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Introduction

A comprehensive performance-based design methodology neces-
sitates the computation of structural response until collapse.
Under these conditions, large displacement beam-column theories
are required for an accurate assessment of the response of frame
structures. Frame structures are prone to collapse when column
members carrying high axial loads experience significant drift, or
when vertical load carrying members are removed from the struc-
ture due to accident or explosion. The corotational theory
�Crisfield 1991� is an ideal approach for describing the response
of frames under large displacements because it permits the sepa-
ration of the nonlinear geometric response of a beam-column el-
ement from its nonlinear material response. In this approach, the
material response is described in a reference frame that displaces
and rotates with the element. Relative to the corotational frame,
the assumption of small deformations is valid in computing the
material response because it is always possible to subdivide the
structural member into smaller elements. Thus, beam-column fi-
nite element models for small deformations can be used to de-
scribe the nonlinear material response, in particular distributed
inelasticity elements based on a displacement, force, or mixed
formulation as summarized, e.g., by Alemdar and White �2005�.
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Algorithms in structural reliability, optimization, and system
identification require that the gradient of the structural response
be computed for a set of uncertain parameters in order to con-
verge to the optimal solution point �Liu and Der Kiureghian
1991�. Without the derivative of the response of beam-column
elements that undergo large displacements of the corotational ref-
erence frame, it is not possible to deploy such elements in
gradient-based applications or in stand-alone response sensitivity
analysis. In such applications the direct differentiation method
�Kleiber et al. 1997� is computationally superior to the finite dif-
ference method because it permits the exact response gradient to
be computed as the simulation proceeds rather than by approxi-
mation through repeated simulations. Moreover, the latter is sig-
nificantly more time consuming because it requires that the entire
simulation be repeated for each uncertain parameter in the model,
and it is prone to round-off error for small perturbations of a
parameter value.

The objective of this paper is to use the direct differentiation
method �DDM� in deriving the exact response gradient for beam-
column elements under large displacements of the corotational
reference frame. The derivation applies to all beam-column for-
mulations for material nonlinear behavior within the corotating
frame; however, particular attention is paid to the force-based
formulation. The proposed formulation of the response gradient is
based on the following assumptions:
• The displacements of the corotational reference frame �and

thus the translations and rotations of the nodes� are assumed to
be large, requiring the element equilibrium equations to be
written in the deformed configuration of the element.

• The corotational formulation is limited to the two-dimensional
case to avoid the complex transformation of large rotations in
three dimensions. The derivation of the response gradient can
be extended to the three-dimensional case, but the expressions
are significantly more involved and do not add to the underly-
ing concepts.

• The element deformations in the corotational reference frame

are assumed to be small. Thus, small strain theory describes
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the material nonlinear response at a cross section of the beam-
column element.

• Dynamic equilibrium effects are taken into account at the glo-
bal level of the structure rather than at the local element level.
As a result, only the static resisting forces of the element are
considered in the response gradient equations derived herein.

This paper begins with the global formulation for computing the
gradient of the structural response. Then the corotational theory is
described, followed by the exact differentiation of the governing
kinematic and equilibrium equations. Next, the response gradient
of force-based beam-column elements is derived considering both
material and geometric uncertainties within the corotating frame
of reference. The paper concludes with numerical examples that
validate the exact response gradient for the corotational theory in
conjunction with the force-based element formulation of distrib-
uted inelasticity.

Equations for the Global Response Gradient

The analysis of a structural system by the finite element method
depends on assumptions regarding the properties of the system.
These properties, defined in terms of uncertain parameters, de-
scribe the loads applied to the structure, the materials that make
up the structural members, and the location of supports, connec-
tions, and joints. The load, material, and geometric parameters for
the structure are collected in a vector, �, and the global equations
of static equilibrium take the form

P f��,t� − Pr�U��,t�,�� = 0 �1�

Eq. �1� indicates that equilibrium is attained when the internal
resisting forces in the vector Pr balance the applied external loads
in the vector P f. This external load vector varies with pseudotime,
t, and is an explicit function of the parameters in � that describe
the loads applied to the structure. The vector Pr represents the
static resisting forces of the structure, and it is assembled from
element contributions by standard finite element procedures
�Zienkiewicz and Taylor 2000�. The resisting force vector is a
nonlinear function of the nodal displacement vector, U, which is a
function of all the parameters in � as a change in any load,
material, or geometric property will affect the structural response.
The implicit solution for U in Eq. �1� at each time step during the
structural simulation is achieved by a nonlinear root-finding algo-
rithm, such as the Newton-Raphson method �Stoer and Bulirsch
1993�. In addition to its implicit dependence on � through the
nodal displacement vector, the resisting force vector is an explicit
function of the parameters in � that describe the material and
geometric properties of the structural system. Inertial and damp-
ing forces are omitted from Eq. �1� because the inclusion of dy-
namic equilibrium effects, as well as the associated computation
of the response gradient, is straightforward for the common ap-
proaches of lumped mass and classical damping �Kleiber et al.
1997; Franchin 2004�.

To formulate the governing equations for the gradient of the
structural response, Eq. �1� is differentiated by the chain rule with
respect to a particular parameter, �, from the entire collection of
parameters in the vector �

�P f

��
− � �Pr

�U

�U

��
+� �Pr

��
�

U
� = 0 �2�

The vector ��Pr /���U=conditional derivative of the resisting force

vector, and it is assembled from element contributions in the same
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manner as the resisting force vector itself. Physically, this vector
represents the forces that must be applied to the structure to keep
the nodal displacements fixed due to changes in the parameter �.
The vector �P f /�� is the gradient of the applied load vector and it
is nonzero only when � refers to an uncertain load parameter. To
solve for the gradient of the nodal response, �U /��, Eq. �2� is
rewritten as the following system of linear equations

KT

�U

��
=

�P f

��
−� �Pr

��
�

U
�3�

where KT=�Pr /�U=tangent stiffness matrix of the structure and
is assembled from element contributions.

For path-dependent structural response, the response gradient
is also path dependent. In addition to the history variables that
track the path-dependent behavior of each element, it is necessary
to store the gradient of these history variables with respect to each
parameter in �. Zhang and Der Kiureghian �1993� describe a
two-phase process for path-dependent response gradient compu-
tations. The assembly of the right-hand side of Eq. �3� and the
solution of the linear system of equations gives �U /�� in phase
one. In phase two, each element uses the gradient of the nodal
response to update the gradients of its internal history variables.
For computational efficiency when using direct equation solvers
�Golub and Van Loan 1996; Demmel 1997�, the factorization of
KT can be reused to determine �U /�� for each parameter in the
vector � during phase one of this two-phase process.

Corotational Geometric Theory

The corotational theory �Crisfield 1991� for two-dimensional
beam-column elements is summarized in this section and follows
the presentation of a basic system within the corotating frame of
reference �Filippou and Fenves 2004�. There are three compo-
nents to the corotational theory: �1� The transformation of the
element displacements and forces between the global and local
coordinate systems, �2� the removal of the rigid body modes from
the element displacement field, and �3� the equilibrium relation-
ship between the forces in the basic and local coordinate systems.
The identification of these three components will facilitate the
derivation of the response gradients for the corotational theory.

Transformation from Global to Local Coordinates

The first component of the corotational theory is the transforma-
tion of the element displacements from the global coordinate sys-
tem to displacements in a coordinate system that coincides with
the local axes of the element, as shown in Fig. 1. This transfor-
mation is described by the matrix-vector product

u = arue �4�

where ue and u=element displacement vectors in the global and
local coordinate systems, respectively. The matrix ar�ar���
transforms the nodal translations and rotations between the coor-
dinate systems and is a function of only the undeformed element
configuration in the global coordinate system.

The vector of element forces in the local coordinate system, p,
transforms to the vector of element forces in the global coordinate

system, pe, by the contragradient relationship
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pe = ar
Tp �5�

where, similar to Pr, the element forces depend on any parameter
in � in one of two ways: Explicitly when � represents a material
or geometric property of the element, or implicitly through the
nodal displacements, i.e., pe�pe�ue��� ,�� and p�p�u��� ,��.
The element displacement vectors, ue�ue��� and u�u���, de-
pend on every material, geometric, and load parameter of the
structural system because the element displacements are selected
directly from the nodal displacement vector, U, which is a func-
tion of all parameters in �.

Removal of Rigid Body Displacement Modes

The second component of the corotational theory is the removal
of rigid body modes from the element displacement field. For
beam-column elements in two dimensions, there are six displace-
ment modes, three of which correspond to rigid body motion. The
removal of the rigid body modes produces the element deforma-
tion vector v�v�u��� ,��. The explicit dependence of v on � is
due to the parameters that correspond to the nodal coordinates of
the element, whereas the vector u introduces an implicit depen-
dence on �.

The three element deformations can be expressed in terms of
the end displacements in the local coordinate system

v = �v1

v2

v3
	 = �Ln − L

u3 − �

u6 − �
	 �6�

The first deformation, v1, is the change in length of the element,
where L=undeformed length, computed from the nodal coordi-
nates in the undeformed configuration and Ln=deformed length

Ln = 
�L + �ux�2 + ��uy�2 �7�

where �ux=u4−u1 and �uy =u5−u2 are the relative nodal dis-
placements in the local coordinate system, as shown in Fig. 2.

The second and third element deformations, v2 and v3, repre-
sent the rotation of the tangent to the deformed shape at nodes I
and J, respectively, relative to the rigid body rotation, �, of the

Fig. 1. Element degrees of freedom
element chord

JOURNAL
� = arctan
�uy

L + �ux
�8�

With the removal of the rigid body displacement modes from the
element displacement vector complete, attention turns to the equi-
librium relationship between the element forces in the basic sys-
tem and the forces in the local coordinate system.

Equilibrium Relationship of the Basic and Local
Forces

The basic force vector, q�q�v��� ,��, contains the work conju-
gates to the element deformations and is a nonlinear function of v
and the parameter �. The axial force and two end moments shown
in Fig. 3 are the basic forces in the simply supported system. The
element state determination procedure computes the basic forces
for given element deformations depending on the formulation of
nonlinear material response, as described later in this paper for
the force-based formulation.

The satisfaction of element equilibrium in the deformed con-
figuration in Fig. 3 gives the relationship between the basic forces
and the forces in the local coordinate system. This relationship
takes the matrix-vector form

global and local coordinate systems

Fig. 2. Geometric transformation between the local coordinate
system and the basic system
in the
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p = aTq �9�

where the equilibrium transformation matrix is

a = � − cos � − sin � 0 cos � sin � 0

− sin �/Ln cos �/Ln 1 sin �/Ln − cos �/Ln 0

− sin �/Ln cos �/Ln 0 sin �/Ln − cos �/Ln 1
	

�10�

with cos �= �L+�ux� /Ln and sin �=�uy /Ln, as shown in Fig. 2. It
can be shown that the equilibrium transformation matrix is equal
to the partial derivative of the element deformations with respect
to the element displacements, i.e., a=�v /�u. The element stiff-
ness matrix in the local coordinate system, kl=�p /�u, is obtained
by applying the chain and product rules to Eq. �9�

kl = aTka +
�aT

�u
q �11�

where k=�q /�v=stiffness matrix in the basic system and
�a /�u=�2v /�u2. The first term on the right-hand side of Eq. �11�
is the material contribution to the element stiffness matrix, while
the second term represents the geometric contribution. After
transformation by the Givens rotations in ar, the element stiffness
matrix in the global coordinate system, ke=ar

Tklar, is assembled
into KT in Eq. �3�.

Exact Differentiation of the Corotational Geometric
Theory

With the three components of the corotational formulation de-
fined, attention now turns to their differentiation with respect to �
in order to determine the contribution of the element resisting
forces to the gradient of the structural response.

Differentiation of the Global to Local Transformation

To determine the element contribution, ��pe /���ue
, to the condi-

tional derivative of the structural resisting force vector, ��Pr /���U,
it is necessary to differentiate with respect to � the element equi-

Fig. 3. Equilibrium transformation between the basic system and the
local coordinate system
librium relationship defined in Eq. �5�
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�pe

��
= ar

T�p

��
+

�ar
T

��
p �12�

Then, by applying the chain rule in the differentiation of
pe�pe�ue��� ,�� and p�p�u��� ,�� with respect to �, Eq. �12�
expands to

ke

�ue

��
+� �pe

��
�

ue

= ar
T�kl

�u

��
+� �p

��
�

u
� +

�aT

��
p �13�

where ke=�pe /�ue=element stiffness matrix in the global coordi-
nate system. To isolate ��pe /���ue

in Eq. �13�, it is necessary to
establish a relationship between the derivatives �u /�� and
�ue /��. To this end, Eq. �4� is differentiated with respect to �

�u

��
= ar

�ue

��
+

�ar

��
ue �14�

Then, Eqs. �13� and �14� are combined to give the following
expression:

ke

�ue

��
+� �pe

��
�

ue

= ar
T�klar

�ue

��
+ kl

�ar

��
ue +� �p

��
�

u
� +

�ar
T

��
p

�15�

From the relationship between the element stiffness matrix in
local and global coordinates, the first term on the left-hand side of
Eq. �15� is equal to the first term in parentheses on the right-hand
side of the equation. As a result, Eq. �15� reduces to the following
expression for the conditional derivative of the element forces:

� �pe

��
�

ue

= ar
Tkl

�ar

��
ue + ar

T� �p

��
�

u
+

�ar
T

��
p �16�

As described in the Appendix, the matrix �ar /�� in Eq. �16� is
equal to zero for all parameters in � except those that refer to the
nodal coordinates of the element. Eq. �16� defines the element
contribution to the vector ��Pr /���U in Eq. �3�; however, it de-
pends on the conditional derivative of the element forces in the
local coordinate system, ��p /���u, which remains to be defined.

Differentiation of the Element Equilibrium and
Compatibility Relationships

To determine the conditional derivative of the element forces in
the local coordinate system, the element equilibrium relationship
defined in Eq. �9� is differentiated by a procedure identical to that
which led to Eq. �13�

kl

�u

��
+� �p

��
�

u
= aT�k

�v

��
+� �q

��
�

v
� +

�aT

��
q �17�

where kl=element stiffness matrix in the local coordinate system,
as defined in Eq. �11�. From the second term on the right-hand
side of Eq. �17�, it is clear that the derivative of the element forces
depends on the derivative of the element deformations, �v /��.
This derivative is obtained by applying the chain rule of differen-
tiation to v=v�u��� ,��

�v

��
= a

�u

��
+� �v

��
�

u
�18�
where a=�v /�u. The derivative of the element deformations in
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Eq. �18� contains the conditional derivative, ��v /���u, because the
removal of the rigid body displacement modes is a nonlinear
function of the nodal displacements in the corotational theory.
From the same derivation procedure as that employed for the
gradient of the transformation from global to local coordinates,
the insertion of Eq. �18� into Eq. �17� gives the following
expression:

kl

�u

��
+� �p

��
�

u
= aT�ka

�u

��
+ k� �v

��
�

u
+� �aT

��
�

v
� +

�aT

��
q �19�

It is possible to expand further the last term on the right-hand side
of Eq. �19� by applying the chain rule to the differentiation of aT

with respect to �

�aT

��
=

�aT

�u

�u

��
+� �aT

��
�

u
�20�

With this derivative, Eq. �19� becomes

kl

�u

��
+� �p

��
�

u
= aT�ka

�u

��
+ k� �v

��
�

u
+� �q

��
�

v
�

+ � �aT

�u

�u

��
+� �aT

��
�

u
�q �21�

The sum of the two matrices on the right-hand side of Eq. �21�
that multiply the vector �u /�� is equal to the element stiffness
matrix kl defined in Eq. �11�. As a result, the first term on the
left-hand side of Eq. �21� is equal to the sum of the two terms that
involve the vector �u /�� on the right-hand side of the equation.
On account of this equality, Eq. �21� reduces to

� �p

��
�

u
= aTk� �v

��
�

u
+� �aT

��
�

u
q + aT� �q

��
�

v
�22�

Eq. �22� represents the final expression for the conditional deriva-
tive of the element forces in the local coordinate system that is
required for the computation of ��pe /���ue

according to Eq. �16�.
Three conditional derivatives contribute to ��p /���u, and the de-
scription of each follows.

The derivative in the first term of Eq. �22� is ��v /���u, the
conditional derivative of the transformation that removes the rigid
body displacement modes from the element displacement field.
This vector represents the deformations that must be applied to
the element to keep the nodal displacements fixed due to changes
in the parameter �. This derivative is obtained by differentiating
the individual components of Eq. �6� with respect to �

�v

��
= ��v1/��

�v2/��

�v3/��
	 = ��Ln/�� − �L/��

�u3/�� − ��/��

�u6/�� − ��/��
	 �23�

As seen in Eq. �23�, to determine �v1 /��, it is necessary to com-
pute the derivatives �L /�� and �L /��. The derivative �L /�� is
n

2 cos � sin � 2 sin � − 1 0

JOURNAL
defined in the Appendix and the derivative of the deformed ele-
ment length, Ln defined in Eq. �7�, is

�Ln

��
= cos �� �L

��
+

��ux

��
� + sin �

��uy

��
�24�

where ��ux /��=�u4 /��−�u1 /�� and ��uy /��=�u5 /��−�u2 /��
are the gradients of the relative displacements in the local coor-
dinate system. The derivative of the rigid body rotation of the
element chord is required to determine the derivatives �v2 /�� and
�v3 /�� in Eq. �23�. The differentiation of Eq. �8� with respect to �
gives

��

��
=

cos �

Ln

��uy

��
−

sin �

Ln
� �L

��
+

��ux

��
� �25�

After inserting the derivatives of L, Ln, and � into Eq. �23�, and
collecting the terms that multiply the components of the vector
�u /��, the derivative of the element deformations can be written
as the sum of two terms

�v

��
= � − cos � − sin � 0 cos � sin � 0

− sin �/Ln cos �/Ln 1 sin �/Ln − cos �/Ln 0

− sin �/Ln cos �/Ln 0 sin �/Ln − cos �/Ln 1
	�u

��

+ �cos � − 1

sin �/Ln

sin �/Ln
	�L

��
�26�

In correspondence to Eq. �18�, the matrix that multiplies �u /�� in
the first term on the right-hand side of Eq. �26� is equal to a, so
the second term on the right-hand side of Eq. �26� must be equal
to the conditional derivative of the element deformations

� �v

��
�

u
= �cos � − 1

sin �/Ln

sin �/Ln
	�L

��
�27�

Due to the common factor of �L /��, the vector ��v /���u is non-
zero for only the parameters in � that correspond to the nodal
coordinates of the element.

The derivative in the second term of Eq. �22�, ��a /���u, repre-
sents changes in the equilibrium transformation relationship due
to variations in the parameter with the nodal displacements held
fixed. With �Ln /�� and �� /�� defined, it is straightforward to
determine the derivative of each component in the matrix a under
the condition that ��u /�� and ��u /�� are zero:
x y
� �a

��
�

u
=

1

Ln
2� − Ln sin2 � Ln cos � sin � 0 Ln sin2 � − Ln cos � sin � 0

2 cos � sin � 2 sin2 � − 1 0 − 2 cos � sin � 1 − 2 sin2 � 0
2 2 	�L

��
�28�
− 2 cos � sin � 1 − 2 sin � 0
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It is important to note that the matrix ��a /���u is nonzero only
when �L /�� is nonzero, i.e., when the parameter � corresponds to
a nodal coordinate of the element.

Gradient Equations in the Basic System

The derivative in the third term of Eq. �22� is the vector ��q /���v,
which is the contribution of the basic forces to the gradient of the
element response. This derivative depends on the mathematical
formulation of the equations of equilibrium and compatibility that
govern the nonlinear material response of the beam-column ele-
ment. The exact response gradient for the displacement- and
force-based formulations of distributed inelasticity considering
only uncertain material properties was outlined in the work of
Scott et al. �2004�. In this section, the response gradient for only
the force-based formulation is extended to include uncertain
nodal locations that define the orientation of the corotating refer-
ence frame within the global coordinate system. Derivations of
response gradient equations for displacement-based and mixed
formulations of distributed inelasticity are possible by a process
identical to that presented herein, through the consistent differen-
tiation of the equilibrium, compatibility, and constitutive equa-
tions that govern the element response in the basic system.

Regardless of the element formulation, the basic force vector,
q�q�v��� ,��, is a nonlinear function of the element deformation
vector, v, and the parameter �. To derive the element response
gradient, it will be necessary to differentiate the basic force vector
with respect to �

�q

��
= k

�v

��
+� �q

��
�

v
�29�

where k=�q /�v=element stiffness matrix in the basic system. A
constitutive relationship at each cross section along the element
gives the section forces, s�s�e��� ,��, as a nonlinear function of
the section deformations, e, and the parameter �. The derivative
of this section force-deformation relationship with respect to � is

�s

��
= ks

�e

��
+� �s

��
�

e
�30�

where ks=�s /�e=section stiffness matrix. Both the section
forces, s, and the conditional derivative of the section forces
��s /���e, are computed by either a stress-resultant plasticity

model or a fiber representation of the cross section.

Force-Based Element Formulation

In the force-based beam-column formulation �Spacone et al.
1996; Neuenhofer and Filippou 1997�, the equilibrium relation-
ship is stated in strong form as

s�x� = b�x�q �31�

where the matrix b contains interpolation functions that relate
section forces to basic forces, as determined from static equilib-
rium of the basic system in the undeformed configuration. With-
out loss of generality in the derivation of the response gradient,
member loads are not included in Eq. �31�, in which case the
internal axial and shear forces are constant and the internal bend-
ing moment is linear at a section x along the element.

From the principle of virtual forces, compatibility between
section deformations and element deformations is satisfied in in-

tegral form and evaluated numerically
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v = �
i=1

Np

bT�xi�e�xi�wi �32�

over Np discrete section locations. A common approach to evalu-
ate Eq. �32� is Gauss-Lobatto quadrature, which specifies deter-
ministic locations, �, and weights, �, for the integration points in
a natural domain �−1,1 �Abramowitz and Stegun 1972�. These
locations are transformed to locations, x, and weights, w, in the
element domain �0,L by the mapping shown schematically in
Fig. 4 for three Gauss-Lobatto integration points �Np=3�.

In the force-based formulation, the element stiffness matrix in
the basic system is determined by inversion of the element flex-
ibility matrix, k= f −1. The flexibility matrix is obtained by linear-
ization of Eq. �32� with respect to the basic forces

f =
�v

�q
= �

i=1

Np

bT�xi�fs�xi�b�xi�wi �33�

where fs=ks
−1 is the section flexibility matrix. After inversion of

Eq. �33�, the element stiffness is incorporated in the tangent stiff-
ness matrix of the structure by the transformation in Eq. �11� and
standard finite element assembly procedures.

Force-Based Element Response Sensitivity

The derivation of the response gradient for the force-based for-
mulation begins with the differentiation of the equilibrium rela-
tionship in Eq. �31� taking into account variations in the basic and
section force vectors and the force interpolation matrix

�s

��
= b

�q

��
+

�b

��
q �34�

After the insertion of the derivatives of the basic and section
forces, from Eqs. �29� and �30�, respectively, Eq. �34� expands to

ks

�e

��
+� �s

��
�

e
= b�k

�v

��
+� �q

��
�

v
� +

�b

��
q �35�

The conditional derivative of the basic forces, ��q /���v, cannot be
determined from Eq. �35� because the force interpolation matrix,
b, in general, is not a square, invertible matrix and the vectors
�v /�� and �e /�� are unknown. Adding to the difficulty is the fact

Fig. 4. The mapping of integration points from the natural domain to
the element domain for three-point Gauss-Lobatto quadrature
that in the derivative of the element compatibility relationship
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�v

��
= �

i=1

Np �bT �e

��
+

�bT

��
e�wi + �

i=1

Np

bTe
�wi

��
�36�

the derivative of the section deformations, �e /��, appears inside
the summation, thus requiring further manipulation for the deter-
mination of ��q /���v in the force-based formulation. The key to
this derivation is to solve for �e /�� in Eq. �35�

�e

��
= fsbk

�v

��
+ fs�b� �q

��
�

v
+

�b

��
q −� �s

��
�

e
� �37�

Eq. �37� expresses the derivative of the section deformations in
terms of the conditional derivative of the basic force vector,
��q /���v, which is unknown at this point. The substitution of

Eq. �37� into Eq. �36� yields

�v

��
= �

i=1

Np

bTfs�bk
�v

��
+ b� �q

��
�

v
+

�b

��
q −� �s

��
�

e
�wi

+ �
i=1

Np � �bT

��
ewi + bTe

�wi

��
� �38�

Then, the combination of terms involving the element flexibility
matrix in Eq. �33� allows the previous equation to be expressed as

�v

��
= fk

�v

��
+ f� �q

��
�

v
+ �

i=1

Np

bTfs� �b

��
q −� �s

��
�

e
�wi

+ �
i=1

Ne � �bT

��
ewi + bTe

�wi

��
� �39�

Using the identity fk=I, the term on the left-hand side of Eq. �39�
and the first term on the right-hand side of the equation are equal.
Then, the solution of Eq. �39� for the conditional derivative of the
basic force vector gives

� �q

��
�

v
= k�

i=1

Np

bTfs�� �s

��
�

e
−

�b

��
q�wi − k�

i=1

Np � �bT

��
ewi + bTe

�wi

��
�

�40�

where ��s /���e is determined from the gradient of the constitutive
response at each section along the element. Two additional de-
rivatives, �b /�� and �wi /��, are required to evaluate Eq. �40�.
First, for the common case when only axial force and bending
moment are considered in the section response, it is straightfor-
ward to show that �b /��=0 when the integration point locations
are deterministic. Second, for deterministic integration weights
defined in a natural domain, �wi /�� is found by differentiation of
the mapping shown in Fig. 4, i.e., �wi /��= ��i /2��L /��. As a
result, when accounting for only axial force and bending moment
in the response at sections with deterministic locations and
weights, such as those dictated by Gauss-Lobatto quadrature,
Eq. �40� reduces to

� �q

��
�

v
= k�

i=1

Np

bTfs� �s

��
�

e
wi − kv

1

L

�L

��
�41�

There are two situations where Eq. �41� does not apply and the
general form of Eq. �40� must be used to compute the conditional
derivative of the basic forces. First, if the integration point loca-
tions and weights depend on an uncertain parameter, e.g., when �
corresponds to a prescribed plastic hinge length �Scott and Fenves

2006�, �b /�� and �wi /�� will be nonzero. These derivatives must

JOURNAL
be computed consistent with the element integration method. Sec-
ond, if shear force is considered in the section response, �b /��
will be nonzero when �L /�� is nonzero, regardless of the element
integration approach. This is due to the dependence of the internal
shear force on the element length through equilibrium with the
end moments of the basic system.

At this point, each term required to determine the conditional
derivative of the basic forces in the force-based formulation via
Eq. �40� is defined and computable. In the two-phase process for
path-dependent response gradient computations, the conditional
derivative of the basic forces is determined from Eq. �40� for
eventual incorporation in Eq. �16� and assembly into the right-
hand side of Eq. �3� during phase one. Then, in phase two, the
derivative of the element deformation vector is computed from
the nodal response gradient according to Eq. �23� and subse-
quently used in Eq. �37� to determine the derivative of the section
deformations in order to update the gradient of the internal history
variables for the element.

Numerical Examples

The proposed equations to compute the response gradient for the
force-based formulation within the corotational frame of refer-
ence for large displacement structural analysis have been imple-
mented in the finite element framework OpenSees �McKenna
et al. 2000�. The following numerical examples validate the exact
response gradient equations and demonstrate the accuracy and
efficiency of the DDM approach.

For a load-control solution strategy, where the structural dis-
placements are determined from an applied load that is held con-
stant at each iteration during a time step of the simulation, the
exact gradient of the structural response, �U /��, can be verified
by comparison with the finite difference approximation

lim
�→0

U�� + ��� − U���
��

=
�U

��
�42�

In the limit as the perturbation, �, approaches zero, the finite
difference approximation should converge to the exact gradient.
Implicit in Eq. �42� is the assumption that the applied load vector,
P f, follows the same path over the course of the simulation for
every perturbation of the parameter.

Lee’s Frame

The response gradient for the case of nonlinear geometric behav-
ior of a linear elastic structure is verified in this example. The
structural model is Lee’s frame, which is a standard test problem
for geometric nonlinear structural analysis �Cichon 1984; Park
and Lee 1996�. Lee’s frame is a two-member L-shaped structure
with an eccentric load applied on the beam, as shown in the inset
of Fig. 5. Each member has a length of L=120 cm, elastic modu-
lus of E=720 MPa and a 1.0 cm by 3.0 cm rectangular cross
section. Ten force-based beam-column elements with linear-
elastic deformations in the basic system are used for each member
of Lee’s frame in order to represent its complex nonlinear geo-
metric behavior. De Souza �2000� showed that a single force-
based element per member can represent accurately the response
of Lee’s frame by taking into account moderate section deforma-
tions in the element formulation.

The computed response is shown in Fig. 5 as a plot of the

applied load versus the displacement at the same degree of

OF STRUCTURAL ENGINEERING © ASCE / FEBRUARY 2007 / 161



freedom as the applied load. To compute the load-displacement
response in OpenSees, a load-controlled incremental solution
strategy is used with constant load steps of �P=0.005 kN up to a
total load of P=2.7 kN. As the computed solution is load con-
trolled, it does not capture the snap-through and snap-back re-
sponse shown for the exact solution and instead it jumps through
the region of geometric instability. As the intent of this example is
to demonstrate the sensitivity of the frame response to uncertain
parameters as it approaches the limit point, the load-controlled
solution is sufficient.

The gradient of the frame response is computed with respect to
three potentially uncertain parameters: The elastic modulus, E;
the length of the column member, Lcol; and the length of the beam
member, Lbeam. The response sensitivity with respect to Lcol and
Lbeam is based on treating the Y coordinate of the column support
and the X coordinate of the beam support, respectively, as uncer-
tain while all other nodal locations in the finite element mesh are
deterministic. The response gradient computed by the DDM for
each parameter is shown in Figs. 6–8, where the DDM results are
compared with finite difference computations for a small param-
eter perturbation, �=10−6. As expected, the response becomes ex-
tremely sensitive to each parameter as the frame approaches the
limit point at a displacement of about 47 cm. Similar to the actual
response, the response gradient jumps through the region of geo-
metric instability. As indicated by the negative response gradient
values in Fig. 6, the elastic modulus, E, is a resistance variable,
i.e., an increase in E will cause a decrease in U. On the other
hand, as seen in Figs. 7 and 8, the lengths of the frame members
are load variables as an increase in these parameters will cause an

Fig. 5. Load-displacement response of Lee’s frame computed with a
load-control incremental solution strategy

Fig. 6. Response gradient of Lee’s frame computed with respect to
the material modulus of elasticity by the direct differentiation and
finite-difference methods
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increase in displacement. For each of the parameters considered,
the DDM computations match those computed by finite differ-
ences, thereby validating the DDM response gradient equations
and implementation.

Slender Steel Cantilever

In this example, the response gradient for nonlinear geometric
response combined with path-dependent nonlinear material re-
sponse in the basic system according to the force-based formula-
tion is verified. The structural model is a steel cantilever of length
L=5.0 m with cross-sectional dimensions of b=0.1 m width and
d=0.5 m depth. A single force-based element with five Gauss-
Lobatto integration points represents the nonlinear material re-
sponse of the cantilever. The cantilever is loaded through one
sinusoidal cycle with a peak magnitude of 5My /L using the load-
control solution strategy. Thus, the finite difference approxima-
tion of Eq. �42� is appropriate for the verification of the DDM
gradient computations. The elastic modulus for the cantilever is
E=2.0�105 MPa and the yield stress is �y =410 MPa. A bilinear
moment-curvature relationship with a hardening ratio of 7% rep-
resents the section behavior at each integration point. The axial
behavior is assumed linear elastic.

The load-displacement response for the steel cantilever is
shown in Fig. 9 for the corotational large displacement theory
along with the case of linear geometry, i.e., small displacement
theory. The cantilever response is similar for both cases before

Fig. 7. Response gradient of Lee’s frame computed with respect to
the column length by the direct differentiation and finite-difference
methods

Fig. 8. Response gradient of Lee’s frame computed with respect to
the beam length by the direct differentiation and finite-difference
methods
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and after a plastic hinge is formed; however, as the cantilever
displacement exceeds 20% drift, geometric effects start to domi-
nate the response.

The DDM response gradient with respect to the element
length, L, is validated by comparison with finite difference
computations, as shown in Fig. 10�a�. As the parameter pertur-
bation decreases, the finite differences converge to the DDM gra-
dient, as expected according to Eq. �42�. It is noted that the
cantilever length is a load variable since the cantilever displace-
ment will increase with an increase in L. The response gradient is
compared with the gradient for the case of small displacements in
Fig. 10�b�. At the peak load �pseudotime, t=1�, the cantilever
response is about twice as sensitive to the length under the as-

Fig. 9. Load-displacement response of slender steel cantilever using
one force-based element considering small displacement linear
geometry and large displacement nonlinear geometry according to the
corotational theory

Fig. 10. Response gradient of slender steel cantilever computed with
respect to the cantilever length: �a� validation of the corotational
DDM computation by finite differences; �b� comparison of
corotational gradient with that for linear geometry
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sumption of small displacements compared to the case for large
displacements. Thus, the response sensitivity computation reflects
the fact that the assumption of linear geometry can lead to sig-
nificant overestimation of structural displacements under a given
loading.

To examine the DDM computations for the case of a material
parameter, the cantilever response gradient is computed with re-
spect to the section yield moment, My. As shown in Fig. 11�a�, the
gradients computed by the finite difference method converge to
that computed by the DDM. The transition between elastic and
plastic states at each section causes a discrete jump in the re-
sponse gradient �Conte et al. 1999�. Further, Fig. 11�a� indicates
that the section yield moment is a resistance variable because an
increase in My will decrease the displacement of the cantilever. A
comparison of the corotational response sensitivity with that for
linear geometry is shown in Fig. 11�b�, where it is seen that the
sensitivity remains constant as the beam strain hardens under lin-
ear geometry, while there is a reduction in the sensitivity as strain
hardening takes place under large displacements. This indicates
that the tip displacement becomes less sensitive to changes in the
material parameter as the nonlinear geometric response begins to
dominate the cantilever response.

Conclusions

The proposed response gradient formulation makes possible the
reliable and accurate assessment of the effect of uncertain mate-
rial and geometric parameters in the large displacement analysis
of frames. To account for geometric nonlinearity due to large

Fig. 11. Response gradient of slender steel cantilever computed with
respect to the yield moment: �a� validation of the corotational DDM
computation by finite differences; �b� comparison of corotational
gradient with that for linear geometry
displacements, each component in the corotational theory was
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differentiated in a consistent manner. This includes the transfor-
mation between the global and local coordinate systems, removal
of the rigid body displacement modes, and equilibrium between
basic and local forces for a beam-column element. Within the
corotating frame of reference, the governing equations of compat-
ibility and equilibrium for the force-based formulation were
differentiated to account for nonlinear material response of the
element.

The derivations and numerical examples presented in this
paper focused on the force-based formulation for nonlinear mate-
rial response; however, similar derivations are possible for
displacement-based and mixed formulations. The numerical ex-
amples validated the proposed response gradient equations in
large displacement structural analysis. Consequently, this paper
represents an important step toward the use of material nonlinear
beam formulations within the framework of the large displace-
ment corotational theory for gradient-based applications in struc-
tural engineering.

Appendix. Gradient of the Global to Local
Transformation

The transformation matrix, ar, that describes the transformation of
element displacements and forces between global and local coor-
dinates is block diagonal with 2�2 Givens rotation matrices for
the element projections in the global coordinate system. The pro-
jection onto the global X axis, cos 	=�X /L, is determined from
the difference between the global X-coordinates of the element,
�X=XJ−XI. Similarly, the global Y-axis projection, sin 	
=�Y /L, is determined from the Y coordinates as �Y =YJ−YI.

The derivatives of cos 	 and sin 	, required to populate the
matrix �ar /�� in Eq. �16�, are obtained by direct differentiation of
the element projections

��cos 	�
��

=
1

L

��X

��
−

cos 	

L

�L

��
�43�

��sin 	�
��

=
1

L

��Y

��
−

sin 	

L

�L

��
�44�

The derivative ��X /�� will be zero if � does not represent an X
coordinate of one of the element nodes, whereas it will be equal
to 1 if � represents the coordinate XJ and equal to −1 if � repre-
sents XI. Similarly, ��Y /�� will be equal to zero or ±1.

The remaining term in Eqs. �43� and �44� is �L /��, the deriva-
tive of the undeformed element length, L=
��X�2+ ��Y�2. It is
straightforward to show the derivative of L with respect to � is

�L

��
= cos 	

��X

��
+ sin 	

��Y

��
�45�

As a result, �L /�� can only take on values of zero, ±cos 	, or
±sin 	. From the structure of Eqs. �43�–�45�, the matrix �ar /��
will be nonzero for only the parameters in � that represent a
nodal coordinate of the element.

Notation

The following symbols are used in this paper:
a 
 equilibrium transformation matrix;

ar 
 transformation matrix between the global and local

coordinate systems;
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b 
 section force interpolation matrix;
e 
 section deformation vector;
f 
 element flexibility matrix;

fs 
 section flexibility matrix;
KT 
 tangent stiffness matrix for the structure;

k 
 element stiffness matrix in the basic system;
ke 
 element stiffness matrix in the global coordinate

system;
kl 
 element stiffness matrix in the local coordinate

system;
ks 
 section stiffness matrix;
P f 
 external load vector for the structure;
Pr 
 resisting force vector for the structure;
p 
 element force vector in the local coordinate system;

pe 
 element force vector in the global coordinate system;
q 
 element force vector in the basic system;
s 
 section force vector;
v 
 element deformation vector;
U 
 nodal displacement vector for the structure;
u 
 element displacement vector in the local coordinate

system;
ue 
 element displacement vector in the global coordinate

system;
� ,x 
 integration point location in natural, element domain;

� ,w 
 integration weight in natural, element domain;
� 
 vector of uncertain parameters; and
� 
 uncertain parameter.
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