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Introduction

Simulating the response of a structural system to extreme events
poses significant computational challenges particularly when
there are drastic changes in the load-resisting characteristics of
the structural components. A problem that has been the focus of
recent research is the dynamic response of a structure to sudden
failure of one or more members, which will cause redistribution
of resisting forces and in turn lead to possible failure of adjacent
members. Dynamic progressive collapse can be difficult to simu-
late using implicit solution methods because of yielding, fracture,
geometric instability, impact forces, and joint failures taking place
simultaneously in a single time step. Kaewkulchai and William-
son �2004� showed that a static analysis may not provide conser-
vative estimates of the collapse potential for a frame and that
incorporating dynamic effects leads to large increases in critical
damage parameters such as plastic rotation. Menchel et al. �2009�
assessed various progressive collapse simulation techniques by
comparison with large displacement plastic hinge finite-element
analysis. Experimental and analytical evaluation of progressive
collapse has been carried out by Sasani and Sagiroglu �2008� in
order to determine how well predicted changes in load distribu-
tion compare to measured structural response after removal of
vertical load carrying members.

The standard simulation approach for dynamic progressive
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collapse, as well as other nonlinear structural dynamic problems,
is to time discretize the governing equations by Newmark time
integration then solve them via the Newton-Raphson algorithm
�Bathe 1996; Zienkiewicz and Taylor 2005�. Although its local
rate of convergence is quadratic, a small time step that must be
used to ensure the Newton-Raphson algorithm will converge
when there are multiple nonlinear events occurring simulta-
neously. Furthermore, nonlinear response typically occurs at a
small fraction of the structural degrees of freedom �DOFs� while
the state of the remaining DOFs is relatively unchanged. This can
lead to excessive computations since the stiffness of the entire
system must be recomputed at each iteration of a time step in
order to update the equilibrium search directions at all DOFs.
When using direct equation solvers, the continual formation and
factorization of the stiffness matrix, or Jacobian, to become a
bottleneck during analyses of large structural systems.

The modified Newton method has a lower computational cost
per iteration than Newton-Raphson; however, its local rate of con-
vergence is linear. The stiffness matrix at the first iteration of a
time step is held constant over the time step, making repeated use
of the matrix factorization. When one or more nonlinear events
occur during a simulation time step, a significant discrepancy be-
tween the state of the structure and that represented by the stiff-
ness matrix at the start of the time step arises, resulting in possible
nonconvergence due to poor search directions that lead the itera-
tions away from equilibrium. For both Newton-Raphson and
modified Newton, line search techniques �Crisfield 1991� can im-
prove the search directions when the stiffness matrix is positive
definite, which may not always be the case with degrading mate-
rials and large displacement analysis.

Quasi-Newton methods seek a compromise between the
Newton-Raphson and modified Newton algorithms by modifying
the tangent stiffness matrix, or its factorization, with low-rank
updates during the search for equilibrium, resulting in a superlin-
ear rate of convergence. The rank-two BFGS quasi-Newton pro-
cedure �Broyden 1970; Fletcher 1970; Goldfarb 1970; Shanno

1970� is appropriate for the symmetric positive definite systems
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typically encountered in structural mechanics. For nonsymmetric
systems, such as those that arise from nonassociative plasticity,
the rank-one procedure of Broyden �1967� is more appropriate.
The main drawback to quasi-Newton methods is that the updates
of the tangent stiffness matrix tend to increase the matrix band-
width while driving the iterations away from equilibrium �Cr-
isfield 1991�.

Accelerated Newton methods also seek a balance between the
Newton-Raphson and modified Newton algorithms. Rather than
modify the tangent stiffness matrix, as in quasi-Newton methods,
accelerated Newton algorithms use matrix-vector operations to
increase the convergence rate of the modified Newton algorithm.
Crisfield �1984� developed a secant-based accelerated Newton al-
gorithm based on the BFGS procedure of Matthies and Strang
�1979� and demonstrated this algorithm to be more efficient than
the modified Newton algorithm for material and geometric non-
linear problems in structural mechanics.

Carlson and Miller �1998� developed an accelerated Newton
algorithm for applications in gradient weighted moving finite el-
ements. In these applications, it is computationally inefficient to
solve the governing equations by conventional Newton algo-
rithms when sharp fronts develop in the finite-element mesh. The
Jacobian matrix changes significantly at only a few DOFs when a
front develops, while it remains largely unchanged at the remain-
ing DOFs. The Carlson-Miller algorithm accelerates the conver-
gence rate of the modified Newton algorithm by solving low-rank
least-squares problems in Krylov subspaces that coincide with the
largest change in the system state. An analogous situation arises
in simulating the response of structural systems to the sudden
failure of one or more members, where redistribution of load can
cause significant changes in the tangent stiffness matrix at a small
number of DOFs while the rest of the structure remains linear.

The objective of this paper is to develop the Krylov subspace
accelerated Newton algorithm for solving nonlinear equilibrium
equations in dynamic progressive collapse simulations. The paper
begins with a review of the governing equations of structural
equilibrium, followed by their solution using the Newton-
Raphson and modified Newton algorithms. Next is the develop-
ment of the Krylov acceleration algorithm and a description of its
applicability to nonlinear structural analysis. Through examples,
the numerical properties of the Krylov algorithm are compared to
those of the conventional Newton algorithms. The paper con-
cludes with recommendations for use of the Krylov acceleration
algorithm in nonlinear structural analysis.

Equations of Structural Equilibrium

The equations of nodal equilibrium for the nonlinear dynamic
response of a structural system are written in residual form

R�U�t�� = P f�t� − Pr�U�t�� − CU̇�t� − MÜ�t� �1�

where P f =time-varying vector of applied loads and Pr=vector of
resisting forces, which is a nonlinear function of the nodal dis-
placement vector, U. The matrices M and C represent the mass

and damping, respectively, of the system, while U̇ and Ü are the
nodal velocities and accelerations, which are related to the nodal
displacements by the time integration method. With the nodal
displacements as the primary unknowns after time discretization,
the statement of equilibrium is that the residual force vector

equals zero

474 / JOURNAL OF STRUCTURAL ENGINEERING © ASCE / MAY 2010

Downloaded 30 Aug 2011 to 128.193.50.33. Redistribu
R�U� = 0 �2�

The root of Eq. �2� represents the state of the structure in which
equilibrium is satisfied for the externally applied loads.

Iterative Root-Finding Algorithms

To solve Eq. �2�, an iterative root-finding algorithm begins at an
initial displacement vector, U0, then computes successive dis-
placement increments, V, which advance the trial state of the
structure

Uk+1 = Uk + Vk+1 �3�

The subscript k counts the number of iterations within a time step.
The search for equilibrium terminates successfully when a speci-
fied convergence criterion, e.g., that the norm of the residual force
vector decreases below either absolute or relative tolerance, is
satisfied. After convergence, the trial state of the structure is com-
mitted as part of the solution path and the simulation proceeds to
the next time step.

Newton-Raphson Algorithm

The Newton-Raphson algorithm is based on a first-order �linear�
approximation of the residual vector near the root of Eq. �2�

Rk+1 = Rk + � �R

�U
�

Uk

Vk+1 �4�

The Jacobian, �R /�U, is the tangent stiffness matrix, KT, of the
structure

�R

�U
= − KT �5�

which contains contributions from the static tangent stiffness ma-
trix, �Pr /�U, and the mass and damping matrices. It is assumed
that the applied load vector, P f, does not depend on U.

The Jacobian defined in Eq. �5� is inserted in Eq. �4� giving the
following linear correction equation:

Rk+1 = Rk − KTVk+1 �6�

After setting the correction equation equal to zero, the following
linear system of equations is obtained for the displacement incre-
ment:

KTVk+1 = Rk �7�

The residual vector and the tangent stiffness matrix are computed
at every iteration for the current value of the displacement vector,
Uk.

Convergence of the Newton-Raphson algorithm depends on
the initial displacement vector, U0, and the second derivative of
the residual force vector. Consequently, difficulties are encoun-
tered with the Newton-Raphson algorithm when using large time
steps or when there are sharp changes in the tangent stiffness
matrix during a time step. The quadratic rate of convergence also
depends on the ability to assemble a numerically consistent tan-
gent stiffness matrix �Simo and Taylor 1985�, which is often a

difficult task for complex constitutive models.
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Modified Newton Algorithm

To reduce the computational expense of the Newton-Raphson al-
gorithm, the modified Newton algorithm holds the stiffness ma-
trix constant within a time step. The tangent stiffness matrix in
Eq. �7� is replaced with the stiffness matrix from the first iteration
in the time step and repeated use is made of the matrix factoriza-
tion until equilibrium is found. This computational benefit can be
outweighed by the increased number of iterations required to
reach equilibrium because the local rate of convergence is linear
�Stoer and Bulirsch 1993�. The modified Newton algorithm gen-
erally has a larger radius of convergence than Newton-Raphson.

Shamanskii �1967� proposed a generalization of the Newton-
Raphson and modified Newton algorithms where the tangent stiff-
ness matrix is updated every three to six iterations with modified
Newton steps taken at the intermediate iterations. The rate of
convergence for this periodic Newton algorithm is superlinear
�Kelley 1995�; however, similar to Newton-Raphson, it has con-
vergence difficulties when there are sharp changes in the residual
force vector. The optimal number of intervening modified Newton
iterations depends on the computational cost of the tangent stiff-
ness matrix formation and factorization relative to the cost of
forming the residual force vector. These costs are derived from
the complexity of the element constitutive models and the number
of floating point operations required for matrix factorization
�Demmel 1997�. By performing low-cost matrix-vector opera-
tions in Krylov subspaces at the intervening modified Newton
steps, the convergence of the periodic Newton algorithm is accel-
erated and many of the convergence difficulties of the conven-
tional Newton algorithms are overcome.

Krylov Subspace Acceleration Algorithm

Krylov subspaces form the basis for many iterative algorithms in
numerical linear algebra, including eigenvalue and linear equation
solvers �Golub and Van Loan 1996; Demmel 1997; Trefethen and
Bau 1997�. A Krylov subspace of dimension m, denoted Km, is
the span of vectors formed by the repeated multiplication of a
vector, b, by a matrix, A

Km = span�b,Ab,A2b, . . . ,Am−1b� �8�

What makes Krylov subspace methods attractive for numerical
algorithms is that the matrix A is never formed explicitly. Instead,
its effect is obtained by taking the difference of vectors.

Carlson and Miller �1998� showed that a Krylov subspace can
be formed from selected information about a finite-element
model. Then the subspace vectors can be used to accelerate the
modified Newton iteration �Miller 2005�. At each time step, the
Krylov acceleration algorithm seeks the solution to the system of
preconditioned residual equations

r�U� = K0
−1R�U� = 0 �9�

where K0= tangent stiffness matrix at the first iteration of the time
step. For a nonsingular K0, the solution to Eq. �9� is equivalent to
that of Eq. �2�.

Similar to the Newton-Raphson algorithm, the Krylov accel-
eration algorithm uses a linear approximation of Eq. �9� near the
root; however, the Jacobian matrix in Eq. �6� is replaced by a

matrix, A, to give the following linear correction equation:
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rk+1 = rk − AVk+1 = 0 �10�

The matrix A is assumed to be constant and nonsingular. In the
context of Eq. �10�, the modified Newton algorithm makes re-
peated use of the assumption that A is equal to the identity, i.e.,
there is no change in the Jacobian during a time step. On the other
hand, the Newton-Raphson algorithm uses A=K0

−1KT, where the
Jacobian is updated at each iteration.

To solve Eq. �10�, the Krylov acceleration algorithm decom-
poses the displacement increment into two vectors

Vk+1 = wk+1 + qk+1 �11�

where wk+1=acceleration component and qk+1=standard modified
Newton component of the displacement increment. For the total
displacement increment in Eq. �11�, Eq. �10� takes the form

rk+1 = rk − Awk+1 − Aqk+1 = 0 �12�

The first step in satisfying Eq. �12� is to minimize the norm of the
vector rk−Awk+1. To this end, wk+1 is specified as a linear com-
bination of the vectors from the subspace of displacement incre-
ments, Vm=span�V1 , . . . ,Vm�, accumulated during the
equilibrium iteration

wk+1 = c1V1 + ¯ + cmVm �13�

On the first iteration, the subspace is empty and w1 is zero, as
shown in Fig. 1. On subsequent iterations, the vector Awk+1 is
equal to

Awk+1 = c1AV1 + ¯ + cmAVm �14�

where each term measures the change in the residual at the pre-
vious m iterations according to Eq. �10�

AVk = rk−1 − rk �15�

The vector rk−Awk+1 in Eq. �12� thus represents an overdeter-
mined system of equations for the unknown coefficients c1 , . . . ,cm

in Eq. �14�. The norm of this vector is minimized by least-squares
analysis �Golub and Van Loan 1996� and the minimizing coeffi-
cients give the first component of the displacement increment
according to the linear combination in Eq. �13�.

At the intermediate solution point, Uk+wk+1, the residual rk

p
1

r(U) = K−1

0
R(U)

U0 U1 U2

U

Equilibrium

Further iterations

r0

r1

r2

-I

r(U) = 0

-I

AV1

1.1 1.2

2.3

2.1

2.2

1.1 – Modified Newton, q1 = r0

ITERATION 1

ITERATION 2
1.2 – Residual, r1 = r(U1)

2.1 – Least squares, min‖r1 − Aw2‖2

2.2 – Modified Newton, q2 = r1 − Aw2

2.3 – Residual, r2 = r(U2)
Further iterations

-A

AV2

(w1 = 0)

V1

q1 w2 q2

V2

Fig. 1. Graphical representation of the Krylov subspace acceleration
method
has been reduced by Awk+1, giving the least-squares residual,
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pk=rk−Awk+1, shown in Fig. 1. The correction Eq. �12� now
takes the form

rk+1 = pk − Aqk+1 = 0 �16�

The vector qk+1 remains unspecified at this point, thus a further
computation is required to solve Eq. �16�. Similar to the modified
Newton algorithm, the matrix A is assumed to be the identity
matrix and the value of qk+1 that solves Eq. �16� is the least-
squares residual, qk+1=pk. At this point, both components of the
displacement increment, Vk+1, are defined in order to update the
trial state of the structure. The computations taken by the Krylov
acceleration algorithm during one simulation time step are sum-
marized in Fig. 1.

Carlson and Miller �1998� showed by mathematical induction
that the subspace Vm=span�V1 , . . . ,Vm� generated during the
search for equilibrium coincides with the Krylov subspace Km

=span�r0 ,Ar0 , . . . ,Am−1r0�. At the first iteration, the subspace Vm

is empty and the algorithm produces the modified Newton dis-
placement increment, V1=r0, as shown in Fig. 1. On subsequent
iterations, the least-squares computation advances the solution
and the factorization of the tangent stiffness matrix from the first
iteration is reused, giving a computational savings over Newton-
Raphson and faster rate of convergence than modified Newton.
This algorithm, and the problem it solves, is completely different
from standard “nonlinear Krylov” and “inexact Newton” methods
�Brown and Saad 1990; Kelley 1995� in that it forms Krylov
subspaces as part of the root-finding algorithm rather than as part
of an iterative solution to the linear system equations formed at
each Newton iteration.

Implementation and Interpretation of the Algorithm

Pseudocode for the Krylov acceleration algorithm is shown in
Fig. 2 using MATLAB �2007� matrix-vector notation. For general
finite-element analysis, the algorithm has been implemented in
the OpenSees software framework �McKenna et al. 2000� using
the Strategy software design pattern �Gamma et al. 1995; McK-
enna et al. 2010�. The implementation requires the storage of up
to mmax vectors, Vi, in order to compute wk+1 by Eq. �13�. In
addition, the least-squares solution requires the same amount of
storage for the vectors, AVi, bringing the total storage require-
ment for the Krylov algorithm to 2mmaxNDOF, where NDOF is the
number of DOFs. To keep storage to a minimum, the parameter
mmax is typically between three and six. A small value of mmax

also keeps to a minimum the computational cost of the least-
squares solution. When equilibrium is not found after mmax itera-
tions within a time step, the algorithm zeros the subspace vectors
and recomputes the tangent stiffness matrix for use on the next
mmax iterations, as indicated in the code of Fig. 2.

The two components of the displacement increment, Vk+1,
each have a distinct physical interpretation. The first component,
wk+1, advances the solution with a bias, determined by least-
squares analysis, toward the DOFs where the largest changes in
state occur, as measured by the change in nodal displacements at
previous iterations. This is what the Newton-Raphson algorithm
does at every DOF by continually updating the tangent stiffness
matrix. The second component of the displacement increment,
qk+1, uses a modified Newton computation to advance the itera-
tion further toward equilibrium at DOFs where there are smaller
changes in the residual.

When yielding, geometric instability, and other significant
changes in state occur in a structural system, the tangent stiffness

matrix changes drastically at only a few DOFs and remains rela-
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tively unchanged elsewhere. In this case, the matrix A is signifi-
cantly different from the identity on a subspace of small
dimension. The Krylov acceleration method is able to solve effi-
ciently for such low-rank changes in the structural stiffness, as
demonstrated in the following examples.

Numerical Examples

The first two examples demonstrate the behavior of the Krylov
algorithm for a two-DOF nonlinear structural system using a con-
sistent tangent matrix, and an inconsistent tangent. In the second
set of examples, comparisons of the convergence behavior of the
Krylov and Newton-Raphson algorithms are made by simulating
the progressive collapse of a small reinforced concrete frame and
a moderately sized steel frame.

Two-DOF Spring System

A two-DOF example illustrates the differences between the Kry-
lov acceleration algorithm and the Newton-Raphson and modified
Newton algorithms. The system consists of three uniaxial springs
with bilinear force-deformation relationships shown in Fig. 3.
Using the compatibility matrix shown in the figure, the consistent
tangent stiffness matrix is obtained from the basic spring stiff-
nesses

kb = �k1 0 0

0 k2 0

0 0 k3
� → KT = ATkbA = �k1 + k2 − k2

− k2 k2 + k3
	 �17�

A load vector of P f = 
6 12�T is applied to the system in one time

U = Uo;

R = residual(U);

m = mmax+1; % Subspace dimension

% Main loop

while (norm(R) > tol)

% Refresh tangent and clear subspace

if (m > mmax)

K = jacobian(U);

[l,u] = lu(K);

m = 0;

end

% Backsolve

r = u \ (l \ R);

AV(:,m+1) = r;

% Least squares analysis

if (m > 0)

AV(:,m) = AV(:,m) - r;

c = AV(:,1:m) \ r;

r = r + V(:,1:m)*c; % w

r = r - AV(:,1:m)*c; % q

end

% Update state of structure

U = U + r;

R = residual(U);

m = m+1;

end

Fig. 2. MATLAB code for Krylov subspace acceleration algorithm
step and only static response is considered. The convergence cri-
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terion is that the norm of the residual vector reduces from its
initial value by four orders of magnitude.

The Newton-Raphson algorithm finds the equilibrium solution,
at nodal displacement vector U= 
2 5�T, in three iterations �three
residual evaluations and three matrix factorizations�, as shown in
Fig. 4 �from initial point to A, A to B, then B to the solution�. The
modified Newton algorithm requires 140 iterations �140 residual
evaluations and one matrix factorization� to find the solution
point, where it is observed in Fig. 4 that the rate of convergence is
slow as the solution point is approached. The Krylov accelerated
Newton algorithm �with mmax=1� requires five iterations �five re-
sidual evaluations and three matrix factorizations�. As is typically
the case for small structural models under monotonic loading with
simple strain-hardening constitutive models, Newton-Raphson is
the most efficient algorithm. There are however more complicated
instances where the Newton-Raphson algorithm is less robust, as
demonstrated in the following examples.

Two-DOF Spring System with Inconsistent Tangent

The efficiency of the Newton-Raphson algorithm relies on the use
of a numerically consistent tangent stiffness matrix. For complex
constitutive models, a consistent tangent can be difficult to de-
velop and implement, and the result of using an inconsistent tan-
gent or one with approximation errors is often nonconvergence of
the Newton-Raphson algorithm, as demonstrated in this example.

To mimic an error in the tangent calculation of the element
state determination, an artificial coupling of Springs 1 and 2 is
introduced, leading to a tangent stiffness matrix that is inconsis-
tent with the residual vector. The basic stiffness matrix of the
system contains off-diagonal terms, leading to the following tan-
gent stiffness matrix:

(1) (2)

(3)

6 12

2

1

10

110 14

2

7

7

Element 1 Element 2 Element 3

v1 v2 v3

q1 q2 q3

A =

⎡
⎣

1 0
−1 1
0 1

⎤
⎦

Compatibility

Fig. 3. Two-DOF spring system

−0.2 0 0.2 0.4 0.6 0.8
0

1

2

3

4

0.5 1 1.5 2
1

2

3

4

5
NR
MN
KN

NR
MN
KN

AAA

BBB

SolnSolnSoln
AAA

BBB
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(b) Residual

R1
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U
2

Fig. 4. Trace of equilibrium search for two-DOF spring example: �a�
displacement vector; �b� residual vector
JOU

Downloaded 30 Aug 2011 to 128.193.50.33. Redistribu
kb = � k1 0.5 0

0.5 k2 0

0 0 k3
� → KT = ATkbA = �k1 + k2 − 1 − k2 + 0.5

− k2 + 0.5 k2 + k3
	

�18�

As shown in Fig. 5�a�, the Newton-Raphson algorithm ap-
proaches the solution point then begins to oscillate or flip-flop
indefinitely between 
1.8 5�T and 
2.2 5�T with corresponding
changes in the residual vector. The modified Newton algorithm
converges to the solution after 143 iterations of applying the in-
consistent tangent to the residual, with the slow convergence
shown in Fig. 5�b�. On the other hand, the Krylov accelerated
Newton algorithm is able to find the solution after 14 iterations.
As shown in Fig. 5�c�, the Krylov algorithm begins to show the
potential for residual flip-flop as the iterations approach the solu-
tion point, but it is able to converge to the solution by using
least-squares computations rather than relying solely on the in-
consistent tangent.

While the matrix in Eq. �18� was contrived to demonstrate the
effect of an inconsistent tangent, the resulting behavior of the
Newton-Raphson algorithm is representative of that which occurs
when there are sharp changes in the residual, e.g., stiff unloading
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(a) Newton-Raphson
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(b) Modified Newton
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(c) Krylov Newton

Fig. 5. Trace of equilibrium search for two-DOF spring example
with inconsistent tangent: �a� Newton-Raphson; �b� modified New-
ton; and �c� Krylov-Newton
at a load reversal in a dynamic analysis. The Krylov acceleration
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algorithm can resolve efficiently such flip-flop behavior when
convergence cannot be achieved with the Newton-Raphson algo-
rithm.

Reinforced Concrete Frame

Predicting the progressive collapse potential of reinforced con-
crete frames requires solution algorithms that can solve for the
structural response with large time steps, especially when simu-
lating fine scale phenomena at the constitutive level such as
crushing, strain softening, and axial-moment interaction via com-
putationally intense fiber models. Progressive collapse simulation
of the two-bay two-story reinforced concrete frame shown in Fig.
6 demonstrates the convergence behavior of the Krylov subspace
acceleration algorithm.

Each frame member is discretized with four beam-column fi-
nite elements using the corotational transformation for geometric
nonlinearity �Crisfield 1991� and a displacement-based formula-
tion �linear curvature approximation� of material nonlinearity
using fiber discretizations of the cross sections shown in Fig. 6.
The model has 108 equations of nodal equilibrium �DOFs�. Re-
inforcing steel is assumed bilinear with fy =420 MPa, E
=200,000 MPa, and 2% kinematic hardening. The nominal con-
crete strength is 28.0 MPa, with confining effects of column trans-
verse reinforcement �Mander et al. 1988� increasing the core
strength to 36.0 MPa. Fiber models simulate the cross section
response with 20 concrete fibers through the section depth. To
simulate loss of load carrying capacity, fibers are assumed to fail
�carry zero stress and provide zero tangent� when ultimate strain
levels are reached. More realistic macromodels of reinforced con-
crete member behavior during progressive collapse have been
proposed by Bao et al. �2008�. The Newmark average accelera-
tion method is used for time integration and the convergence tol-
erance is 10−8 on the norm of the displacement increment vector,
Vk+1.

To ensure complete collapse of the frame upon removal of an
exterior column �Member 1 in Fig. 6�, heavy gravity loads are
applied to the girders. When a node reaches the ground, it, along
with its connected elements and associated member loads, is re-
moved from the structural model and the analysis proceeds with

4.6 m

3.7 m

610 mm 610 mm 610 mm

7.3 m 7.3 m

Exterior columns Interior columns Girders

690 mm 460 mm

Bar area = 700 mm2 Bar area = 1000 mm2

610 mm

115 kN/m

230 kN/m

Fig. 6. Reinforced concrete frame example
the resulting smaller structural system. This allows the collapse
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simulation to proceed as long as possible and test the solution
algorithms; however, it ignores phenomena such as impact forces
�Kaewkulchai and Williamson 2006�.

The results of the progressive collapse simulation are summa-
rized in Fig. 7, which shows the final displaced shape of the
frame, as well as selected intermediate configurations, at the point
where the equilibrium solution fails to converge. Using a time
step of �t=0.01 s with the Newton-Raphson algorithm, the final
converged state of the frame is at t=0.64 s, as shown in Fig. 7�a�.
At time t=0.65 s, the equilibrium iteration flip-flops between dis-
placement increment norms are on the order of 109. To reach the
final converged state, the Newton-Raphson algorithm requires
313 evaluations for both the residual vector and tangent stiffness
matrix. Although there is a significant downward displacement
�about 1.5 m� of the second story, which is indicative of severe
structural damage, it is not clear from the final displaced shape if
the second bay will be able to continue to resist loads. In an
attempt to keep the simulated structural response within the radius
of convergence of the Newton-Raphson algorithm, a time step
one order of magnitude smaller ��t=0.001 s� is used. In this
case, the simulation proceeds slightly further to t=0.754 s with
no discernible difference in the final state of the frame. It is noted
that the modified Newton algorithm was not able to find an equi-
librium solution beyond t=0.1 s for either �t=0.01 or 0.001 s.

Returning to the larger time step ��t=0.01 s� but employing
the Krylov acceleration algorithm with mmax=3, the simulation
converges at each time step until t=6.82 s, where the frame is
completely collapsed, as shown in Fig. 7�b�. It is noted that to
reach t=0.64 s, the final converged state of the Newton-Raphson
algorithm using �t=0.01 s, the Krylov algorithm requires fewer
matrix evaluations �145� but more residual evaluations �492� than
the 313 required for each with Newton-Raphson.

Steel Frame

A moderately sized moment-resisting steel frame is the final ex-
ample. The frame dimensions and member sizes are shown in Fig.
8 and are adapted from collapse simulations performed by Khan-
delwal and El-Tawil �2007�. The finite-element model used herein
consists of three displacement-based beam elements per member
�672 equations of nodal equilibrium�, corotational geometric
transformations, and fiber discretizations of all cross sections
�eight fibers through the depth of each web and two fibers through

t=0.15 sec t=0.30 sec t=0.45 sec t=0.64 sec
(a) Newton-Raphson, ∆t=0.01 sec

t=0.15 sec t=2.30 sec t=4.60 sec t=6.82 sec
(b) Krylov Newton, ∆t=0.01 sec

Fig. 7. Configuration of reinforced concrete frame after initiating
progressive collapse by removal of exterior first story column �no
display magnification�
each flange�. The steel material behavior is assumed elastic-
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perfectly plastic with elastic modulus E=200,000 MPa and
yields stress �y =240 MPa. As in the previous example, members
that reach the ground are removed from the model and steel fibers
are assumed to fail when ultimate strain is reached. Accurate con-
stitutive models of steel frames under progressive collapse have
been developed by Khandelwal et al. �2008�. The combined dead
and live load is 58.4 kN/m for all girder members and the frame
is analyzed for static equilibrium of the gravity loads before ini-
tiating dynamic progressive collapse with the Newmark average
acceleration method and convergence tolerance of 10−8 on the
norm of the displacement increment vector.

After obtaining equilibrium for gravity loads, the frame is able
to reach a stable dynamic solution due to the removal of only
column A or column B. Removing both columns A and B simul-
taneously produces complete collapse. The Newton-Raphson al-
gorithm with a time step of �t=0.01 s is able to track progressive
collapse mechanisms to t=2.17 s, at which point the equilibrium
solution fails with the deformed shape shown in Fig. 9�a�. At this
point, the Newton-Raphson algorithm fails to converge where the
norm of the residual force vector stagnates at 1264.96 while the
norm of the displacement increment vector stays in the range of
1011–1013. The algorithm requires 973 residual evaluations and
matrix factorizations to reach the final converged state. Using a
smaller time step, �t=0.001 s, does not improve the Newton-
Raphson simulation as nonconvergence occurs at t=2.184 s in
this case. Although the algorithm is able to track the equilibrium
path up to this point, it is not clear if the remaining portion of the
structure will resist collapse were the simulation able to continue
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Fig. 8. Steel frame example

t=1.00 sec t=1.40 sec t=1.80 sec t=2.17 sec
(a) Newton-Raphson, ∆t=0.01 sec

t=1.00 sec t=2.00 sec t=3.00 sec t=4.30 sec
(b) Krylov-Newton, ∆t=0.01 sec

Fig. 9. Displaced shape of steel frame after removal of two first floor
columns �no display magnification�
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past the last converged state. For both the large and small time
steps, the Newton-Raphson algorithm fails to find a solution when
large strains and sudden changes in resisting force dominate the
girder response in bay BC. For analysis time steps, �t=0.01 and
0.001 s, the modified Newton algorithm fails at t=0.21 and 0.277
s, respectively.

As shown in Fig. 9�b�, simulation with the Krylov acceleration
algorithm and the larger time step, �t=0.01 s, continues well
past the point of nonconvergence for the Newton-Raphson algo-
rithm. A larger maximum subspace dimension, mmax=6, is used
since the structural model has a larger number of DOFs than the
previous example. Up to simulation time t=2.17 s, the last con-
verged state found via Newton-Raphson with �t=0.01 s, the
Krylov algorithm requires fewer matrix factorizations �437� and
more residual evaluations �2169� than Newton-Raphson �973�.
However, the Krylov algorithm is able to track subsequent fail-
ures, including buckling of a second story column and the result-
ing second story collapse, up to simulation time t=3.79 s, at
which point the removed elements and nodes result in a singular
stiffness matrix. Although the sequence of events shown in Fig.
9�b� is unlikely due to fracture and connection failures in bay BC
and the omission of impact forces in the analysis �Kaewkulchai
and Williamson 2006�, it demonstrates the ability of the Krylov
acceleration algorithm to track severe nonlinear phenomena in an
implicit dynamic progressive collapse simulation.

Conclusions

This paper has presented an accelerated Newton algorithm based
on computations in Krylov subspaces for solving the equations of
dynamic equilibrium in nonlinear structural analysis. The algo-
rithm uses a low-rank least-squares analysis and a modified New-
ton computation at each iteration during a simulation time step.
The least-squares analysis searches for equilibrium at the DOFs
where the most significant nonlinear response occurs, while the
modified Newton computation advances the equilibrium search at
DOFs where the structural response is relatively linear. The ex-
ample applications show that the Krylov algorithm is able to con-
verge with an error in the tangent stiffness matrix and it is also
able to track progressive collapse through more failure mecha-
nisms when compared to the Newton-Raphson algorithm. Further
research will focus on the scalability of the Krylov acceleration
algorithm to large structural systems and on an implementation of
the algorithm in a parallel computing environment.

Although many advantages have been demonstrated for the
Krylov acceleration algorithm, it is by no means a “silver bullet,”
as there are situations where Newton-Raphson, modified Newton,
or another solution algorithm will outperform the Krylov algo-
rithm in one or more metrics. An important metric that will be the
focus of future research is the computational cost of matrix fac-
torizations relative to residual evaluations in progressive collapse
simulations as the Krylov algorithm generally requires fewer ma-
trix factorizations than Newton-Raphson but more residual evalu-
ations. For structural models with expensive residual evaluations,
e.g., when using nonlinear beam elements with fiber cross sec-
tions, it is recommended to begin a simulation with the Newton-
Raphson algorithm, then switch to the Krylov acceleration
algorithm when there are convergence difficulties and return to
Newton-Raphson after a sufficient number of Krylov time steps.
Switching between solution algorithms is handled easily in script-
able finite-element analysis packages such as OpenSees �Mazzoni

et al. 2006�.
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Regardless of computational cost, an important feature of the
Krylov algorithm is its ability to solve equilibrium equations
when using complex constitutive models for which a numerically
consistent tangent may be difficult to implement. The least-
squares component of the Krylov acceleration algorithm can cor-
rect for errors in the tangent stiffness that would otherwise lead to
slow convergence or nonconvergence of the Newton-Raphson
and modified Newton algorithms.
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