Software Patterns for Nonlinear Beam-Column Models
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Abstract: A framework for simulating the material and geometric nonlinear response of frame members is developed from the equations
of beam mechanics. The implementation of a beam-column finite element is reduced to the state determination procedure for a basic
system that displaces and rotates with the element. An abstraction for geometric nonlinearity represents the kinematic and equilibrium
transformations between the basic and global reference systems, while an abstraction for force-deformation response represents material
nonlinearity for the basic system. Separate objects encapsulate material stress-strain behavior and cross-sectional integration in order to
increase the modeling flexibility for computing the response of fiber-discretized cross sections. Multiple forms of distributed plasticity in
beam-column elements are incorporated in the framework through objects that encapsulate one-dimensional quadrature rules. Software
design patterns are utilized to create complex beam-column simulation models by composition of basic building blocks. The modeling
flexibility of the software design is demonstrated through the simulation of a reinforced concrete column.
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Introduction

A vast number of simulation models for the material nonlinear
behavior of beam-column members have been developed, ranging
from concentrated plasticity formulations that confine nonlinear
deformations to the ends of an elastic element (Clough et al.
1965; Giberson 1967; Hilmy and Abel 1985; Powell and Chen
1986; Ziemian and McGuire 2002), to distributed plasticity
formulations based on finite-element methods (Ciampi and
Carlesimo 1986; Spacone et al. 1996; Hjelmstad and Taciroglu
2005; Alemdar and White 2005). Separate from the developments
for material nonlinearity, simulation models for the geometric
nonlinear response of beam-column members have been devel-
oped (Crisfield 1991; Neuenhofer and Filippou 1998; De Souza
2000; Sivaselvan and Reinhorn 2002; Zhou and Chan 2004).
Flexible and reusable software designs are required to implement
these and other simulation models under a single framework.
Typically, software implementations of beam-column simula-
tion models implement the data and algorithms for representing
all sources of nonlinear behavior in a single subroutine or proce-
dure. Although this approach may provide computational effi-
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ciency, it can lead to unnecessary code duplication when new
simulation models are developed, making software maintenance
difficult. It is also difficult to extend and reuse a code if an ele-
ment procedure operates on global data of a fixed size because
this places limits on the amount of element data and history vari-
ables. The object-oriented concepts of data encapsulation and
polymorphism, however, provide for a more modular and reliable
software design, where an element implementation controls its
data and can reuse an existing code in order to acquire new func-
tionality with a minor computational penalty (Rucki and Miller
1996).

An object encapsulates data with algorithms that operate on
the data when the object receives a request to do so. An object’s
type is defined by its interface [sometimes referred to as an ap-
plication programming interface (API)], which is the collection of
all operations the object can perform. Separate objects can be of
the same type, sharing a common interface while providing dis-
tinct definitions for the methods in the interface. The specification
of an object’s internal data and methods is defined by its class. An
abstract class, or abstraction, defines a common interface for its
subclasses and defers the implementation of its abstract methods
to these subclasses. The benefits of engineering software devel-
opment from an object-oriented approach were outlined by
Fenves (1990). Since that time, several object-oriented designs
for structural analysis have been proposed (Forde et al. 1990;
Mackie 1992; Zimmermann et al. 1992; Rucki and Miller 1996;
Archer et al. 1999).

Recent advances in object-oriented structural analysis have fo-
cused on software design patterns (Gamma et al. 1995), which are
generic descriptions of communicating classes that make a system
more flexible and reusable by emphasizing object composition for
software extensibility. The object-oriented software framework
OpenSees makes extensive use of design patterns to represent the
fundamental relationships of finite-element solution algorithms
and constitutive models (McKenna 1997; Scott 2004). Software
patterns also appear in the development of advanced computa-
tional applications in OpenSees, such as parallel computing
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Fig. 1. Modeling hierarchy for nonlinear structural analysis

(McKenna and Fenves 2000) and distributed hybrid simulation
(Takahashi and Fenves 2005).

The objective of this paper is to identify, from the governing
equations of beam mechanics, fundamental software abstractions
that represent the nonlinear response of frame members. Abstract
classes for global and basic reference systems, section constitu-
tive models, and numerical integration are developed. With this
approach, the majority of beam-column simulation models can be
implemented by software design patterns in a framework that is
flexible and extensible. The implementation of a force-based
beam-column model in OpenSees and its application to simulat-
ing the cyclic response of a reinforced concrete column demon-
strate the modeling flexibility afforded by the software design.

Abstractions of Nonlinear Structural Analysis

A common abstraction in an object-oriented structural analysis is
a Domain, which is an aggregation of node, boundary condition,
load, and element objects (Forde et al. 1990; McKenna 1997).
Analysis objects encapsulate algorithms that direct the Domain
components to form and solve the governing equations of struc-

tural equilibrium for the nodal displacement vector, U(z), at each
simulation time step. The case of structural equilibrium is shown
at the top level of the modeling hierarchy in Fig. 1, where the
time-varying external load vector, P(), must be in equilibrium
with the resisting force vector, P,. The focus of this paper is the
software design of a single beam-column element in the structural
system, for which the selection of element displacements, u, and
assembly of resisting forces, p, are accomplished by standard
finite-element procedures, which are represented symbolically in
Fig. 1 by a boolean selection matrix, a;.

In the following presentation, it is assumed that the beam-
column formulations take place in a basic system or corotating
frame of reference that is free of rigid body displacement modes.
This approach to the element formulation separates material non-
linearity inside the basic system from geometric nonlinearity of
the corotating frame, and is crucial in developing a flexible soft-
ware design for beam-column simulation models (Filippou and
Fenves 2004). Furthermore, without loss of generality in the soft-
ware design, two-dimensional elements are considered and small
strain beam mechanics are assumed. Extensions of the design to
three-dimensional elements and finite strain are straightforward.
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Transformation between Global Coordinates and Basic
System

The extraction of the rigid body modes from the element dis-
placement vector to give the element deformations, v, in the basic
system is a nonlinear function, v=v(u). For the simply supported
basic system shown in Fig. 1, there are three element deforma-
tions: the axial extension, v, and the end rotations, v, and vs,
relative to the element chord. The axial force, ¢;, and the end
moments, g, and g3, are the corresponding basic forces, which are
computed from the element deformations in accordance with the
governing equations of equilibrium, compatibility, and constitu-
tion in the basic system. Rigid body equilibrium of the basic
forces in the displaced configuration gives the element forces in
the global system.

An abstract class, GeometricTransformation, is defined to pro-
vide multiple definitions of the displacement and force transfor-
mations between global and basic systems. With this approach, an
element can compute basic forces without regard for the kine-
matic and equilibrium transformations outside the basic system.
The class diagram for geometric transformations is shown in
Fig. 2 where subclasses of GeometricTransformation implement
specific kinematic and equilibrium assumptions in the methods
getDeformations() and getGlobalForces(). For the case where the
corotating frame remains coincident with the original element
configuration, the LinearTransformation subclass encapsulates the
element length and direction cosines in order to populate the ma-
trix a, and enforce a linear relationship between global and basic
vectors. Other subclasses encapsulate nonlinear kinematic and
equilibrium relationships that account for large displacement of
the element, such as the corotational theory (Crisfeld 1991; De
Souza 2000).

Section Force-Deformation Relationship

For the distributed plasticity elements considered in this paper,
the material nonlinear response is obtained by integration of the
force-deformation response in the corotating frame of reference.
As shown in Fig. 1, at any location x along the element, there are
internal section forces, or stress resultants, s, and their corre-
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sponding section deformations, e. The constitutive relationship
between the forces and deformations at each section takes the
form s=s(e).

To provide an interface for the multitude of approaches to
computing section stress resultants, the abstract ForceDeforma-
tion class is defined. The important operations for subclasses of
ForceDeformation are the computation of section stress resultants
and the commit of section history variables upon convergence of
the global solution for equilibrium. With this abstraction, an ele-
ment can evaluate its equations of equilibrium and compatibility
inside the basic system without consideration of how the consti-
tutive response is computed at each section. In addition to closed-
form stress resultant plasticity (El-Tawil and Deierlein 1998),
subclasses of ForceDeformation can implement a fiber section
model where stress resultant plasticity is computed by numerical
integration of material plasticity over the section area

Ny
s = E asT,-G,-A,- (1)
i=1

where o;, A;, and a,=stress, area, and compatibility matrix, re-
spectively, for the ith fiber in the section discretization. Without
loss of generality in the software design, the following presenta-
tion assumes Euler—Bernoulli beam kinematics where the compat-
ibility matrix is a function of the fiber location a;=[1-y,] and
there is a uniaxial state of fiber stress. It is straightforward to
include shear stress-strain response in Eq. (1) for a Timoshenko
beam (Park and Lee 1996; Saritas 2006).

Two abstract classes are defined for the software representa-
tion of Eq. (1). The first class, Sectionlntegration, encapsulates
section dimensions, reinforcing details, and numbers of fibers
from which the section is discretized to give the size, A, and
location, (y, z), of each fiber, as shown in Fig. 3. The second
class, UniaxialMaterial, is responsible for the path-dependent
stress-strain response of each fiber in the cross section and has
operations to return the material stress and to commit the material
state upon global convergence. The FiberSection subclass of
ForceDeformation is composed of one Sectionlntegration and
many UniaxialMaterials, as shown in Fig. 4 using UML class
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Fig. 3. SectionIntegration class, which provides fiber locations and weights to calling object

diagram notation (Booch et al. 1998), where the material stress
and section discretization are interchangeable components of the
FiberSection computation. In a similar fashion, the software
design can incorporate biaxial and triaxial material models to ac-
count for the interaction of axial and shear stresses in a Timosh-
enko beam implementation.

Software Design Patterns in Section Constitutive
Models

The interchangeable components of the FiberSection class de-
scribed in the previous section reflect the modeling flexibility

afforded by the Strategy software design pattern (Gamma et al.

1995). The Strategy pattern appears repeatedly in the equations of

structural mechanics and in finite-element solution procedures,

e.g., interchangeable root-finding algorithms to solve the equa-

tions of equilibrium (McKenna 1997). Other patterns identified by

Gamma (1995) can increase the flexibility of section constitutive

models, examples of which follow:

1. The Composite pattern groups primitive objects into a com-
posite object that calling objects treat uniformly, such as the
parallel and series configurations of material stress-strain re-
lationships shown in Fig. 5. This pattern allows arbitrarily
complex uniaxial models to be created, e.g., for multilinear
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Fig. 4. FiberSection class diagram, where section stress resultants are obtained from UniaxialMaterial response at locations dictated by instance

of Sectionlntegration
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class

and gapping constitutive laws. The Composite concept is
readily extended to multiaxial constitutive models of stress-
strain and force-deformation behavior;

2. To incorporate simulation models written in a different pro-
gramming language or software framework, the Adapter pat-
tern encapsulates the necessary operations and data structures
to convert the model to the interface that calling objects ex-
pect. The conversion of a ForceDeformation model written
in a procedural language such as FORTRAN is shown in Fig.
6, where the wrapper class fills the necessary common blocks
prior to invoking the state determination subroutine and up-

ForceDeformation

getStressResultant()}
commitState()

FortranAdapter

[eReXe]

getStressResultant() ©f----- 1 other subclasses

commitState() ©

C++

FORTRAN

subroutine matl (...)
common ...

compute section forces
end

fill common block

1
1
T
common block :
1

update common block

Fig. 6. Example of Adapter software pattern to implement
ForceDeformation interface by calling FORTRAN subroutine to
determine constitutive response

call subroutine

return s
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dates history variables in the common block upon a commit;
and

3. The Decorator pattern attaches additional attributes to an ob-
ject to extend functionality without reimplementation. An ex-
ample of the Decorator pattern is the SectionAggregator
class, which combines several UniaxialMaterials with an ex-
isting subclass of ForceDeformation to increase the number
of stress resultants in the section force-deformation response.
The shear force aggregation shown in Fig. 7 promotes reuse
of flexural section models in a Timoshenko beam implemen-
tation (Taylor et al. 2003) and in force-based beam imple-
mentations that account for shear in the section response
(Ranzo and Petrangeli 1998).

Additional software design patterns for nonlinear constitutive

models are described by Scott (2004), including the implementa-

tion of uniaxial hysteretic models by interchangeable backbone

and strength and stiffness degradation objects.

Software Implementation of Force-Based
Beam-Column Element

The software building blocks presented in this paper for geomet-
ric and material nonlinear response are brought together in this
section to implement a force-based beam-column element with
small deformations in the corotating system (De Souza 2000).
After the element formulation is summarized, its implementation
in the OpenSees software framework (McKenna et al. 2000) is
presented.
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Element Formulation

In the force-based formulation (Ciampi and Carlesimo 1986; Spa-
cone et al. 1996) there is a strong form of equilibrium between
basic forces and section forces at any location of the element

s(x) =b(x)q +s,(x) 2)

where the interpolation matrix b represents the homogeneous so-
lution to static equilibrium of basic forces; and s,=particular
solution for applied member loads. Compatibility of section and
element deformations is expressed in integral form according to
the principle of virtual forces

L
V=J b7(x)e(x) dx 3)

0

The advantage of force-based elements over displacement-based
approaches is that they satisfy equilibrium in the nonlinear range
of material response, alleviating the need for mesh refinement,
keeping the number of degrees of freedom in a structural model
to a minimum (Ciampi and Carlesimo 1986; Neuenhofer and
Filippou 1997).

Element Implementation

The force-based element in OpenSees is implemented in the For-
ceBeamColumn class, which is shown in Fig. 9 as a subclass of
the abstract Element class. The essential operations of an Element
are to compute resisting forces and to commit the element state.
Additional Element functionality is required in a finite-element
analysis, e.g., to compute a tangent stiffness matrix; however,
these operations are omitted for brevity.

The implementation of the force-based beam-column element
encapsulates the non-iterative state determination algorithm de-
scribed by Neuenhofer and Filippou (1997) where residual errors
in the element compatibility relationship are propagated to the

global system of equations. In accordance with this state determi-
nation algorithm, the ForceBeamColumn class uses numerical
integration to evaluate the element compatibility relationship of
Eq. (3)

N

V= 215 bT(xi)e(xi)Wi 4)
i=1

where N,,=number sections, each with location x; and corre-
sponding weight, w;.

The standard approach to evaluate Eq. (4) is Gauss—Lobatto
quadrature, which allows plastic hinges to form at any section
along the element but leads to a loss of objectivity for strain-
softening hinges (Coleman and Spacone 2001). Element integra-
tion methods that maintain objectivity under softening response
have been proposed by Scott and Fenves (2006) and Addessi and
Ciambi (2007). Recognizing there are several strategies to nu-
merical integration in force-based elements, the abstract class
BeamlIntegration is defined. As shown in Fig. 8, subclasses en-
capsulate the locations and weights of the sections where the
equilibrium and compatibility relationships are evaluated. Beam-
Integration mitigates code duplication since one implementation
of the force-based state determination procedure can use many
integration approaches to describe the spread of plasticity.

The ForceBeamColumn class diagram in Fig. 9 shows there
are three strategies defined for the element. GeometricTransfor-
mation defines the transformation of element vectors between
global and basic systems while BeamlIntegration enforces a strat-
egy for the spread of plasticity along the element, which is de-
scribed by an instance of ForceDeformation at each integration
point. This approach to the software design is not limited to the
force-based formulation, since it is possible to use these abstrac-
tions for the implementation of displacement-based and mixed
formulations inside the basic system.
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Application to Reinforced Concrete Column
Modeling

To demonstrate the modeling flexibility enabled by the software
design, two approaches to simulating the cyclic load-
displacement response of a reinforced concrete bridge pier, Speci-
men 7 from the tests of Tanaka and Park (1990), are examined.
The specimen geometry, reinforcing details, material properties,
gravity load, and lateral load-displacement history are available
for download from the PEER Structural Performance Database
(Berry and Eberhard 2003).

The first approach to simulating the bridge pier response is to
use a single force-based element with four Gauss—Lobatto points,
small displacements, and a fiber discretization of the reinforced
concrete section. An object diagram showing the classes instanti-

ated for this simulation is shown in Fig. 10, where a Menegotto—
Pinto steel model (Menegotto and Pinto 1973) and Kent—Park
concrete model (Kent and Park 1971) represent the uniaxial
stress-strain relationships of the fibers. The lateral displacement
history of the experiment drives the simulation and the computed
lateral load-displacement response is compared to the experiment
in Fig. 11(a). After forming a plastic hinge, deformations localize
at the base of the bridge pier over a length corresponding to the
Gauss-Lobatto weight at the base (L/12=138 mm). This local-
ization causes the concrete to crush and the load to be resisted by
only the reinforcing steel, resulting in a significant difference be-
tween the computed results and experimental data for increasing
cycles of displacement.

To remedy the poor representation of the softening hinge as a
result of Gauss—Lobatto integration, the second approach replaces

1 Element
Geometric Transformation geiResistingForce()
getDeformations(u) commitState()
getGlobalForces(q) L
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1 integr I
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Fig. 9. Class diagram for ForceBeamColumn implementation, where element behavior is composition of GeometricTransformation, BeamlInte-

gration, and ForceDeformation classes
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the LobattoBeamIntegration object in Fig. 10 with an instance of
the RadauHingelntegration class, which encapsulates the Gauss—
Radau plastic hinge integration method of Scott and Fenves
(2006). The plastic hinge length at the base of the pier is set to
356 mm according to the empirical equation, [,=0.08L
+0.022f,d,, derived by Paulay and Priestley (1992). A significant
improveinent in the computed response is shown in Fig. 11(b)
since the localized flexural deformations at the base of the bridge
pier are integrated over a physically significant length.

The change in numerical integration approach to represent
more accurately the formation of a plastic hinge reflects the
modularity of the software design. Although the effects of large
displacements and shear were not significant for this simulation, it
is straightforward to include in the analysis an object that encap-
sulates the corotational transformation as well as an object that
aggregates shear force-deformation response with the fiber sec-
tion. This example indicates the software design can successfully
incorporate many beam-column simulation models as part of a
common framework. Furthermore, the framework provides an
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ideal environment to develop, verify, and validate new simulation
models prior to optimizing their implementation for production.

Conclusions

A modular, flexible, and reusable software framework for simu-
lating the response of frame members has been developed from
abstractions that encapsulate the material and geometric nonlinear
behavior of beam-column elements. GeometricTransformation
represents the transformation of vectors between the global sys-
tem and corotating reference frame of the element; ForceDefor-
mation encapsulates the computation of section stress resultants
for distributed plasticity formulations; and Beamlntegration
encapsulates numerical integration to represent the spread of
plasticity in beam-column elements. Each of these abstractions
represents a Strategy pattern in simulating the response of a
beam-column member, as demonstrated in the software imple-
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Fig. 11. Computed load-displacement history for reinforced concrete bridge pier using: (a) Gauss—Lobatto quadrature with N,=4 integration
points; (b) modified Gauss—Radau plastic hinge integration with /,=356 mm
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mentation of the force-based element formulation in the OpenS-
ees framework. Additional design patterns (Composite, Adapter,
and Decorator) were identified to build complex section constitu-
tive models without code duplication. A future extension of the
software design in OpenSees is parameterized finite-element
models that support gradient-based applications with uncertain
material and geometric parameters of nonlinear beam-column
elements. These applications require a flexible and extensible
software design for identifying and updating the parameters en-
capsulated by objects in the framework.
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