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The moment-rotation behavior of force-based frame elements is expressed as
a function of plastic hinge length and moment-curvature parameters for two types
of plastic hinge integration under the representative loading condition of antisym-
metric bending. For modified Gauss-Radau hinge integration, there is a unique
relationship between the resulting moment-rotation hardening ratio and para-
meters defining the plastic hinge length and moment-curvature hardening
ratio. For two-point Gauss-Radau hinge integration, the spread of yielding across
the hinge regions leads to a multilinear moment-rotation response, for which a
secant approximation of the hardening stiffness is directed to a target plastic rota-
tion. An example application demonstrates that significantly unconservative
assessments of lateral load-carrying capacity can be attained if modeling para-
meters for plastic hinge length and moment-curvature strain hardening are not
calibrated to account for the discrepancy between moment-curvature and
moment-rotation behavior of an element. [DOI: 10.1193/1.4000136]

INTRODUCTION

Modeling structural resistance to extreme loads requires nonlinear frame finite elements
that are well documented, simple to use, and computationally efficient. Due to their simplicity
in simulating nonlinear flexural response, concentrated plasticity models are frequently used
for capacity assessment, as in the pushover procedures outlined in ATC-55 (Applied Tech-
nologyCouncil 2005). In the concentrated plasticity approach, nonlinear zero-length rotational
springs are assembled at the ends of a linear-elastic element. Compatibility and equilibrium
for the element are satisfied using either a two-component (Clough et al. 1965) or one-
component (Giberson 1967) formulation. Concentrated plasticity models are well suited
for parametric studies that desire a straightforward variation of basic structure properties
(Fajfar et al. 2006,Alimoradi et al. 2007). Several researchers have used concentrated plasticity
models to estimate seismic demand parameters for a comprehensive range of ground motions
and structure characteristics (Ibarra et al. 2005, Medina and Krawinkler 2005, Goel 2005,
Karavasilis et al. 2008). Detailed comparisons of concentrated plasticity formulations with
varying levels of modeling complexity are given by Dides and de la Llera (2005).

Finite-element formulations offer an alternative approach to concentrated plasticity by
allowing plasticity to distribute along the element length. Force-based frame elements
have been shown to be advantageous over displacement-based elements for material non-
linear frame analysis (Alemdar and White 2005, Calabrese et al. 2010). Force-based
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plastic hinge elements, which represent a compromise between concentrated and distributed
plasticity formulations, have also been used successfully in simulating the seismic response
of structures (e.g., Berry et al. 2008). Although these plastic hinge elements are easy to use,
the relation between the section constitutive response, the assumed plastic hinge length, and
the element-level flexural response has not been conveyed in the literature.

This paper addresses this modeling issue by expressing the moment-rotation response of
force-based elements as a function of moment-curvature and plastic hinge length parameters
for two common plastic hinge integration techniques. These expressions allow an analyst, for
common loading conditions, to calibrate the response of force-based plastic hinge elements to
a desired moment-rotation behavior. The consequences of failing to calibrate the models in
earthquake engineering simulation are demonstrated through a representative example.

FORCE-BASED FRAME ELEMENTS

As outlined by Neuenhofer and Filippou (1997) and the references therein, force-based
elements satisfy equilibrium in strong form. Element compatibility is based on the principle
of virtual forces, where element deformations and flexibility are integrated numerically from
section response. The section locations and their integration weights are defined by Gauss-
Lobatto quadrature, which allows for the spread of plasticity along the element. Recent exten-
sions of the force-based formulation developed by Scott and Fenves (2006) allow an analyst
to incorporate a physically significant plastic hinge length in the element state determination.
Two such approaches to plastic hinge integration that maintain the theoretically exact solu-
tion for a prismatic, linear-elastic frame element are briefly summarized here.

TWO-POINT GAUSS-RADAU INTEGRATION

For two-point Gauss-Radau integration, isoparametric locations {0, 2/3} and weights
{1/4, 3/4} are mapped onto user-defined plastic hinge regions of length lpI and lpJ at the
element ends. This leads to the following section locations, x, and weights, w, in the plastic
hinge regions:

EQ-TARGET;temp:intralink-;e1;41;279x ¼ f0; 2lpI∕3;L� 2lpJ∕3; Lg (1)

EQ-TARGET;temp:intralink-;e2;41;238w ¼ flpI∕4; 3lpI∕4; 3lpJ∕4; lpJ∕4g (2)

With this approach, plasticity can spread across two integration points in each hinge
region with linear-elastic behavior assumed for the element interior, as shown in Figure 1a.

MODIFIED GAUSS-RADAU INTEGRATION

For modified Gauss-Radau integration, the mapping in Equations 1 and 2 is scaled by a
factor of four so that the end weights are equal to the plastic hinge lengths lpI and lpJ . The
section locations are relocated accordingly along the element:

EQ-TARGET;temp:intralink-;e3;41;109x ¼ f0; 8lpI∕3;L� 8lpJ∕3; Lg (3)
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EQ-TARGET;temp:intralink-;e4;62;342w ¼ flpI ; 3lpI ; 3lpJ ; lpJg (4)

As shown in Figure 1b, plasticity is confined to the integration points at the element ends
and linear-elastic response is imposed at the points on the element interior.

MOMENT-ROTATION RESPONSE FOR ANTISYMMETRIC BENDING

To express force-based element moment-rotation response in terms of plastic hinge
length and section constitutive response, the beams shown in Figure 1 are loaded in a
state of antisymmetric bending. The hinge lengths at the element ends are of equal length
and defined by a ratio, β, of the element length, that is, lpI ¼ lpJ ¼ βL. A bilinear moment-
curvature relationship is prescribed for the plastic hinge regions with ratio of post-yield to
initial stiffness equal to α.

Under antisymmetric bending, the end moment-end rotation stiffness of a prismatic beam
element in the linear-elastic range of response is 6EI∕L. The ratio of post-yield to elastic
stiffness is then defined as

EQ-TARGET;temp:intralink-;e5;62;136s ¼ ΔM
Δθ

L
6EI

(5)

Figure 1. Section locations and weights for two types of plastic hinge integration: (a) two-point
Gauss-Radau; (b) modified Gauss-Radau.
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Expressions are presented in the remainder of this section to show how the moment-
rotation hardening ratio depends on the plastic hinge length ratio, β, and moment-curvature
hardening ratio, α, in a force-based plastic hinge element loaded in antisymmetric bending.

MODIFIED GAUSS-RADAU INTEGRATION

With modified Gauss-Radau integration, yielding is confined to the integration points at
the element ends. As a result, the element moment-rotation response takes on the character-
istics of the section response, as shown in Figure 2a for antisymmetric bending with the
assumed bilinear moment-curvature behavior. Using the principle of virtual forces, the
post-yield moment-rotation response can be calculated as

EQ-TARGET;temp:intralink-;e6;41;512Δθ ¼
�
β

α
þ 3β

�
1� 16β

3

�
2

þ ð1� 8βÞ3
6

�
ΔML
EI

(6)

Full details of this calculation are shown in Scott (2004). After algebraic simplification,
the moment-rotation hardening ratio defined in Equation 5 is obtained from the previous
equation as a function of α and β

EQ-TARGET;temp:intralink-;e7;41;418s ¼ α

αþ ð1� αÞ6β (7)

Over the range β ¼ ½0; 0.5�, s is inversely proportional to β with corresponding values of
s ranging from 1 to α∕ð3� 2αÞ, as shown in Figure 2b. Note that when the hinge length
parameter β is equal to 1/6, the hardening ratios for moment-curvature and moment-rotation
response are equal, that is, α ¼ s. Furthermore, depending on available modeling data, Equa-
tion 7 can be rearranged to solve for β as a function of s and α, or for α as a function of s and β.

Figure 2. (a) Moment-rotation behavior of modified Gauss-Radau element under antisymmetric
bending; (b) moment-rotation hardening ratio as a function of hinge ratio for α ¼ 0.03.
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TWO-POINT GAUSS-RADAU INTEGRATION

For bilinear moment-curvature response and two-point Gauss-Radau in the plastic hinge
regions, the element moment-rotation response under antisymmetric bending is trilinear, as
shown in Figure 3. Distinct moment-rotation hardening ratios, s1 and s2, correspond to the
initiation of yielding at the first and second hinge integration points, respectively. With cal-
culations similar to those used in obtaining Equation 7, expressions for s1 and s2 are

EQ-TARGET;temp:intralink-;e8;62;561s1 ¼
α

αþ ð1� αÞð3β∕2Þ (8)

EQ-TARGET;temp:intralink-;e9;62;517s2 ¼
α

αþ ð1� αÞð6β � 12β2 þ 8β3Þ (9)

The two-point Gauss-Radau response can be calibrated to a secant post-yield approxi-
mation directed to a target plastic rotation, θp. Using the geometry of Figure 3, the secant
stiffness can be expressed as

EQ-TARGET;temp:intralink-;e10;62;447s ¼ s1θ� þ s2ðθp � θ�Þ
θp

(10)

where θ� is the change in rotation as yielding spreads from the first to second integration
point in the plastic hinge regions

Figure 3. Bilinear secant approximation of post-yield response of a force-based element with
two-point Gauss-Radau plastic hinge integration under antisymmetric bending.
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EQ-TARGET;temp:intralink-;e11;41;640θ� ¼ L
6EI

�
M��My

s1

�
(11)

Based on equilibrium under antisymmetric bending, it is straightforward to show that the
end moment when yielding initiates at the second integration point is M� ¼ My∕ð1� 4β∕3Þ
with the integration points defined in Equation 1. Accordingly, the change in end rotation can
be expressed as

EQ-TARGET;temp:intralink-;e12;41;550θ� ¼
�

4β∕3
1� 4β∕3

�
θy
s1

(12)

Substituting this value into Equation 10 and using the rotation ductility shown in Figure 3,
μ ¼ 1þ θp∕θy, gives the secant hardening ratio

EQ-TARGET;temp:intralink-;e13;41;475s ¼ s2 þ
4β∕3

1� 4β∕3

�
1� s2

s1

�
1

μ� 1
(13)

To achieve a desired secant hardening ratio for a target rotation ductility, one of α or β
should be selected and the other computed by solving Equation 13. However, the secant
approximation is feasible only if s1 computed in Equation 8 is greater than the target
hardening ratio, s.

The solution to Equation 13 for α ¼ 0.03 and several rotation ductilities is shown in
Figure 4a over a range of hinge length ratios that reveals distinct features of the secant
approximation. The secant approximation has a local minimum in the feasible region,
making it impossible to achieve a moment-rotation hardening ratio that is equal to the
moment-curvature hardening ratio, except for cases where both the hinge length and rotation

Figure 4. Secant approximation to moment-rotation hardening ratio under antisymmetric bend-
ing of two-point Gauss-Radau plastic hinge integration: (a) feasibility condition for α ¼ 0.03;
(b) combinations of α and β leading to a feasible secant post-yield stiffness.
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ductility are unrealistically large. Another interpretation of the feasibility condition is shown
in Figure 4b, where feasible combinations of α and β lie to the left of each ductility curve.
This figure shows that for a given α, the hinge length ratio is constrained to a smaller fraction
of the total element length as the target rotation ductility is decreased.

EXAMPLE APPLICATION

A single-bay three-story frame with uniform stiffness and strength over its height is used
to illustrate the use of force-based elements with both forms of Gauss-Radau plastic hinge
integration calibrated for specified moment-rotation behavior. In addition to the features
shown in Figure 5, the frame has the following characteristics:

• A dead load of 889.6 kN (200 kips) is applied at each story, giving a total structure
weight, W , of 2,669 kN (600 kips).

• The yield base shear coefficient is V∕W ¼ 0.4.
• The flexural stiffness, EI, is identical for the beams and the columns at each level,

with values given in Figure 5.
• Rotational springs at the base of the columns (stiffness kr ¼ 3EI∕L) lead to a more

natural distribution of stiffness over the height (Medina and Krawinkler 2005).
• Plastic hinges form at the beam ends (yield moment Myb) and in the base rotational

springs (yield moment Myc), while the columns are assumed to remain elastic.
• Pushover analyses of the frame are conducted in the OpenSees framework

(McKenna et al. 2000) using the forceBeamColumn element command with
both versions of Gauss-Radau plastic hinge integration.

A bilinear moment-rotation response with post-yield hardening ratio s ¼ 0.03 is desired
for the beams. A common misuse of plastic hinge elements, referred to as the “uncalibrated”

Figure 5. Example three-story frame used to demonstrate calibration procedures.
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case, is to select a plastic hinge length ratio based on member depth to span ratio, for exam-
ple, β ¼ 0.1, and choose the moment-curvature hardening ratio to be equal to the desired
moment-rotation hardening ratio, that is, α ¼ s ¼ 0.03. As shown in this example, the unca-
librated case can lead to post-yield response that is significantly stiffer than the desired
response, which can be achieved by proper selection of the moment-curvature hardening
ratio, α, and plastic hinge length ratio, β.

MODIFIED GAUSS-RADAU CALIBRATION

With modified Gauss-Radau integration, any combination of α and β that satisfies s ¼
0.03 according to Equation 7 will achieve the desired moment-rotation response.

1. Assuming that the hardening ratio of the moment-curvature response is the same as
the desired moment-rotation response, that is, α ¼ s ¼ 0.03, requires using a hinge
length ratio of β ¼ 1∕6.

2. Assuming a hinge length ratio of β ¼ 0.1 requires changing the moment-curvature
hardening ratio to α ¼ 0.0182.

The calibrated member and structural response based on either of the above listed
approaches is shown in Figure 6 along with the uncalibrated response. As the roof drift
exceeds 2%, the base shear coefficient for the uncalibrated case is more than 20% higher
than that obtained using calibrated parameters.

TWO-POINT GAUSS-RADAU SECANT CALIBRATION

Since the moment-rotation response using two-point Gauss-Radau hinge integration is
trilinear, the desired bilinear moment-rotation response cannot be realized exactly. Instead, a
secant approximation can be obtained for a target rotation ductility, μ, and a combination of α
and β that satisfies the feasibility condition s1 > s. To illustrate the secant calibration, the
target rotation ductility is assumed to μ ¼ 10, making the plastic rotation θp ¼ 10θy ¼ 0.01
rad. This represents a lower plastic rotation, but a higher ductility, than is typical due to the
uncharacteristically large stiffness-to-strength ratios of the generic frame members.

Figure 6. Building frame response with calibrated modified Gauss-Radau plastic hinge element.
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1. Assuming α ¼ s, it is not possible to find a feasible hinge length ratio β to achieve
s ¼ 0.03 for the target rotation ductility μ ¼ 10. As shown in Figure 4a, s has a
minimum value of about 0.06 over the range of realistic hinge length ratios
(β ≤ 0.5) when μ ¼ 10 and α ¼ 0.03.

2. Assuming β ¼ 0.1, the moment-curvature hardening ratio is computed as
α ¼ 0.00905 from Equation 13 with μ ¼ 10 in order to achieve s ¼ 0.03. For
this combination of α and β, s1 ¼ 0.0574 according to Equation 8, which satisfies
the feasibility condition s1 > s. The computed response for this case is shown in
Figure 7a, along with the uncalibrated scenario, which leads to base shear that
is 30% higher than that obtained with calibrated parameters.

3. Increasing the target rotation ductility to μ ¼ 20 and keeping the assumed hinge
length ratio β ¼ 0.1 requires increasing the moment-curvature hardening ratio to
α ¼ 0.0121 in order to achieve s ¼ 0.03. This also represents a feasible combination
of α and β as s1 ¼ 0.0756 > s. The computed member and structural responses are
shown in Figure 7b for this case.

Figure 7. Building frame response with calibrated two-point Gauss-Radau plastic hinge element
for target rotation ductility: (a) μ ¼ 10; and (b) μ ¼ 20.
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CONCLUSIONS

Two versions of Gauss-Radau hinge integration in force-based frame elements were
examined for their moment-rotation response. The following modeling approaches achieve
a desired moment-rotation response under antisymmetric bending with bilinear moment-
curvature behavior:

• For modified Gauss-Radau plastic hinge integration, any combination of the
moment-curvature hardening ratio, α, and plastic hinge length ratio, β, that satisfies
Equation 7 can be used to achieve a target bilinear moment-rotation behavior.

• When the plastic hinge length ratio is β ¼ 1∕6 for modified Gauss-Radau integra-
tion, the moment-rotation response has the same post-yield stiffness ratio as that for
the moment-curvature response in the plastic hinge regions.

• For two-point Gauss-Radau integration, first the moment-curvature parameter, α, or
the plastic hinge length ratio, β, should be chosen, then the other computed from
Equation 13 for a prescribed moment-rotation response and target rotation ductility.
Feasible combinations of α and β depend on the target rotation ductility, as shown in
Figure 4b.

Pushover analyses of a simplified frame show that lateral load capacity can be signifi-
cantly overpredicted if moment-curvature or plastic hinge length parameters are not cali-
brated to account for the difference between the section moment-curvature and element
moment-rotation response.
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