
implementing new linear equation solvers. To avoid duplication
and improve flexibility in solving linear equations, the matrix
representation is decoupled from the equation solver using two
abstract interfaces: SystemOfEqn and Solver. Subclasses are pro-
vided for storing and solving particular types of equations, e.g.,
the LinearSOE and LinearSolver classes shown in Fig. 9 declare
interfaces for equations of the form Ax=b.

Subclasses of LinearSOE implement a storage scheme for a
matrix whose topology may be exploited by a direct solver and
also serve as a “black box” for iterative equation solvers. Direct
and iterative equation solvers are encapsulated by subclasses of
LinearSolver. As an example, the BandSPDLinearSOE class
shown in Fig. 9 implements a banded, symmetric positive definite
�SPD� storage of the stiffness matrix. A variety of LinearSolver
implementations operate on the banded SPD system, including
the DirectBandSPDLinSolver, which uses the LAPACK numeri-
cal library �Anderson et al. 1995�, and the ConjugateGradient-
Solver, which asks the LinearSOE to multiply its matrix by an

<<interface>>

<<interface>>

<<interface>>

� �

+solve()
+setSize()

Vector r,x

+setSolver(LinearSolver&)

+solve()

+getNumEqn()
+addA(Matrix, ID)
+addB(Vector, ID)
+zeroA()
+zeroB()

+Vector &getX()
+Vector &getB()
+formAp()

+setSize(Graph &)
+getNumEqn()
+addA(Matrix, ID)
+addB(Vector, ID)
+zeroA()
+zeroB()
+setX(int, double)
+setBandSPDSolver()
+Vector &getX()
+Vector &getB()
+formAp()

A,x,b,n
isFactored

Ax = b

-theSOE

1

+formAp(

Conju

Ele

+setS
+form

theSolver->solve()

SystemOfEqn

+solve()

Direc

+setSize
+solve()

+setSize(Graph &)

LinearSOE

BandSPDLinearSOE

1

-theSOE

Fig. 9. Class diagram of the LinearSOE and LinearSolver showing i
iterative solver
arbitrary vector. Additional subclasses of LinearSOE and Linear-

JOURNAL OF COMPUTING

Downloaded 02 Feb 2010 to 128.193.50.33. Redistribution subject to
Solver classes implement storage schemes and direct solvers
for other matrix topologies. The separation of the system from
the solver provides a many-to-one relationship between solvers
and equation storage, so that many direct and iterative sparse
equation solvers can operate on a single storage format �Barrett
et al. 1994�.

Sequence Diagrams for Analysis Operations

The previous sections presented a static view of the classes con-
tributing to the Analysis composition and several of the key op-
erations. To describe how the Analysis objects interoperate to
form and solve the governing equations, this section presents se-
quence diagrams of analysis steps. Sequence diagrams provide an
overview of important aspects of software by showing runtime
objects and messages passed between them �Booch et al. 1998�.
The sequence diagrams presented in this section give a complete
picture of the loose coupling between objects that assemble
the governing equations and the objects that contribute to the

<<interface>>

<<interface>>

<<interface>>

� �

� �

call LAPACK subroutine

obtain A, b

dpbsv and/or dpbtrs

from theSOE

1

-theSolver

adientSolver

CGSolver

BandSPDLinearSolver

+solve()

Solver

+setSize()

LinearSolver

SPDLinSolver

theSOE->formAp()

entations of a Banded SPD direct solver and the conjugate gradient
,p

)

gateGr

ByEle

ize()
Ap()

tBand

()

mplem
equations.

IN CIVIL ENGINEERING © ASCE / JANUARY/FEBRUARY 2010 / 103

 ASCE license or copyright; see http://pubs.asce.org/copyright

A key step in the numerical solution of finite-element equa-
tions is the assembly of the residual vector in Eq. �3�. The meth-
ods invoked during the formUnbalance�� operation of the
IncrementalIntegrator class are shown in Fig. 10. After zeroing
the right-hand side of the LinearSOE object, the IncrementalInte-
grator iterates over the FE_Element objects in the analysis model
to form the residual vector. The getResidual�� method call to the
FE_Element interface initiates a sequence of operations to form
the element residual considering the time integration method and
constraint handler in the analysis composition. One such combi-
nation is shown in Fig. 11�a� for static time integration with a
transformation constraint handling method. In this case the ele-
ment residual is transformed prior to the StaticIntegrator object
assembling its contribution to the governing equations. Inertial
effects are obtained from the element objects for the case of tran-
sient Newmark time integration shown in the sequence diagram
of Fig. 11�b�. Returning to Fig. 10 after all FE_Element object
contributions have been assembled, subsequent iteration over all
DOF_Group objects adds unbalanced nodal loads to the govern-
ing equations. Sequences of method calls similar to those shown
in Fig. 11 assemble the nodal response for different combinations
of time integration and constraint handling methods.

getResidual(this)

zeroB()

IncrementalIn

Separate sequ

addB(residual, id)

getID()

formUnbalance()

:Incremental
:LIntegrator

foreach FE Element
in AnalysisModel

getUnbalance(this

Sepa

Incre

in AnalysisModel
foreach DOF Group

addB(unbalance,

getID()

co

Fig. 10. Sequence diagram for the formUnb
To solve the governing nonlinear equations, the EquiSoln-

104 / JOURNAL OF COMPUTING IN CIVIL ENGINEERING © ASCE / JANUA

Downloaded 02 Feb 2010 to 128.193.50.33. Redistribution subject to
Algorithm class obtains the finite-element residual vector by call-
ing the formUnbalance�� method on the IncrementalIntegrator.
The sequence diagram of the Newton–Raphson implementation
of the solveCurrentStep�� method is shown in Fig. 12. The stan-
dard steps of forming the residual vector and tangent stiffness
matrix are executed by passing messages to the IncrementalInte-
grator object. After forming the linearized system of equations,
the
algorithm obtains the solution for the displacement increment
from the LinearSOE object, then passes the solution to the Incre-
mentalIntegrator in order to recover all nodal response quantities
and update the finite-element model. Other solution algorithms
are implemented by making different sequences of abstract calls
to the IncrementalIntegrator and LinearSOE objects, as shown in
the following section for line search algorithms.

Example of Software Extensibility

The implementation of line search algorithms in conjunction with
the Newton–Raphson solution algorithm provides a useful ex-

r and FE Element

iagrams for each

residual : Vector

id : int[]

SOE :FE Element :DOF Group

equence diagrams for each
combination of
lIntegrator and DOF Group

id : int[]

unbalance : Vector

tion of

�� method of the IncrementalIntegrator class
tegrato

ence d

inear

)

rate s

menta

id)

mbina

alance
ample of the extensibility of the nonlinear finite-element analysis

RY/FEBRUARY 2010

 ASCE license or copyright; see http://pubs.asce.org/copyright

framework afforded by design patterns. As described earlier, the
equilibrium solution algorithms follows the Strategy pattern in
which an Analysis object uses one of many interchangeable
implementations. This pattern can be applied further to implement
line search algorithms that improve the convergence of the
Newton–Raphson algorithm �Crisfield 1991; Bathe 1996�. As

:Static
Integrator :FE Element

TransformationFE
:Element

formEleResidual(this)

zeroResidual()

p : Vector

residual =
T T p

residual : Vector

getResidual(this)

addRToResidual()

getResistingForce()

(a) Static integration

:Transient
Integrator

Newmark

:FE Element
TransformationFE

:Element

formEleResidual(this)

zeroResidual()

addRIncInertiaToResidual()

getResistingForceIncInertia()

p : Vector

residual =
T T p

residual : Vector

getResidual(this)

(b) Transient time integration

Fig. 11. Sequence diagrams showing the interaction of incremental
integrators and FE_Elements for: �a� Static integrator forming the
residual of transformation FE_Element objects; �b� Newmark tran-
sient integrator forming the residual including inertial effects of trans-
formation FE_Element objects.
shown in Fig. 13, the NewtonLineSearch class invokes the

JOURNAL OF COMPUTING

Downloaded 02 Feb 2010 to 128.193.50.33. Redistribution subject to
search�� method via the LineSearch interface. Subclasses of
LineSearch implement specific line search techniques, such as
bisection, regula falsi, and secant. A sequence diagram for the
solveCurrentStep�� method of the NewtonLineSearch class is
shown in Fig. 14, where additional method calls are made to the
LineSearch object during the search for a solution. The inclusion
of line search algorithms was not considered during the initial
framework design; however, the encapsulation of solution algo-
rithms in classes separate from the analysis provides the neces-
sary flexibility to incorporate line search algorithms without
affecting other classes in the framework.

Conclusions

This paper has defined the key aspects of implementing an object-
oriented framework for representing, forming, and solving non-
linear finite-element equations using object composition as the
primary means of achieving flexibility, extensibility, and portabil-
ity. The framework design based on object composition takes ad-
vantage of software design patterns to define communication
between objects in the analysis. The Strategy pattern defines an
interface for interchangeable algorithms of all major steps in non-
linear finite-element analysis, while a layer of abstraction between
the finite-element model and the analysis components is provided
by the Iterator and Adapter patterns. Finite-element analysis
implementations are decoupled from the equation assembly
through the Factory Method and Bridge patterns. Because of the
flexibility offered by these and other design patterns, applications
such as structural reliability, adaptive mesh refinement, meshless
finite-element methods, hybrid simulation, and contact problems
can be built using the framework. Future areas of research will
focus on the computational performance of design pattern based
implementations of nonlinear finite-element analysis, particularly
for parallel computation with explicit and mixed implicit-explicit
methods, as well as compiler support for memory management
techniques that improve the computational performance of object-
oriented software.

Acknowledgments

This work and the development of OpenSees has been supported
by the Pacific Earthquake Engineering Research Center under
Grant No. EEC-9701568 from the National Science Foundation.
The source code and full application program interface �API�

solveCurrentStep()

formUnbalance()

formTangent()

solve()

update(dU)

dU : Vector

:LinearSOE:EquiSolnAlgo
NewtonRaphson

Integrator
:Incremental

Newton Loop

Fig. 12. Sequence diagram for one time step using the Newton–
Raphson solution algorithm
of the classes in the OpenSees framework, including the

IN CIVIL ENGINEERING © ASCE / JANUARY/FEBRUARY 2010 / 105

 ASCE license or copyright; see http://pubs.asce.org/copyright

<<interface>>

<<interface>>

<<interface>>

<<interface>>

+solveCurrentStep()

EquiSolnAlgorithm

+search()

BisectionLineSearch RegulaFalsiLineSearch

+search()

SecantLineSearch

+search()

LineSearch

+search()

see Fig. 12 see Fig. 14

+solveCurrentStep()

NewtonRaphson

+solveCurrentStep()

NewtonLineSearch

IncrementalIntegrator

-theSearch

-theSOE

1

-theIntegrator

1

1

LinearSOE

Fig. 13. Class diagram of the EquiSolnAlgorithm class showing subclasses for standard Newton–Raphson and Newton using a line search
strategy
solveCurrentStep()

formUnbalance()

getB()

R0 : Vector

formTangent()

solve()

dU0 : Vector

s0 = -dU0’ * R0

update(dU)

formUnbalance()

getB()

R : Vector

s = -dU0’ * R

search(s0,s)

:LineSearch:LinearSOE:EquiSolnAlgo
NewtonLineSearch

Integrator
:Incremental

Newton Loop

Fig. 14. Sequence diagram for one time step using the Newton–Raphson algorithm with line search
106 / JOURNAL OF COMPUTING IN CIVIL ENGINEERING © ASCE / JANUARY/FEBRUARY 2010

Downloaded 02 Feb 2010 to 128.193.50.33. Redistribution subject to ASCE license or copyright; see http://pubs.asce.org/copyright

analysis classes defined in this paper, are available at
http://opensees.berkeley.edu. The writers thank Dr. Ed Love
for implementing line search algorithms within the OpenSees
framework.

References

Alexander, C. �1977�. A pattern language: Towns, buildings, construc-
tion, Oxford University Press, New York.

Anderson, E., et al. �1995�. LAPACK users guide, 2nd Ed., SIAM, Phila-
delphia, Pa.

Archer, G. C., Fenves, G., and Thewalt, C. �1999�. “A new object-
oriented finite-element analysis architecture.” Comput. Struct., 70�1�,
63–75.

Barrett, R., et al. �1994�. Templates for the solution of linear systems,
SIAM,Philadelphia.

Bathe, K. J. �1996�. Finite-element procedures, Prentice-Hall, Upper
Saddle River, N.J.

Baugh, J. W., and Rehak, D. R. �1992�. “Data abstraction in engineering
software development.” J. Comput. Civ. Eng., 6�3�, 282–301.

Beck, K., and Cunningham, W. �1987�. “Using pattern languages
for object-oriented programs.” Rep. No. CR-87-43, Tektronix,
OOPSLA ’87 Workshop on Specification and Design for Object-
Oriented Programming.

Booch, G. �1994�. Object-oriented analysis and design with applications,
Addison-Wesley, Reading, Mass.

Booch, G., Rumbaugh, J., and Jacobson, I. �1998�. The unified modeling
language user’s guide, Addison-Wesley, Reading, Mass.

Chang, J. M., Lee, W. H., and Witawas, S. �2001�. “A study of the
allocation behavior of C�� programs.” J. Syst. Softw., 57�2�, 107–
118.

Chen, J., and Adomaitis, R. A. �2006�. “An object-oriented framework
for modular chemical process simulation with semiconductor process-
ing applications.” Comput. Chem. Eng., 30�9�, 1354–1380.

Crisfield, M. A. �1991�. Non-linear finite element analysis of solids and
structures, Vol. 1, Wiley, New York.

Cuthill, E., and McKee, J. �1969�. “Reducing the bandwidth of sparse
symmetric matrices.” 1969 24th National Conf., ACM Press, New
York, N.Y., 157–172.

Dubois-Pelerin, Y., and Zimmermann, T. �1993�. “Object-oriented finite-
element programming. III: An efficient implementation in C��.”
Comput. Methods Appl. Mech. Eng., 108, 165–183.

Fenves, G. L. �1990�. “Object-oriented programming for engineering
software development.” Eng. Comput., 6�1�, 1–15.

Forde, B. W. R., Foschi, R. O., and Stiemer, S. F. �1990�. “Object-
oriented finite-element analysis.” Comput. Struct., 34�3�, 355–374.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. �1995�. Design pat-
terns: Elements of reusable object-oriented software, Addison-Wesley,
Reading, Mass.

Goel, A. K., and Bhatta, S. R. �2004�. “Use of design patterns in analogy-
based design.” Adv. Eng. Inf., 18�2�, 85–94.

Haukaas, T., and Der Kiureghian, A. �2007�. “Methods and object-
oriented software for FE reliability and sensitivity analysis with ap-

plication to a bridge structure.” J. Comput. Civ. Eng., 21�3�, 151–163.

JOURNAL OF COMPUTING

Downloaded 02 Feb 2010 to 128.193.50.33. Redistribution subject to
Hughes, T. J. R. �1987�. The finite-element method, Prentice-Hall, Engle-
wood Cliffs, N.J.

Jeremić, B., Kunnath, S. K., and Xiong, F. �2004�. “Influence of soil-
foundation-structure interaction on seismic response of the I-880 via-
duct.” Eng. Struct., 26, 391–402.

Mackerle, J. �2004�. “Object-oriented programming in FEM and BEM: A
bibliography �1990–2003�.” Adv. Eng. Software, 35�6�, 325–336.

Mackie, R. I. �1992�. “Object-oriented programming of the finite-element
method.” Int. J. Numer. Methods Eng., 35�2�, 425–436.

McKenna, F. �1997�. “Object-oriented finite-element programming:
Frameworks for analysis, algorithms, and parallel computing.” Ph.D.
thesis, Univ. of California, Berkeley, Calif.

McKenna, F., Fenves, G. L., and Scott, M. H. �2000�. “Open system for
earthquake engineering simulation.” Univ. of California, Berkeley,
Calif. �http://opensees.berkeley.edu� �Dec. 6, 2000�.

Meyers, S. �1997�. Effective C��, 2nd Ed., Addison-Wesley, Reading,
Mass.

Miller, G. R. �1991�. “An object-oriented approach to structural analysis
and design.” Comput. Struct., 40�1�, 75–82.

Miller, G. R., Arduino, P., Jang, J., and Choi, C. �2003�. “Localized
tensor-based solver for interactive finite-element applications using
C�� and java.” Comput. Struct., 81, 423–427.

Modak, S., and Sotelino, E. D. �2002�. “An object-oriented parallel pro-
gramming framework for linear and nonlinear transient analysis of
structures.” Comput. Struct., 80�1�, 77–84.

Moehle, J. P., and Deierlein, G. G. �2004�. “A framework methodology
for performance-based earthquake engineering.” Proc., 13th World
Conf. on Earthquake Engineering, Vancouver, BC, Canada, Paper No.
679.

Peckham, J., and MacKellar, B. �2001�. “Generating code for engineering
design systems using software patterns.” Artif. Intell. Eng., 15�2�,
219–226.

Peng, J., Liu, J., Law, K. H., and Elgamal, A. �2004�. “ParCYCLIC:
Finite-element modelling of earthquake liquefaction response on par-
allel computers.” Int. J. Numer. Analyt. Meth. Geomech., 28�12�,
1207–1232.

Rucki, M. D., and Miller, G. R. �1996�. “An algorithmic framework for
flexible finite-element-based structural modeling.” Comput. Methods
Appl. Mech. Eng., 136�3–4�, 363–384.

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., and Lorensen, W.
�1991�. Object-oriented modeling and design, Prentice-Hall, Engle-
wood Cliffs, N.J.

Scott, M. H., Fenves, G. L., McKenna, F. T., and Filippou, F. C. �2008�.
“Software patterns for nonlinear beam-column models.” J. Struct.
Eng., 134�4�, 562–571.

Sommerville, I. �1995�. Software engineering, 5th Ed., Addison-Wesley,
Reading, Mass.

Takahashi, Y., and Fenves, G. L. �2006�. “Software framework for dis-
tributed experimental-computational simulation of structural sys-
tems.” Earthquake Eng. Struct. Dyn., 35�3�, 267–291.

Tinney, W. F., and Walker, J. W. �1967�. “Direct solution of sparse net-
work equations by optimally ordered triangular factorization.” Proc.
IEEE, 55, 1801–1809.

Zienkiewicz, O. C., and Taylor, R. L. �2005�. The finite-element method
for solid and structural mechanics, 6th Ed., Butterworth-Heinman,

Stoneham, Mass.

IN CIVIL ENGINEERING © ASCE / JANUARY/FEBRUARY 2010 / 107

 ASCE license or copyright; see http://pubs.asce.org/copyright

