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Abstract: To expand the scope of accurate and efficient gradient-based applications in structural engineering, the direct differentiationmethod
(DDM) is applied to compute the response sensitivity of force-based frame finite elements with combined material and geometric nonlinearity
where the transverse displacement field is determined by curvature-based displacement interpolation. Sensitivity is developed for element-level
parameters including constitutive properties, cross-section dimensions, and integration points and weights, as well as structural-level param-
eters corresponding to nodal coordinates. The response sensitivity is found to be significantly more complicated than for geometrically linear
force-based elements because it requires the derivative of the transverse displacement field under the condition of fixed basic forces. Finite-
difference calculations verify the DDM sensitivity equations for material and geometric nonlinear force-based element response while reliabil-
ity analysis of a gravity-loaded steel frame demonstrates the efficiency of the DDM sensitivity in a gradient-based application. DOI: 10.1061/
(ASCE)ST.1943-541X.0000757. © 2013 American Society of Civil Engineers.
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Introduction

Recent literature has shown that force-based elements are superior
to standard displacement-based formulations in simulating geomet-
rically linear response of frame members with material nonlinearity
(Alemdar andWhite 2005; Hjelmstad and Taciroglu 2005; Calabrese
et al. 2010). Interpolation of the element displacement field is not
required and accuracy of the computed solution depends only on the
numerical integration method used in the element state determina-
tion (Spacone et al. 1996; Neuenhofer and Filippou 1997). As a re-
sult, mesh refinement is not necessary to simulate the spread of
plasticity along a frame member. This is an important modeling
consideration for structural engineering applications where multiple
simulations are carried out to assess performance under increasing
levels of demand.

The efficiency of force-based element formulations in simulating
the material nonlinear response of frame structures also appeals to
gradient-based applications such as reliability, optimization, and
system identification. Althoughfinite-difference approximations are
readily available to find the gradient of structural response with re-
spect to parameters, they are time consuming and prone to round-off
error. The direct differentiation method (DDM) is an efficient and
accurate alternative to finite differences (Zhang and Der Kiureghian
1993); however, it requires the implementation of analytic expres-
sions for derivatives of the element response, which are often more
complex to develop than the response equations themselves. In
addition to a wide range of material and element formulations, the

DDM has been used in several aspects of finite-element (FE) re-
sponse sensitivity analysis, including multipoint constraints (Gu
et al. 2009) and follower loads (Pajot andMaute 2006) as well as the
second derivative of structural response (Bebamzadeh and Haukaas
2008). Concurrent efforts by Scott et al. (2004) and Conte et al.
(2004) led to DDM sensitivity implementations for geometrically
linear force-based elements with material nonlinearity.

The corotational transformation (Crisfield 1991) provides an
effective means of accounting for geometrically nonlinear frame
response. In addition to simulating large displacement P-D effects
of a single frame element, the corotational transformation allows
a mesh of geometrically linear frame elements to be used to simulate
the P-d effects of a frame member. The corotational mesh approach
makes the simulation of combined material and geometric non-
linearity straightforward; however, the necessary mesh refinement
counteracts the computational advantages of force-based elements.
The DDM sensitivity of the corotational transformation (Scott and
Filippou 2007) enables gradient-based analysis of geometrically
nonlinear frame response only if a corotational mesh is used for each
member.

Tomaintain the coarsemesh advantages of force-based elements,
Neuenhofer and Filippou (1998) developed a curvature-based dis-
placement interpolation (CBDI) procedure that captures geomet-
rically nonlinear response using a single element per frame member.
In the CBDI procedure, the curvature field is approximated using
Lagrange polynomials and then integrated to find the transverse
displacement field. The CBDI procedure was extended to material
nonlinearity by De Souza (2000) such that a single element can be
used to simulate both material and geometric nonlinearity. Jafari
et al. (2010) extended the CBDI formulation to include shear de-
formations in a curvature shear–based displacement interpolation
(CSBDI) procedure. An alternative geometrically nonlinear force-
based element state determination that uses finite-difference approx-
imations was developed by Jeffers and Sotelino (2010) to simulate
frame response to fire attack. Despite the modeling capabilities of
geometrically nonlinear force-based frame elements, the associated
response sensitivity has not been addressed in the literature.
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The objective of this paper is to develop DDM response sensi-
tivity of material and geometrically nonlinear force-based elements
that utilize the CBDI procedure in the determination of their trans-
verse displacement field. After a brief overview of geometrically
nonlinear force-based elements that use the CBDI procedure, ana-
lytic derivatives of the element response are presented. Material
properties, cross-section dimensions, integration points and weights,
and nodal coordinates are considered uncertain parameters in de-
veloping theDDMequations of theCBDI formulation, encompassing
all potential element-level uncertainties in a finite response sensitivity
element analysis. Numerical examples demonstrate the correctness of
the analytic DDM equations as well as their efficiency over finite
differences in a first-order reliability analysis.

Geometrically Nonlinear Force-Based Element

Force-based frame elements are formulated in a basic system
without rigid body displacement modes in terms of three degrees of
freedom for planar elements (Filippou and Fenves 2004). As shown
in Fig. 1(a), the axial force at end J is basic force q1, and themoments
at ends I and J are basic forces q2 and q3, respectively. The work
conjugate deformations are the change in element length, v1, and
rotations at each end, v2 and v3.

The homogeneous solution for equilibrium between basic forces
and internal section forces, s, is expressed as a matrix-vector product

sðxÞ ¼ bðx, uðxÞÞq (1)

where the force interpolation matrix, b, depends on the transverse
displacement field, uðxÞ, as shown in Fig. 1(b)

bðx, uðxÞÞ ¼
�

1 0 0

2uðjÞ j2 1 j

�
, j ¼ x=L (2)

The dependence of the force interpolation matrix on the transverse
displacement field accounts for geometric nonlinearity inside the
basic system.

From the Hellinger-Reissner variational principle (De Souza
2000; Hjelmstad and Taciroglu 2005), compatibility of the element
deformations with the internal section deformations, e, is satisfied
in integral form

v ¼
ðL
0

~b
T ½x, uðxÞ�eðxÞdx (3)

with

~bðx, uðxÞÞ ¼
�

1 0 0

2uðjÞ=2 j2 1 j

�
, j ¼ x=L (4)

where a factor of 1/2 arises from the Euler-Bernoulli beam theory
for geometric nonlinearity.

Implementation of force-based elements requires numerical
evaluation of Eq. (3), where the integrand is sampled at Np discrete
locations, x, each with associated integration weight, w

v� PNp

i¼1

~b
T ðxi, uðxiÞÞeðxiÞwi (5)

The element flexibility matrix is obtained from the partial derivative
of Eq. (5) with respect to basic forces

f [ ∂v
∂q

¼ PNp

i¼1

~b
T
i fsi

∂si
∂q

wi þPNp

i¼1

∂~bTi
∂q

eiwi (6)

where evaluation of the section response is abbreviated; e.g., ei [ eðxiÞ.
The section flexibility matrix, fs, contains the partial derivative of
the section deformations with respect to section forces

fs [
∂e
∂s

¼

2
664
∂ɛ
∂N

∂ɛ
∂M

∂k
∂N

∂k
∂M

3
775 (7)

The derivative of the section forces with respect to the basic forces
[∂s=∂q in Eq. (6)] is obtained by differentiation of Eq. (1) with
respect to q

∂s
∂q

¼ bþ ∂b
∂q

q (8)

The section interpolation matrices depend on basic forces, q, via the
transverse displacement field

∂b
∂q

¼ ∂b
∂u

∂u
∂q

, ∂~b
∂q

¼ ∂~b
∂u

∂u
∂q

(9)

Then, substitution of Eqs. (8) and (9) into Eq. (6) gives the element
flexibility matrix

f ¼ PNp

i¼1

~b
T
i fsibiwi þPNp

i¼1

~b
T
i fsi

∂bi
∂ui

q ∂ui
∂q

wi þPNp

i¼1

∂~bTi
∂ui

ei
∂ui
∂q

wi (10)

The derivatives of the section interpolation matrices with respect
to transverse displacement are

∂b
∂u

¼
�

0 0 0

21 0 0

�
, ∂~b

∂u
¼
�

0 0 0

21=2 0 0

�
(11)

The element flexibility matrix is evaluated numerically by the same
integration method used for the element compatibility relationship
of Eq. (5). This matrix is inverted to basic stiffness, k5 f21, and
then transformed and assembled into the structural stiffness matrix

Fig. 1. Frame element response definitions: (a) basic forces and
deformations within the basic system; (b) equilibrium of basic forces
and internal section forces
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by standard FE procedures. Any integration method, including
plastic hinge methods (Scott and Fenves 2006; Addessi and Ciampi
2007), can be used in the geometrically nonlinear force-based el-
ement state determination with the CBDI procedure described in the
subsequent section; however, the Gauss-Legendre quadrature is the
only approach that guarantees symmetry of the element stiffness
matrix (De Souza 2000).

Curvature-Based Displacement Interpolation

Asobserved inEq. (2), the interpolation of section forces depends on
the transverse displacement field, which is not tracked explicitly in
the state determination of geometrically linear force-based elements.
To account for geometric nonlinearity, Neuenhofer and Filippou
(1998) proposed an approximation of the curvature field along an
element using Lagrange polynomials

kðjÞ ¼ PNp

j¼1
ljðjÞkj, j ¼ x=L (12)

where kj 5 curvature sampled at the jth integration point. The jth
Lagrange basis polynomial, ljðjÞ, evaluates to 1 at the jth integra-
tion point and zero at all other points

ljðjÞ ¼
∏
Np

i¼1, i� j
ðj2 jiÞ

∏
Np

i¼1, i� j

�
jj2 ji

� (13)

Double integration of Eq. (12) and application of the boundary
conditions for the basic system allow the transverse displacement at
the Np integration points, u[ ½uj�, to be expressed as the matrix-
vector product

u ¼ 2L2l�k (14)

where k[ ½kj� 5 vector that collects curvatures from all Np in-
tegration points and l� 5 CBDI influence matrix. The jth column
of l� contains the transverse displacement field arising from a unit
curvature imposed at the jth integration point. The relationship be-
tween Lagrange basis polynomials and the Vandermonde matrix
(Golub and Van Loan 1996) allows the CBDI influence matrix to be
computed from the product of two matrices

l� ¼ hg21 (15)

Matrix h contains polynomials that satisfy the boundary conditions
of the basic system

h[
�
hij
� ¼ j

jþ1
i 2 ji
jð jþ 1Þ (16)

Matrix g is the Vandermonde matrix of monomials

g[
�
gij
� ¼ j

j21
i (17)

for which a closed-form inverse exists.

Derivative of Transverse Displacement

The derivative of transverse displacement with respect to basic
forces, ∂u=∂q, is required to evaluate the element flexibility matrix

according to Eq. (10). Differentiation of Eq. (14) with respect to
basic forces gives an Np 3 3 matrix in which curvature is the only
term that depends onq byway of the section constitutive relationship
and element equilibrium

∂u
∂q

¼ 2L2l� ∂k
∂q

¼ 2L2l�
PNp

j¼1

∂k
∂sj

∂sj
∂q

(18)

The Np 3 2 matrix ∂k=∂sj is all zeros except for the jth row, which
contains the second row of the section flexibility matrix [Eq. (7)]
at the jth integration point. Substituting ∂sj=∂q from Eq. (8) into
Eq. (18) gives

∂u
∂q

¼ 2L2lpFksBþ q1L
2lpFkM

∂u
∂q

(19)

where B5 2Np 3 3 matrix that aggregates the element’s section
force interpolation matrices, and Fks and FkM 5Np 3 2Np and
Np 3Np blocked diagonal matrices, respectively, of the section
flexibility coefficients corresponding to curvature

B ¼

2
66664

b1

b2

«

bNp

3
77775,

Fks ¼

2
66666666666664

∂k1
∂N1

∂k1
∂M1

0 0 . . . 0 0

0 0 ∂k2
∂N2

∂k2
∂M2

. . . 0 0

« « ⋱ «

0 0 0 0 . . .
∂kNp

∂NNp

∂kNp

∂MNp

3
77777777777775
,

FkM ¼

2
66666666666664

∂k1
∂M1

0 . . . 0

0 ∂k2
∂M2

. . . 0

« « ⋱ «

0 0 . . .
∂kNp

∂MNp

3
77777777777775

(20)

Then, solving for ∂u=∂q in Eq. (19) gives the following linear
system of equations for the derivative of the transverse displace-
ment field with respect to basic forces

�
I2 q1L

2lpFkM
� ∂u
∂q

¼ 2L2lpFksB (21)

Eq. (21) reduces to the linear-elastic, prismatic case considered by
Neuenhofer and Filippou (1998) when Fks and FkM of Eq. (20) are
defined by the section flexibility coefficients ∂k=∂M5 1=EI and
∂k=∂N5 0. In this case, the solution for ∂u=∂q depends only on
the axial force, q1. The solution to Eq. (21) depends additionally on
changes to Fks and FkM when material nonlinearity is simulated
at the section level. Upon convergence of the element state de-
termination and solution of the structural-level equilibrium equa-
tions, derivatives of the element response can be taken with respect
to uncertain model parameters, as described in the subsequent
section.
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Response Sensitivity

The response sensitivity formulation for geometrically nonlinear
force-based elements follows the same general approach as for
geometrically linear elements (Scott et al. 2004). In this approach,
the governing equations of element equilibrium and compatibility
are differentiated with respect to u, an uncertain parameter of the
structural model. Additional derivatives resulting from the depen-
dence of the transverse displacement field on basic forces arise in the
geometrically nonlinear case.

Derivatives of Element Response Quantities

As in previous derivations of frame element response sensitivity,
derivatives of key element response quantities must be defined to
develop computable quantities for DDM response sensitivity anal-
ysis. First, the derivative of section forces with respect to an un-
certain parameter of the structural model is

∂s
∂u

[ ks
∂e
∂u

þ ∂s
∂u

���
e

(22)

where ks 5 ∂s=∂e5 section stiffness matrix, which is the inverse of
section flexibility, ks 5 f21

s . The term ksð∂e=∂uÞ accounts for the
implicit dependence of section forces on the parameter, by way of
the section deformation sensitivity. Explicit dependence of section
forces on the parameter is from ∂s=∂uje, the derivative of section
forces with respect to u under the condition that ∂e=∂u is zero (Zhang
and Der Kiureghian 1993). For path-dependent structural response,
this conditional derivative depends on all model parameters, not just
the parameters associated with the section force-deformation re-
sponse (Haukaas 2006).

Second, noting that the geometrically nonlinear response depends
on the transverse displacement, the derivative of u is introduced in
terms of its implicit (via basic forces) and explicit dependence on u

∂u
∂u

[ ∂u
∂q

∂q
∂u

þ ∂u
∂u

���
q

(23)

where ∂u=∂q is computed according to Eq. (21) and ∂u=∂ujq
5 conditional derivative of the transverse displacement field. Fi-
nally, the derivative of basic forces, q, with respect to u is defined in
an analogous manner to the derivative of section forces in Eq. (22)

∂q
∂u

[ k ∂v
∂u

þ ∂q
∂u

���
v

(24)

The conditional derivative of basic forces, ∂q=∂ujv, is the quantity
that must be transformed and assembled in to the global system of
response sensitivity equations. The solution for this conditional
derivative is presented in the subsequent sections.

Derivative of Governing Equations

The derivative of the equilibrium relationship [Eq. (1)] with respect
to u is

∂s
∂u

¼ b
∂q
∂u

þ ∂b
∂u

q (25)

The derivatives of section and basic forces defined in Eqs. (22) and
(24), respectively, are inserted into Eq. (25), giving

ks
∂e
∂u

þ ∂s
∂u

���
e
¼ b

	
k ∂v
∂u

þ ∂q
∂u

���
v



þ ∂b

∂u
q (26)

From Eq. (26), the derivative of section deformations is

∂e
∂u

¼ fsb
	
k ∂v
∂u

þ ∂q
∂u

���
v



þ fs

	
∂b
∂u

q2 ∂s
∂u

���
e



(27)

where ∂v=∂u is obtained from the nodal displacement sensitivity
according to the kinematic transformation between the structural
system and the basic system of the element.

The derivative of the element compatibility relationship defined
in Eq. (5) is

∂v
∂u

¼ PNp

i¼1

~b
T
i
∂ei
∂u

wi þPNp

i¼1

∂~bTi
∂u

eiwi þPNp

i¼1

~b
T
i ei

∂wi

∂u
(28)

into which ∂e=∂u from Eq. (27) is inserted

∂v
∂u

¼
 PNp

i¼1

~b
T
i fsibiwi

!	
k ∂v
∂u

þ ∂q
∂u

���
v



þPNp

i¼1

~b
T
i fsi

	
∂bi
∂u

q2 ∂si
∂u

���
e



wi

þPNp

i¼1

∂~bTi
∂u

eiwi þPNp

i¼1

~b
T
i ei

∂wi

∂u
(29)

To isolate the conditional derivative of basic forces, ∂q=∂ujv, the
terms involving ∂v=∂u must be removed from Eq. (29), which is
possible after differentiation of the section interpolation matrices,
b and ~b, with respect to u.

Derivative of Section Interpolation Matrices

As indicated in Eq. (2), the section force interpolation matrix, b,
depends on the section locations, j, and the transverse displace-
ment field. The derivative of b with respect to u then consists of
two terms

∂b
∂u

¼ ∂b
∂u

∂u
∂u

þ ∂b
∂j

∂j
∂u

¼ ∂b
∂u

	
∂u
∂q

∂q
∂u

þ ∂u
∂u

���
q



þ ∂b

∂j
∂j
∂u

(30)

where ∂u=∂u has been expanded using Eq. (23). An expression
identical to Eq. (30) exists for the derivative of ~b defined in Eq. (4).
Inserting these derivatives into Eq. (29) yields

∂v
∂u

¼
 PNp

i¼1

~b
T
i fsibiwi þPNp

i¼1

~b
T
i fsi

∂bi
∂ui

q ∂ui
∂q

wi þPNp

i¼1

∂~bTi
∂ui

ei
∂ui
∂q

wi

!

�
	
k ∂v
∂u

þ ∂q
∂u

���
v



2
PNp

i¼1

~b
T
i fsi

∂si
∂u

���
e
wi þPNp

i¼1

~b
T
i fsi

∂bi
∂ui

q ∂ui
∂u

���
q
wi

þPNp

i¼1

∂~bTi
∂ui

ei
∂ui
∂u

���
q
wi þPNp

i¼1

~b
T
i ei

∂wi

∂u
þPNp

i¼1

~b
T
i fsi

∂bi
∂ji

q
∂ji
∂u

wi

þPNp

i¼1

∂~bTi
∂ji

ei
∂ji
∂u

wi

(31)

With the definition of the element flexibility matrix in Eq. (10) and
the identity fk5 I, the terms involving ∂v=∂u in Eq. (31) cancel.
This leaves the following expression for the conditional derivative of
basic forces:
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∂q
∂u

���
v
¼ k

 PNp

i¼1

~b
T
i fsi

∂si
∂u

���
e
wi 2

PNp

i¼1

~b
T
i fsi

∂bi
∂ui

q ∂ui
∂u

���
q
wi

2
PNp

i¼1

∂~bTi
∂ui

ei
∂ui
∂u

���
q
wi 2

PNp

i¼1

~b
T
i ei

∂wi

∂u

2
PNp

i¼1

~b
T
i fsi

∂bi
∂ji

q
∂ji
∂u

wi2
PNp

i¼1

∂~bTi
∂ji

ei
∂ji
∂u

wi

!
(32)

The derivatives ∂w=∂u and ∂j=∂u will be nonzero if u corresponds
to a differentiable parameter of the element integration rule; e.g.,
a plastic hinge length. This case requires derivatives of the section
interpolation matrices with respect to j

∂b
∂j

¼ ∂~b
∂j

¼
�
0 0 0

0 1 1

�
(33)

If Gaussian-based quadrature is used along the entire element do-
main, the derivatives ∂w=∂u and ∂j=∂u will be zero because the
locations and weights of the integration points are determined solely
from the analyst-specified Np, which is not differentiable. Re-
gardless of the type of parameter, the conditional derivative ∂u=∂ujq
must be computed to solve for the conditional derivative of basic
forces according to Eq. (32).

Derivative of Transverse Displacement Field

The derivative of the transverse displacement field requires differ-
entiation of the CBDI approximation defined in Eq. (14)

∂u
∂u

���
q
¼ 2L2l� ∂k

∂u

���
q
2 2L ∂L

∂u
lpk2L2 ∂l

p

∂u
k (34)

where the derivative of k carries the conditional derivative notation
because it is the only term in Eq. (14) that depends on basic forces, q.
To find this conditional derivative of curvature, ∂q=∂u5 0 is im-
posed in Eq. (27)

∂e
∂u

���
q
¼ fs

	
∂b
∂u

���
q
q2 ∂s

∂u

���
e



(35)

where ∂b=∂ujq, the conditional derivative of the section force in-
terpolation matrix, appears in turn. Then, applying the condition
∂q=∂u5 0 to Eq. (30) and inserting this result into the previous
equation gives

∂e
∂u

���
q
¼ fs

	
∂b
∂u

q ∂u
∂u

���
q
þ ∂b

∂j
q
∂j
∂u

2 ∂s
∂u

���
e



(36)

Exploiting the sparsity of ∂b=∂u and ∂b=∂j defined in Eqs. (11)
and (33), respectively, this equation simplifies to

∂e
∂u

���
q
¼ fs

	�
0

2q1

�
∂u
∂u

�����
q

þ
�

0

q2 þ q3

�
∂j
∂u

2 ∂s
∂u

�����
e



(37)

Then, selecting the derivative of curvature from this equation and
aggregating this result over all, the Np integration points gives

∂k
∂u

���
q
¼ 2q1FkM

∂u
∂u

���
q
þ ðq2 þ q3ÞFkM

∂j
∂u

2Fks
∂S
∂u

���
e

(38)

Eq. (38) contains the block-diagonal section flexibility matrices,
FkM and Fks, defined in Eq. (20), along with block vectors, ∂j=∂u
and ∂S=∂uje, of the derivatives of the integration point locations
and section forces, respectively.

The conditional derivative of curvature defined in Eq. (38) is then
substituted in to Eq. (34), and the solution for ∂u=∂ujq ensues from
the following linear system of equations:

�
I2 q1L

2lpFkM
�∂u
∂u

���
q
¼ L2lpFks

∂S
∂u

���
e
2 2L ∂L

∂u
lpk

2 ðq2 þ q3ÞL2lpFkM
∂j
∂u

2L2 ∂l
p

∂u
k (39)

where the left-hand side matrix is the same as that required for
computing ∂u=∂q in Eq. (21). All terms on the right-hand side of
this equation are computable at the converged element state, where
∂S=∂uje is computed from the section force-deformation response
and the derivative of the element length ∂L=∂u is computed from
uncertain coordinates of the element nodes. The vector ∂j=∂u is
nonzero only if u corresponds to the location of an element in-
tegration point, in which case ∂lp=∂u, the derivative of the CBDI
influence matrix, will also be nonzero. Differentiation of Eq. (15)
with respect to u gives

∂lp
∂u

¼ ∂h
∂u

g21 þ h
∂g21

∂u
(40)

Using the derivative of a matrix inverse, Eq. (40) can be expressed
in terms of ∂g=∂u

∂lp
∂u

¼
	
∂h
∂u

2 hg21 ∂g
∂u



g21 (41)

The derivatives ∂h=∂u and ∂g=∂u are obtained by differentiation of
Eqs. (16) and (17)

∂hij
∂u

¼
 
ð jþ 1Þj j

i 2 1

jð jþ 1Þ

!
∂ji
∂u

,
∂gij
∂u

¼
h
ð j2 1Þj j22

i

i ∂ji
∂u

(42)

With the solution for ∂u=∂ujq established, all element-level com-
ponents to the two-phase DDM analysis are computable (Zhang and
Der Kiureghian 1993). In Phase I, the conditional derivative ∂q=∂ujv
from Eq. (32) is assembled into the global system of sensitivity
equations. Then, after solution for the nodal response sensitivity,
∂e=∂u from Eq. (27) is computed to update the section response
sensitivity for path dependency in Phase II.

Examples

The DDM response sensitivity equations for geometrically non-
linear force-based elements have been implemented in theOpenSees
FE software framework (McKenna et al. 2010). The first example
verifies that the DDM implementation is correct for a simply sup-
ported beam with geometric nonlinearity and path-dependent ma-
terial response. The second example involves a first-order reliability
analysis of a steel frame with geometric and material nonlinearity.

Geometrically Nonlinear Elastoplastic Beam

The prismatic simply supported beam shown in Fig. 2 with an
eccentric axial load is a commonly used illustrative example of
CBDI procedures (Neuenhofer and Filippou 1998; Jafari et al.
2010) where a single geometrically nonlinear force-based element
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simulates linear-elastic buckling. Additional modeling features
were added to this example to verify the DDM response sensitivity
for the material nonlinear response assumed in the aforementioned
derivations.

Themember isW143 90 with length L5 5,080mm. To account
for material properties and cross-section dimensions as uncertain
parameters, a fiber-discretization of the cross section is used with 20
fibers along the web depth and two fibers in each flange. The stress-
strain response is elastoplastic with yield stress sy 5 240MPa
and elastic and hardening moduli of E5 200,000MPa and
H5 11,000MPa, respectively. Gauss-Radau plastic hinge integra-
tion is used, giving the six integration points shown in Fig. 2, each of
which is assigned the aforementionedfiber-discretized cross section.
The plastic hinge lengths are assumed equal to 1.5 times themember
depth; i.e., lpI 5 lpJ 5 1:5d. Eccentricity of the axial load is assumed
to be equal to half the member depth to accentuate the axial-moment
interaction in the CBDI state determination.

The eccentric axial load, PðtÞ5Pmax sinðtÞ, was applied through
pseudotime steps in the range t5 ½0, 2� such that a state of unloading
was reached and path dependency was activated. The peak load
value, Pmax 5 0:8EI=L2, was well below the critical Euler buckling
load p2EI=L2. The time history of U, the rotation at end J of the
beam, is shown in Fig. 3(a). Material yielding occurred at t5 0:78,
which corresponded to a load ofP5 0:56EI=L2. After yielding, the
rotation increased rapidly until unloading began at t5p=2. Sig-
nificant amplification of the internal bending moment over the
geometrically linear solution is observed in Fig. 3(b) at the peak
load, Pmax.

Given the computed response shown in Fig. 3, the standard
approach to verifying its sensitivity with respect to an uncertain
parameter is to compare the DDM sensitivity to that obtained by
finite-difference calculations. In the limit, as a parameter perturbation,

Du, decreases to zero, thefinite-difference approximation of the nodal
displacement sensitivity should approach the DDM result

lim
Du→ 0

Uðuþ DuÞ2UðuÞ
Du

¼ ∂U
∂u

(43)

where a forward finite-difference calculation is shown.
The sensitivity of the beam end rotationwith respect to the section-

level parameters of the elastic modulus and the member depth is
shown in Fig. 4, where the vertical axis is scaled by the assumed
parameter values. The finite-difference perturbation is 0.0001 times
the assumed parameter value, which is sufficiently small to satisfy
Eq. (43). The agreement of the finite-difference calculations with the
DDM sensitivity verifies the geometrically nonlinear DDM imple-
mentation. Both of these section-level parameters act as resistance
variables, which is evidenced by the negative sensitivity values. For
reference, the geometrically linear DDM response sensitivity is shown.
Discrete jumps in the sensitivity are observed as the individual fibers
switch from elastic to plastic states (Conte et al. 2003).

The sensitivity of the beam rotation to elastoplastic material para-
meters yield stress,sy, and hardening modulus,H, is shown in Fig. 5.
The DDM sensitivity for the CBDI formulation is compared with the
finite-difference computations, as well as to the geometrically linear
response sensitivity. For both parameters, the sensitivity is zero prior
tomaterial yielding. Again, there is agreement of theDDMand finite-
difference sensitivity. Both parameters act as resistance variables,
with the response being more sensitive to changes in yield stress than
to the hardening modulus.

Sensitivity with respect to nodal coordinates at end J of the beam
is shown in Fig. 6, where it is observed that both coordinates act as
load variables. An increase in either the X- or Y-coordinate at end J
makes the beam more unstable because of the loss of material and

Fig. 2. Simply supported elastoplastic beam with eccentric axial load, Gauss-Radau plastic hinge integration, fiber-discretized cross section, and
stress-strain behavior

Fig. 3. Beam response with linear and nonlinear geometry: (a) rotation time history; (b) distribution of bending moment along the beam at peak load
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geometric stiffness that results from an increase in beam length. It is
observed in Fig. 6, as well as for the section-level parameters shown
in Figs. 4 and 5, that the amplification of geometrically nonlinear
response sensitivity over the geometrically linear case is generally
greater than the amplification of response shown in Fig. 3(a).

The final set of sensitivity results is for the assumed plastic hinge
lengths, lpI and lpJ , at each end of the beam. As shown in Fig. 7, there
is agreement between the finite differences and the DDM for the
CBDI response sensitivity. It is observed that, after material yielding,
the hinge lengths act as either load or resistance variables depending
on the load level. This is the case for both linear and nonlinear ge-
ometry; however, there is no correlation between the formulations and

the load levels at which the plastic hinge length parameters switch
between load and resistance behavior.

Steel Frame Reliability

With the DDM response sensitivity verified using finite-difference
calculations, a FE reliability analysis is shown in this example.
The structural model, originally developed byMaleck (2001), is of an
industrial building where two columns provide lateral support for 11
bays and system strength is controlled by the loss of lateral stability
under gravity loading. In quantifying the effect of uncertain geometric
and material properties on the frame’s lateral strength, Buonopane

Fig. 4. Sensitivity of beam response to elastic modulus and member depth

Fig. 5. Sensitivity of beam response to material yield stress and hardening modulus

Fig. 6. Sensitivity of beam response to nodal coordinates at end J
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(2008) simplified the model to three bays with each outer column
representing a group of five leaning columns, as shown in Fig. 8. An
initial sway equal to 1=500 of the frame height was imposed to
trigger lateral instability under the factored load combination
1:2D1 1:6L.

A single force-based CBDI element is used for each column
member. The response of the interior columns is obtained using
Gauss-Radau plastic hinge integration, and the hinge lengths are
equal to 1.5 times the member depth. A fiber discretized cross section
is used for all columnmemberswith an elastic-perfectly plastic stress-
strain relationship (20 web fibers and two fibers per flange).

The vertical load-lateral displacement response of the frame with
the mean parameter values listed in Table 1 is shown in Fig. 9. The
mean response reveals that the frame is stable under the factored
design load (analysis load factor l5 1:0) and looses stability when
the load factor increases to l5 1:3 at a lateral displacement of 42
mm. At this peak response, the axial force in ColumnC2 is 1,232 kN
and the maximum end moment is 213 kN ×m at the top. Although
Column C3 sees a higher axial force of 1,270 kN, the maximum
end moment is lower, at 139 kN ×m. These results agree with the
analysis by Buonopane (2008), who used a corotational mesh of
four geometrically linear displacement-based elements to simulate
the response of each column member.

With the mean response established for the given parameter
values, first-order reliability method (FORM) analysis (Ditlevsen
and Madsen 1996) is carried out for a performance function, g,

which indicates failure (g# 0) when the lateral roof displacement,
U, exceeds 50 mm

g ¼ 502U (44)

and where the factored load combination is treated as deterministic.
This performance function addresses the probability that the frame
will become unstable when the analysis load factor is l5 1:0. The
yield strength, elasticmodulus, section depth, and plastic hinge lengths
of Columns C2 and C3, as well as the X- and Y-coordinates at the top
of all four columns are considered to be uncertain model parameters
with the statistical distributions listed in Table 1. All random variables
are uncorrelated.

Using the DDM to evaluate ∂U=∂u in the gradient of the per-
formance function of Eq. (44), the FORM analysis converges in four
iterations to the most probable point of failure, or design point,
with a reliability index of b5 3:435. The FORM analysis requires
2:73 105 clicks per iteration, where the number of clicks comes
from a high-resolution, system-dependent counter in Tcl=Tk (Welch
2000). When using finite differences to evaluate the gradient of the
performance function, the FORM analysis converges in the same
number of iterations; however, it requires 4:73 106 clicks per it-
eration, which is about 17.4 times higher than the analysis where
gradients were evaluated by the DDM. The response of the frame at
the design point (i.e., with values of the random variables that
correspond to the most probable point of failure) is shown in Fig. 9

Fig. 7. Sensitivity of beam response to plastic hinge lengths

Fig. 8. Model of industrial building from Buonopane (2008, © ASCE)
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along with the mean response. At the design point, the axial load in
Column C2 reduced to 944 kN with a maximum end moment of
229 kN ×m. For Column C3 the axial load was 982 kN and the
maximum end moment was 196 kN ×m.

The importance measures listed in Table 1 reveal that the
X-coordinates of the outer column groups (C1 and C4) have the
largest influence on the frame response at the design point. This
indicates the frame is sensitive to initial sway; however, the im-
portance values are large because of the model simplification where
five columns and tributary gravity load are concentrated on each of
the outer column lines. In the next group of importance variables are
the depth and yield stress of Column C2, which have a significant
influence on thismember’s plastic flexural response. The yield stress
ofColumnC3has zero importance at the design point, indicating this
member remains elastic; however, the depth and elastic modulus of
this column rank high in importance and act as resistance variables.
In the next group of importance variables are the X-coordinates of
the interior Columns C2 and C3, followed by the elastic modulus of
C2. The Y-coordinates of all four columns comprise the next group
of importance variables with the Y-coordinates of the inner columns
acting as load variables and those for the outer columns acting as
resistance variables. The assumed plastic hinge lengths of the in-
terior column members rank low in importance, with those for
Column C2 acting as load variables because of the plastic response
of this member.

Conclusions

Response sensitivity for geometrically nonlinear force-based frame
FEs has been developed by direct differentiation of the governing
equations of equilibrium, compatibility, and transverse displacement
with theCBDI procedure. The dependence of the element response on
the transverse displacement field made the response sensitivity deri-
vation significantlymore complex than in the geometrically linear case.
The analytic sensitivity equationswere verified againstfinite-difference
approximations for material, cross-section, plastic hinge, and nodal
coordinate parameters. In addition, the response sensitivity was used in
the reliability analysis of a steel frame with material and geometric
nonlinearity, where random variables corresponding to initial sway
and column strength ranked highest in importance. Use of the DDM
sensitivity in the reliability analysis resulted in an order of magni-
tude reduction in computational expense compared with the same
analysis using finite-difference sensitivity.

The response sensitivity equations lay the foundation for the use
of geometrically nonlinear force-based elements in other gradient-
based structural engineering applications such as optimization and
system identification. Extensions of the response sensitivity equa-
tions to a three-dimensional CBDI implementation and CSBDI are
straightforward. Both of these extensions require an increase in the
matrix dimensions of the response sensitivity equations but do not
affect their underlying functional form.

References

Addessi, D., and Ciampi, V. (2007). “A regularized force-based beam el-
ement with a damage-plastic section constitutive law.” Int. J. Numer.
Methods Eng., 70(5), 610–629.

Alemdar, B. N., and White, D. W. (2005). “Displacement, flexibility, and
mixed beam-column finite element formulations for distributed plas-
ticity analysis.” J. Struct. Eng., 131(12), 1811–1819.

Bebamzadeh, A., and Haukaas, T. (2008). “Second-order sensitivities of
inelastic finite-element response by direct differentiation.” J. Eng.
Mech., 134(10), 867–880.

Buonopane, S. G. (2008). “Strength and reliability of steel frames with
random properties.” J. Struct. Eng., 134(2), 337–344.

Calabrese, A., Almeida, J. P., and Pinho, R. (2010). “Numerical issues in
distributed inelasticity modeling of RC frame elements for seismic
analysis.” J. Earthquake Eng., 14(1), 38–68.

Table 1. Assumed Statistical Distribution and Importance Ranking of Random Variables at the Design Point

Parameter Unit Probability density function Mean Standard deviation Design point Importance

XC4 m N 1:6003 101 1:0983 1022 1:6033 101 6:0143 1021

XC1 m N 21:6003 101 1:0983 1022 21:5973 101 5:9963 1021

fy ,C2 kPa LN 3:4503 105 2:0703 104 3:1103 105 23:5933 1021

dC2 m N 2:5353 1021 5:0703 1023 2:4873 1021 22:0133 1021

dC3 m N 2:5353 1021 5:0703 1023 2:4883 1021 21:9573 1021

EC3 kPa LN 2:0003 108 6:8003 106 1:9523 108 21:4893 1021

XC3 m N 5:3333 10 1:0983 1022 5:3413 10 1:4793 1021

XC2 m N 25:3333 10 1:0983 1022 25:3263 10 1:4553 1021

EC2 kPa LN 2:0003 108 6:8003 106 1:9783 108 26:6783 1022

YC3 m N 5:4903 10 1:0983 1022 5:4913 10 2:7163 1022

YC2 m N 5:4903 10 1:0983 1022 5:4913 10 1:7933 1022

YC4 m N 5:4903 10 1:0983 1022 5:4903 10 28:8773 1023

YC1 m N 5:4903 10 1:0983 1022 5:4903 10 28:8723 1023

lp,bottom,C2 m N 3:8023 1021 3:8023 1022 3:8073 1021 2:7753 1023

lp,top,C2 m N 3:8023 1021 3:8023 1022 3:8063 1021 2:7013 1023

lp,top,C3 m N 3:8023 1021 3:8023 1022 3:8003 1021 21:2753 1023

lp,bottom,C3 m N 3:8023 1021 3:8023 1022 3:8003 1021 21:2553 1023

fy,C3 kPa LN 3:4503 105 2:0703 104 3:4443 105 0:000

Note: LN 5 lognormal; N 5 normal.

Fig. 9.Vertical load-lateral displacement response of industrial building
at parameter values corresponding to the mean and design point

JOURNAL OF STRUCTURAL ENGINEERING © ASCE / NOVEMBER 2013 / 1971

J. Struct. Eng. 2013.139:1963-1972.

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

O
R

E
G

O
N

 S
T

A
T

E
 U

N
IV

E
R

SI
T

Y
 o

n 
10

/1
6/

13
. C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

http://dx.doi.org/10.1002/nme.1911
http://dx.doi.org/10.1002/nme.1911
http://dx.doi.org/10.1061/(ASCE)0733-9445(2005)131:12(1811)
http://dx.doi.org/10.1061/(ASCE)0733-9399(2008)134:10(867)
http://dx.doi.org/10.1061/(ASCE)0733-9399(2008)134:10(867)
http://dx.doi.org/10.1061/(ASCE)0733-9445(2008)134:2(337)
http://dx.doi.org/10.1080/13632461003651869


Conte, J. P., Barbato, M., and Spacone, E. (2004). “Finite element response
sensitivity analysis using force-based frame models.” Int. J. Numer.
Methods Eng., 59(13), 1781–1820.

Conte, J. P., Vijalapura, P. K., and Meghalla, M. (2003). “Consistent
finite-element response sensitivity analysis.” J. Eng. Mech., 129(12),
1380–1393.

Crisfield, M. A. (1991). Non-linear finite element analysis of solids and
structures, Vol. 1, Wiley, West Sussex, U.K.

De Souza, R. M. (2000). “Force-based finite element for large displacement
inelastic analsysis of frames.” Ph.D. thesis, Univ. of California at
Berkeley, Berkeley, CA.

Ditlevsen, O., and Madsen, O. H. (1996). Structural reliability methods,
Wiley, New York.

Filippou, F. C., and Fenves, G. L. (2004). “Methods of analysis for
earthquake-resistant structures.” Chapter 6, Earthquake engineering:
From engineering seismology to performance-based engineering,
Y. Bozorgnia and V. V. Bertero, eds., CRC, Boca Raton, FL.

Golub, G. H., and Van Loan, C. F. (1996). Matrix computations, 3rd Ed.,
Johns Hopkins University Press, Baltimore.

Gu, Q., Barbato, M., and Conte, J. P. (2009). “Handling of constraints in
finite-element response sensitivity analysis.” J. Eng. Mech., 135(12),
1427–1438.

Haukaas, T. (2006). “Efficient computation of response sensitivities for
inelastic structures.” J. Struct. Eng., 132(2), 260–266.

Hjelmstad, K. D., and Taciroglu, E. (2005). “Variational basis of nonlinear
flexibility methods for structural analysis of frames.” J. Eng. Mech.,
131(11), 1157–1169.

Jafari, V., Vahdani, S., and Rahimian, M. (2010). “Derivation of the
consistent flexibility matrix for geometrically nonlinear Timoshenko
frame finite element.” Finite Elem. Anal. Design, 46(12), 1077–
1085.

Jeffers, A. E., and Sotelino, E. D. (2010). “Analysis of structures in fire
using a flexibility-based finite element.” 2010 structures congress,
ASCE, Reston, VA, 2186–2197.

Maleck, A. E. (2001). “Second-order inelastic and modified elastic analysis
and design evaluation of planar steel frames.” Ph.D. thesis, Georgia
Institute of Technology, Atlanta.

McKenna, F., Scott, M. H., and Fenves, G. L. (2010). “Nonlinear finite-
element analysis software architecture using object composition.”
J. Comput. Civ. Eng., 24(1), 95–107.

Neuenhofer, A., and Filippou, F. C. (1997). “Evaluation of nonlinear frame
finite-element models.” J. Struct. Eng., 123(7), 958–966.

Neuenhofer, A., and Filippou, F. C. (1998). “Geometrically nonlinear
flexibility-based frame finite element.” J. Struct. Eng., 124(6), 704–711.

Pajot, J. M., and Maute, K. (2006). “Analytical sensitivity analysis of
geometrically nonlinear structures based on the co-rotational finite
element method.” Finite Elem. Anal. Design, 42(10), 900–913.

Scott, M. H., and Fenves, G. L. (2006). “Plastic hinge integration methods
for force-based beam-column elements.” J. Struct. Eng., 132(2), 244–252.

Scott, M. H., and Filippou, F. C. (2007). “Exact response gradients for large
displacement nonlinear beam-column elements.” J. Struct. Eng., 133(2),
155–165.

Scott, M. H., Franchin, P., Fenves, G. L., and Filippou, F. C. (2004).
“Response sensitivity for nonlinear beam-column elements.” J. Struct.
Eng., 130(9), 1281–1288.

Spacone, E., Filippou, F. C., and Taucer, F. F. (1996). “Fiber beam-column
model for nonlinear analysis of R/C frames: Formulation.” Earthquake
Eng. Struct. Dyn., 25(7), 711–725.

Welch, B. B. (2000). Practical programming in Tcl and Tk, Prentice Hall,
Upper Saddle River, NJ.

Zhang, Y., and Der Kiureghian, A. (1993). “Dynamic response sensitivity of
inelastic structures.”Comput.MethodsAppl.Mech.Eng., 108(1–2), 23–36.

1972 / JOURNAL OF STRUCTURAL ENGINEERING © ASCE / NOVEMBER 2013

J. Struct. Eng. 2013.139:1963-1972.

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

O
R

E
G

O
N

 S
T

A
T

E
 U

N
IV

E
R

SI
T

Y
 o

n 
10

/1
6/

13
. C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

http://dx.doi.org/10.1002/nme.994
http://dx.doi.org/10.1002/nme.994
http://dx.doi.org/10.1061/(ASCE)0733-9399(2003)129:12(1380)
http://dx.doi.org/10.1061/(ASCE)0733-9399(2003)129:12(1380)
http://dx.doi.org/10.1061/(ASCE)EM.1943-7889.0000053
http://dx.doi.org/10.1061/(ASCE)EM.1943-7889.0000053
http://dx.doi.org/10.1061/(ASCE)0733-9445(2006)132:2(260)
http://dx.doi.org/10.1061/(ASCE)0733-9399(2005)131:11(1157)
http://dx.doi.org/10.1061/(ASCE)0733-9399(2005)131:11(1157)
http://dx.doi.org/10.1016/j.finel.2010.07.015
http://dx.doi.org/10.1016/j.finel.2010.07.015
http://dx.doi.org/10.1061/(ASCE)CP.1943-5487.0000002
http://dx.doi.org/10.1061/(ASCE)0733-9445(1997)123:7(958)
http://dx.doi.org/10.1061/(ASCE)0733-9445(1998)124:6(704)
http://dx.doi.org/10.1016/j.finel.2006.01.007
http://dx.doi.org/10.1061/(ASCE)0733-9445(2006)132:2(244)
http://dx.doi.org/10.1061/(ASCE)0733-9445(2007)133:2(155)
http://dx.doi.org/10.1061/(ASCE)0733-9445(2007)133:2(155)
http://dx.doi.org/10.1061/(ASCE)0733-9445(2004)130:9(1281)
http://dx.doi.org/10.1061/(ASCE)0733-9445(2004)130:9(1281)
http://dx.doi.org/10.1002/(SICI)1096-9845(199607)25:7%3c711::AID-EQE576%3e3.0.CO;2-9
http://dx.doi.org/10.1002/(SICI)1096-9845(199607)25:7%3c711::AID-EQE576%3e3.0.CO;2-9
http://dx.doi.org/10.1016/0045-7825(93)90151-M

