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The author presents a method of analysis for truss structures with
material and geometric nonlinearity. The method consists of a
single factorization of the stiffness matrix, followed by its
successive application to corrective force vectors in order to find
structural equilibrium when nonlinearities arise due to strain-
hardening/softening, buckling, breaking, and stiffness degrada-
tion. The author points out that the stiffness matrix used for the
iteration does not necessarily have to be the exact stiffness matrix
of the structure, and the proposed analysis method treats propor-
tional, nonproportional, and cyclic loadings uniformly.

Although the developments are clear and the applications are
practical, this method of analysis is not significantly different
from the modified Newton–Raphson algorithm, where the stiff-
ness matrix is held constant over the course of a load increment.
The modified Newton–Raphson algorithm is discussed exten-
sively in a reference �Crisfield 1991� cited by the author; how-
ever, the author neither acknowledges this material nor cites any
of the numerous references available in the mathematical litera-
ture on the convergence properties of the modified Newton–
Raphson algorithm, such as Shamanskii �1967�, Stoer and Bulir-
sch �1993�, and Kelley �1995� to name but a few. Due to its slow
convergence rate, the excessive number of iterations required to
achieve equilibrium with the modified Newton–Raphson algo-
rithm can far outweigh the computational savings afforded by a
single matrix factorization for structures with a small to moderate
number of degrees of freedom. For such structures, the computa-
tional cost of a matrix factorization is cheap relative to the cost of
evaluating the corrective force vector, making the full Newton–
Raphson algorithm more efficient. Furthermore, the use of equa-
tion solvers �Mackay et al. 1991; Demmel et al. 1999; Davis
2003� that exploit the sparse matrix topology generated by a
finite-element analysis can mitigate the computational expense of
full Newton–Raphson for large structural systems. The discussers
acknowledge that the full Newton–Raphson algorithm requires an
exact stiffness matrix be computed at every iteration, which may
not be possible when using complex numerical models of consti-
tutive behavior. This is not the case, however, for closed-form
scalar expressions, such as the bilinear stress-strain law and the
Euler buckling formula �Eq. �5�� the author uses in the numerical
examples.

The author proposes holding an inexact stiffness matrix,
Kinexact, constant during the equilibrium iteration. This approach

can increase the number of iterations required to reach equilib-
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rium. Consistent with the numerical properties of the modified
Newton–Raphson algorithm, if the spectral radius of the matrix
I−Kinexact

−1 Kexact is greater than one, keeping Kinexact constant will
lead to divergence of the iteration �Kelley 1995�, where the ma-
trix Kexact is the exact stiffness at the solution point and I is the
identity matrix. In one dimension, this condition implies the in-
exact stiffness must be greater than one-half of the exact stiffness
at the solution point. The condition generalizes to multidimen-
sions in terms of the spectral properties of the exact and inexact
stiffness matrices. Therefore, the selection of the inexact stiffness
matrix for the equilibrium iteration is not arbitrary, as the author
suggests. The only mathematical condition stated by the author is
the inexact stiffness matrix be “compatible with the geometry and
the constraints” of the structure. The discussers interpret this
“compatibility” requirement to mean the inexact stiffness matrix
must have the same topology as the exact stiffness matrix. As a
result, this requirement alone does not preclude a singular stiff-
ness matrix, e.g., due to perfectly-plastic response in one or more
members, in which case the iteration will fail due to numerical
instability.

The discussers bring to attention quasi-Newton, accelerated
Newton, and line search methods, which are more efficient than
the modified Newton–Raphson algorithm and can automatically
correct for an inexact stiffness matrix by performing simple, low-
cost matrix-vector operations during the equilibrium iteration.
The rank-two BFGS quasi-Newton technique �Broyden 1970;
Fletcher 1970; Shanno 1970� is appropriate for the symmetric
positive–definite systems typically encountered in structural me-
chanics �Matthies and Strang 1979; Bathe and Cimento 1980;
Geradin et al. 1980�, while the rank-one procedure of Broyden
�1967� is suited to the nonsymmetric systems that arise from
nonassociative plasticity. The computational efficiency and con-
vergence properties of the secant-based accelerated Newton algo-
rithm of Crisfield �1979� and the Krylov subspace acceleration
method of Carlson and Miller �1998� have been demonstrated in
the nonlinear analysis of structures �Crisfield 1984, 1991; Scott
and Fenves 2003; Scott 2004�. Finally, line search methods have
been shown to be robust when combined with a full Newton-
Raphson iteration �Crisfield 1991�.
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