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a b s t r a c t

The OpenSees finite element software framework is extended for simulating fluid–structure interaction
(FSI) by the particle finite element method (PFEM). At high levels of the framework, new classes handle
meshing and interface detection of the fluid and structure domains and implement the fractional step
method in order to solve the governing equations of linear momentum and mass conservation. At lower
levels of the framework, new finite element and pressure constraint classes assemble fluid contributions
to the global system of equations. Verification and validation examples are presented along with a
demonstrative example of wave loading on a coastal structure modeled using geometrically nonlinear
frame elements with material nonlinear fiber sections. The extension of OpenSees for FSI allows analysts
to simulate the complex phenomena of wave loading on structural models as well as the response of
these models to sequential natural hazards such as earthquake induced tsunamis.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Recent natural disasters such as the 2004 Indian Ocean and
2011 Tohoku earthquakes and tsunamis have increased the impor-
tance of simulating fluid–structure interaction (FSI) among struc-
tural engineering researchers and practitioners. Documented
structural failures and subsequent analyses that are able to repli-
cate the failure mechanisms experienced during these events are
expected to have far-reaching implications on international design
codes [1]. As a result, the design of new coastal infrastructure re-
quires accurate simulation models in order to predict structural re-
sponse to extreme wave loading, which is often precipitated by
ground motion. Also of importance is predicting the response of
existing coastal infrastructure to loads not anticipated in the origi-
nal design, e.g., uplift forces on bridge decks and impact forces of
water borne debris.

Various methods of simulating fluid–structure interaction have
been developed for simulating wave impact on structures [2–6]. A
common assumption in wave impact analysis is that the structure
is a rigid object. Although it simplifies the analysis, this assumption
can lead to over-estimates of the force that a structure can resist.
To account for the deformation of structures impacted by wave
loads, a finite element model of the structure is employed [7].

For the fluid domain, finite element approaches to simulating
incompressible Newtonian fluids use either the Eulerian, Lagrang-
ian or Arbitrary Lagrangian–Eulerian (ALE) formulations [8–12].

The Eulerian formulation tracks fluid motion through fixed loca-
tions in space while the Lagrangian formulation tracks the motion
of individual fluid particles. For FSI simulations, a Lagrangian for-
mulation is advantageous because, compared to an Eulerian for-
mulation, it is easy to track the fluid free surface and it is free of
the convective terms that pose numerical difficulties with Eulerian
formulations. The disadvantage of the fully Lagrangian formulation
is the element stretching which can be overcome by updating the
mesh in every time step. This remeshing carries a high computa-
tional expense but can be mititaged by quality mesh generators.
The ALE formulation attempts to combine the best features of both
Lagrangian and Eulerian descriptions; however, it is challenging to
implement and may not be suitable for breaking wave problems
that are common in fluid–structure interaction [13].

An important advantage of the Lagrangian fluid formulation for
FSI is that it conforms to Lagrangian formulations of structural
mechanics. The particle finite element method (PFEM) has been
shown to be an efficient approach to simulating fluid–structure
interaction [14,15]. The efficiency of the PFEM arises from its track-
ing of the fluid surface in Lagrangian form using a computational
procedure analogous to that of traditional solid finite element for-
mulations. As a result, it is possible to use the PFEM to overcome
the complexity of coupling separate fluid and structure analysis
methods via staggered schemes [14], or monolithic approaches
by assuming quasi-incompressible fluid [16,17]. The PFEM also is
less sensitive to the exact location of the fluid–structure boundary,
which can be a drawback to domain decomposition methods.
Many applications of the PFEM have focused on highly flexible,
elastic structures, such as gates and membranes [16] and flaps
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and valves [15]. While these components are important for certain
application spaces, they are not representative of the bridges and
buildings that comprise coastal infrastructure.

The open source finite element software framework OpenSees
[18] has been developed to advance research in the simulation of
structural response to earthquake hazards. A software framework
defines the abstract classes from which developers can create con-
crete classes that implement specific functionality. The finite ele-
ment formulations, constitutive models, and solution algorithms
of the OpenSees framework have been designed in such a way that
applications not foreseen in the initial framework development
can be incorporated with a series of incremental improvements
or additions. For example, the OpenSees framework has been ex-
tended to live load rating of bridge girders [19] and to simulate
structural response to fire attack [20].

The objective of this paper is to show how the OpenSees frame-
work is extended to accommodate the PFEM for FSI applications
using a monolithic approach for fully incompressible fluid. First,
the governing equations of the PFEM are presented along with
their discrete approximations in space and time. Implementation
details are presented for the new classes added to OpenSees for
handling additional pressure and pressure gradient unknowns at
the element level. Details at the structural level where the solution
for the pressure unknowns is obtained alongside nodal displace-
ments are also presented. Examples of fluid only and FSI are shown
in order to verify, validate, and demonstrate the PFEM implemen-
tation within OpenSees.

2. Governing equations of the PFEM

A PFEM analysis satisfies conservation of linear momentum and
conservation of mass for all points in the fluid and structural do-
mains. Constitutive laws relate the displacements at points in the
fluid and structural domains to pressure or stress.

2.1. Conservation of linear momentum

Conservation of linear momentum is enforced in the volume, V,
of both the fluid and structural domains

q€ui ¼
@rij

@xj
þ qbi ð1Þ

where €ui is the acceleration vector, rij is the Cauchy stress tensor, xj

is the current position vector, bi is the body force vector, and q is the
density. Boundary conditions for both domains are enforced for pre-
scribed tractions on the surface, Ct ,

rijnj ¼ ti ð2Þ

where ti is the surface traction and nj is the unit normal vector to
the boundary surface. Boundary and initial conditions are imposed
on displacements

ui ¼ up
i ; ui ¼ u0

i ð3Þ

where up
i is the fixed displacement on the boundary and u0

i is the
initial displacement. Initial conditions on velocity, _u0

i , may also be
prescribed. As the simulation proceeds, the relationship between
position and displacement is

xi ¼ x0
i þ ui ð4Þ

where x0
i is the initial position.

2.2. Conservation of mass

Mass conservation, or the continuity equation, must be satisfied
in the fluid domain. Assuming incompressible fluid flow, continu-
ity requires the divergence of velocity to be zero

@ _ui

@xi
¼ 0 ð5Þ

Conservation of mass is satisfied in the structural domain by
construction.

2.3. Constitutive equations

In the structural domain, the constitutive equations are written
as a general stress–strain relationship

rij � rijðeklÞ ð6Þ

where ekl is the strain tensor computed from derivatives of the dis-
placement field

ekl ¼
1
2

@uk

@xl
þ @ul

@xk

� �
ð7Þ

The general stress–strain relationship allows for material nonlinear
structural response to external loading.

For an incompressible fluid, the Newtonian constitutive equa-
tions are expressed as

rij ¼ Sij � pdij ð8Þ

where dij is the Kronecker delta and p is the pressure. The deviatoric
stress tensor, Sij, is defined for linear fluid response as

Sij ¼ 2l _eij ð9Þ

where l is the fluid viscosity and _eij is the strain rate tensor, which
is the time derivative of Eq. (7).

3. Finite element discretization

Discretization of the continuous governing equations of linear
momentum and mass conservation leads to a system of algebraic
equations for the displacements and pressures at discrete locations
known as particles. An additional governing equation is introduced
in order to stabilize the conservation of mass equation. Then, the
response of both the fluid and structural domains is determined
from a monolithic system of equations.

3.1. Stabilization of mass equation

For fluid elements that do not satisfy the LBB condition [21,22],
spurious pressure modes can be eliminated by augmenting the
mass conservation equation (Eq. (5)) with stabilizing terms [23–
25]

@ _ui

@xi
�
Xnd

i¼1

s @

@xi

@p
@xi
þ pi

� �
¼ 0 ð10Þ

where nd is the number of spatial dimensions, pi is the pressure gra-
dient projection, and s is the stabilization parameter [26]

s ¼ q
Dt
þ 8l

3l2

� ��1

ð11Þ

The variables Dt and l are the simulation time step and characteris-
tic element length, respectively.

The pressure gradient projection ensures that the stabilizing
terms in Eq. (10) vanish for exact solution of the continuity equa-
tion. This gives an additional equation that governs the response of
fluid particles
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@p
@xi
þ pi ¼ 0 ð12Þ

The unknown pressure gradient, pi, must be found at the global le-
vel along with the particle displacements and pressures, as de-
scribed next.

3.2. Shape functions

Choosing the particle displacement, ui, pressure, p, and pressure
gradient, pi, as primary unknowns and applying the standard
Galerkin weighted residual method to the momentum equation
(1), stabilized mass equation (10), pressure gradient projection
equation (12), and boundary conditions gives
Z

V
dui q€ui �

@rij

@xj
� qbi

� �
dV �

Z
Ct

duiti dCt ¼ 0 ð13Þ

Z
V

q
@ _ui

@xi
dV þ

Z
V

Xnd

i¼1

s @q
@xi

@p
@xi
þ pi

� �
dV ¼ 0 ð14Þ

Z
V

dpis
@p
@xi
þ pi

� �
dV ¼ 0 ð15Þ

where dui; q, and dpi are weighting functions that satisfy the essen-
tial boundary conditions. The stabilization parameter, s, is intro-
duced in Eq. (15) for symmetry with Eq. (14). Boundary terms
from the integration by parts in Eq. (14) are neglected.

Using standard finite element techniques [7], the displacement,
pressure, and pressure gradient are approximated over each ele-
ment using equal order linear interpolation

ui ¼
Xn

j¼1

Nju
j
i; p ¼

Xn

j¼1

Njpj; pi ¼
Xn

j¼1

Njpj
i ð16Þ

where n is the number of element nodes and Nj are the shape func-
tions. For planar analysis with triangle elements, the shape func-
tions are equal to the area coordinate of node j. In three
dimensions, volume coordinates are used for the shape functions
of tetrahedral elements.

3.3. System of algebraic equations

When assembled over all elements in the fluid domain, the dis-
cretized equations for the fluid particle response are expressed in
matrix–vector form as

Mf €uf þ Kf _uf � Gf p ¼ Ff ð17Þ
GT

f
_uf þ Lpþ Qp ¼ 0 ð18Þ

Q T pþ M̂p ¼ 0 ð19Þ

where uf ;p, and p are vectors that collect the displacement, pres-
sure, and pressure gradient of all fluid particles and Ff is the vector
of external forces. The objects Mf and Kf are the mass and stiffness
matrices, respectively, of the fluid; Gf is the gradient operator; L is
the Laplacian operator; and Q and M̂ are stabilization matrices. Fur-
ther information on the discretized fluid equations is found in [24].

The discretized system of equations for dynamic response of the
structural domain is

Ms €us þ Cs _us þ Fint
s ðusÞ ¼ Fs ð20Þ

where us is the displacement vector of the structural particles (or
nodes) and Fs is the external load vector. The static resisting force
vector, Fint

s , is a nonlinear function of the nodal displacements. Like
the mass and damping matrices, Ms and Cs, respectively, the resist-
ing force vector is assembled from element contributions.

Particles connected to elements from both the fluid and struc-
tural domains are identified as interface particles whose contribu-
tions appear in the system of equations for both domains. From
the structural domain, equations governing the interface response
are extracted from Eq. (20) and assigned additional i and s
subscripts

Mss €us þMsi €ui þ Css _us þ Csi _ui þ Fint
s ðus;uiÞ ¼ Fs ð21Þ

Mis €us þMs
ii
€ui þ Cis _us þ Cii _ui þ Fint

i ðus;uiÞ ¼ Fs
i ð22Þ

where ui is the displacement vector of the interface nodes. Simi-
larly, the interface equations are extracted from Eqs. (17) and (18)
for the fluid domain and given additional i and f subscripts

Mff €uf þ Kff _uf � Gf p ¼ Ff ð23Þ
Mf

ii
€ui þ Kii _ui � Gip ¼ Ff

i ð24Þ
GT

f
_uf þ GT

i
_ui þ Lpþ Qp ¼ 0 ð25Þ

Eqs. (22) and (24) are combined in order to solve for the particle re-
sponse on the fluid–structure interface.

4. Solution of discretized equations

At each simulation time step, tnþ1, the discretized momentum,
pressure, and pressure gradient equations must be solved consid-
ering the change in state from the previous time step, tn. The gov-
erning equations are posed in residual form then solved via the
fractional step method.

4.1. Nonlinear solution algorithm

To utilize a wide range of root finding algorithms, Eqs. (21) and
(23) for the structure and fluid response, respectively; Eqs. (22)
and (24) for the interface response; and Eqs. (19) and (25) for the
pressure and pressure gradient response are combined to give
the following system of residual equations

rs ¼ Fs �Mss €us �Msi €ui � Css _us � Csi _ui � Fint
s ðus;uiÞ

ri ¼ Fs
i þ Ff

i � ðM
f
ii þMs

iiÞ€ui � ðCii þ KiiÞ _ui � Cis _us �Mis €us

� Fint
i ðus;uiÞ þ Gip

rf ¼ Ff �Mff €uf � Kff _uf þ Gf p

rp ¼ �GT
f

_uf � GT
i

_ui � Lp� Qp

rp ¼ �Q T p� M̂p

ð26Þ

For simultaneous solution of the preceding equations, all unknowns
are collected in a single vector, v, along with the vector, r, of resid-
ual equations

v ¼

_us

_ui

_uf

p
p

2
6666664

3
7777775
; r ¼

rs

ri

rf

rp

rp

2
6666664

3
7777775

ð27Þ

With an initial guess for the unknowns at the start of the current
time step, typically the converged state at the previous time step,
v0

nþ1 ¼ vn, the incremental update within a simulation time step is

vjþ1
nþ1 ¼ vj

nþ1 þ Dvjþ1 ð28Þ

The update is computed according to a Newton algorithm

Dvjþ1 ¼ ðKj
TÞ
�1

rj ð29Þ

where Kj
T ¼ �@r=@v is the Jacobian of the residual evaluated at the

current value of the unknowns, vj
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KT ¼

~KTss
~KTsi 0 0 0

~KTis
~KTii 0 �Gi 0

0 0 ~KTff �Gf 0

0 GT
i GT

f L Q

0 0 0 Q T M̂

2
66666664

3
77777775

ð30Þ

Matrices with an over-tilde, e.g., ~KTss, are the algorithmic matrices
that depend on the simulation time step and the chosen time inte-
gration method.

Backward Euler time integration is employed here using the
particle velocities as primary unknowns. The displacement and
acceleration are expressed in terms of the velocity at the current
time step and the displacement and velocity at the previous time
step

unþ1 ¼ un þ Dt _unþ1

€unþ1 ¼
_unþ1 � _un

Dt
ð31Þ

Inserting these approximations into the system of algebraic equa-
tions leads to the algorithmic matrix for the structural contribution

~KTss ¼
1
Dt

Mss þ Css þ DtKTss ð32Þ

where KTss ¼ @Fint
s ðus;uiÞ=@us is the tangent stiffness matrix of the

structure. Analogous definitions for ~KTsi and ~KTis are straightforward
to obtain.

The algorithmic matrix for the fluid contribution is

~KTff ¼
1
Dt

Mff þ Kff ð33Þ

where Kff can be ignored for small Dt and low fluid viscosity. The
contribution of the interface nodes to the Jacobian is

~KTii ¼
1
Dt
ðMf

ii þMs
iiÞ þ ðCii þ KiiÞ þ DtKTii ð34Þ

where KTii ¼ @Fint
i ðus;uiÞ=@ui is the contribution of the tangent stiff-

ness matrix of the structure to the interface particles. Similar to the
fluid contribution in Eq. (33), Kii can be ignored for small Dt and low
viscosity.

4.2. Fractional step method

The monolithic matrix in Eq. (30) is ill-conditioned due to cou-
pling of the velocity and pressure fields, making it difficult to ob-
tain a stable numerical solution for the incremental velocities,
pressures, and pressure gradients. To solve for these quantities effi-
ciently, the fractional step method (FSM) is utilized [27,28,15]. The
FSM segregates the unknown pressures and velocities into smaller
systems of equations that generally are not ill-conditioned. The
FSM can be summarized in three steps:

1. Compute predictor velocities by ignoring pressure contribu-
tions arising from Gi and Gf in the first three rows of Eq. (30).

2. Solve for the pressures from the fourth row of Eq. (30) using
added mass and stiffness from the predicted velocities.

3. Correct the velocities and update the pressure gradients using
the pressures found in step 2.

Implementation of the FSM requires important changes at high
levels of the OpenSees framework, as described in the following
section.

5. PFEM implementation in OpenSees

The software design of OpenSees favors object composition over
class inheritance as the mechanism that enables flexibility and
extensibility of the framework. At the highest level of the OpenSees
framework, the Domain class contains components (nodes, ele-
ments, loads, constraints, etc.) that are created and added to the
domain by a ModelBuilder object through an input script. The state
of each domain component is computed by an Analysis object,
which is composed of an equation solver, solution algorithm, time
integrator, constraint handler, and element and nodal assembly
objects. Complete details of the design of OpenSees for nonlinear
finite element analysis are given in [29]. Only the details of the
PFEM implementation in OpenSees are presented herein.

Since it was primarily designed to solve structural dynamics
problems, there are two major challenges to the implementation
of the PFEM in OpenSees. The first challenge arises from the PFEM’s
necessity to update the finite element mesh at every time step due
to large domain changes and changes in the fluid–structure inter-
face. While this re-meshing and interface detection can be handled
at the script level, it is necessary for efficiency to implement these
modules within the OpenSees core. The second challenge involves
solving the linear system of equations via the FSM, which requires
multiple equation solutions using the submatrices in Eq. (30).
Although OpenSees contains a flexible set of equation solvers,
there is an implicit assumption that only one equation solution
takes place during each iteration within a time step.

5.1. Meshing and interface detection

To create particles and elements of the fluid domain, the
PFEMMesher class is introduced to the OpenSees framework, as
shown in Fig. 1. An instance of the ModelBuilder class calls the
PFEMMesher, which for two-dimensional analysis, discretizes a pla-
nar straight line graph [30] into particles at the start of the analy-
sis. In every time step, a PFEMMesher object generates a new mesh
of PFEMElement objects for the fluid domain and interface using
Delaunay triangulation and the alpha shape method based on the
current particle positions. The alpha shape method eliminates
unnecessary elements and detects changing boundaries of the fluid
domain [31]. Meshing for three-dimensional analysis is more com-
plex, but does not add complexity to the software implementation.

Similar to other elements in OpenSees, each instance of a PFE-
MElement is responsible for computing and returning to a calling
object its mass, stiffness, and damping matrices and resisting force
vector based on the state of its connected nodes and any internal
history variables. When it is added to the domain, a PFEMElement
creates a Pressure_Constraint object for each of its connected parti-
cles (Fig. 1). The Pressure_Constraint object identifies each particle
as belonging to the fluid or structural domains, the interface be-
tween these domains, or as separate from any domain. To this
end, two groups of element tags (one for fluid and one for struc-
ture) are stored in a Pressure_Constraint object and set via the con-
nect/disconnect pair of methods. Methods such as isStructure shown
in Fig. 2 return the particle type based on its connections and allow
elements to determine their state accordingly. Another important
task of a Pressure_Constraint object is to store a Node object inter-
nally in order to keep track of the pressure and pressure gradient
unknowns. This is in addition to external Node objects that keep
track of the displacement, velocity, and acceleration of all fluid
and structural particles. The tag of the internal pressure node can
be returned through the getPressureNode method so that fluid ele-
ments can obtain the particle state and return their contributions
to the governing equations.

M. Zhu, M.H. Scott / Computers and Structures 132 (2014) 12–21 15
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With a fluid mesh in place, the PFEMIntegrator class is able to
implement the implicit Euler time integration method using parti-
cle velocity as the primary unknown along with the pressure and
pressure gradient. At the start of each time step, the integrator calls
Pressure_Constraint objects to update the state of each isolated par-
ticle and to assemble the governing equations for particles that are
connected to a mesh of fluid elements. The PFEMAnalysis class sets
the maximum and minimum time steps for the simulation and
may reduce the time step if convergence is not achieved.

5.2. Fractional step method

In addition to identifying the domain to which particles belong,
the Pressure_Constraint class serves as a bridge between the analy-
sis and model classes of OpenSees in order to link the finite ele-
ment model to the predictor–corrector approach of the FSM. On
the analysis side, new implementations of the LinearSOE and Lin-
earSolver interfaces shown in Fig. 2 are required in order to carry
out the FSM and partition the matrices in Eq. (30) based on the
model information from Pressure_Constraint objects. To this end,
the setDofIDs method of the PFEMLinSOE class, which inherits the
LinearSOE interface, obtains the node types from the Pressure_Con-
straint objects and sets the matrix partitions and assigns equation
numbers. The setMatIDs method is then called in order to initialize
the partitioned matrices and residual vector of Eq. (30) for assem-
bly via implementations of the addA and addB methods. Using the
partitioned matrices stored in the PFEMLinSOE object, the PFEM-

Solver, which implements the LinearSolver interface, carries out
the FSM and returns the solution for incremental velocities, pres-
sures, and pressure gradients.

6. Examples

Examples are presented herein to verify and validate the PFEM
implementation in OpenSees and to demonstrate its application to
fluid–structure interaction. Fluid sloshing in a container is used for
verification, then collapse of a water column is shown for valida-
tion, followed by time history analysis of a coastal structure sub-
jected to wave loading. This final example demonstrates how
structural models comprised of frame finite elements and fiber sec-
tions (typically employed for earthquake loading) can be subjected
to wave loading via the PFEM implementation in OpenSees.

6.1. Fluid sloshing

Sloshing, or the free oscillation in a container, of an incompress-
ible fluid is a common verification problem for PFEM implementa-
tions [32,33]. The PFEM model of the fluid, shown in Fig. 3(a), has
the initial free surface profile shown in Fig. 3(b) corresponding to
the first anti-symmetric mode of oscillation

gðx;0Þ ¼ a sin
px
b

� �
ð35Þ

where a is the amplitude of oscillation and b is the container width.

Fig. 1. Class diagram of the PFEM implementation in OpenSees (new classes for the PFEM are shown in red). (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

Fig. 2. Class diagram of the PFEM solver in OpenSees.

16 M. Zhu, M.H. Scott / Computers and Structures 132 (2014) 12–21
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Fig. 3. Initial mesh for fluid sloshing problem.

Fig. 4. Time history of fluid sloshing problem.

Fig. 5. Initial mesh and simulated response of water column collapse.

M. Zhu, M.H. Scott / Computers and Structures 132 (2014) 12–21 17
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When the amplitude is small compared to the container height,
h, the analytical solution for the motion of the free surface is

gðx; tÞ ¼ a sin
px
b

� �
cosðrtÞ ð36Þ

The frequency of oscillation, r, is calculated from the dispersion
relationship

r2 ¼ pg
b

tanh
ph
b

� �
ð37Þ

where g is the gravitational constant.
For numerical simulation via the PFEM, the mesh shown in

Fig. 3(a) with container dimensions, b ¼ h ¼ 10 m, and amplitude,
a ¼ 0:1 m, has 453 nodes and 819 elements. The simulation time
step is Dt ¼ 0:001 s. The sloshing time history of the free surface
at x ¼ b=2 is shown in Fig. 4. The simulation results agree with
the closed form solution save for the numerical approximation of
the implicit Euler time integration.

6.2. Water column collapse

Where the sloshing time history provided verification using a
closed-form solution of steady state response, the collapse of a
water column is a standard example for validation of Lagrangian

formulations of fluid flow undergoing highly nonlinear mesh dis-
tortions [32]. The initial configuration of the water column is
shown in Fig. 5(a) with 1392 nodes and 2429 elements. Using a
simulation time step of Dt ¼ 0:001 s, the evolution of the free sur-
face shown in Fig. 5(b)–(f) agrees qualitatively with previously
published results [32,34].

Quantitative comparisons of the OpenSees simulation with
experimental results of the water column collapse [35] are ob-
tained by tracking: (1) the horizontal motion of the water’s leading
edge on the bottom surface of the tank; and (2) the vertical motion
of the top of the water column. The coordinate time histories are
plotted against experimental results in Fig. 6. The simulated hori-
zontal motion of the leading edge in Fig. 6(a) shows higher velocity
than the experimental results. This result is consistent with prior
simulations and can be attributed to friction between the fluid
and bottom wall [34]. Fig. 6(b) shows the simulated vertical mo-
tion for the top of the water column, which is dominated by grav-
ity, agrees well with the experimental results.

6.3. Coastal structure

The final example demonstrates fluid–structure interaction via
the simulation of wave loading on a coastal structure. As previ-
ously described, the PFEM implementation allows arbitrary struc-

Fig. 6. Comparison of OpenSees simulation with experimental results of water column collapse.

Fig. 7. Geometry and floor loads of reinforced concrete frame example.

18 M. Zhu, M.H. Scott / Computers and Structures 132 (2014) 12–21
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tural finite elements to be used so that the existing modules of
OpenSees can be exploited for detailed analyses. Although the sim-
ulation does not capture essential three-dimensional FSI effects, it
demonstrates the capabilities.

The structural model is of the interior frame of a reinforced con-
crete building analyzed by Madurapperuma and Wijeyewickrema
[36] for impact of water borne debris (see Fig. 7). Dead load on
all members consists of self-weight and beam live loads were com-
puted assuming uniform 4.8 kPa on floor slabs and 1.0 kPa on the
roof with tributary width of 6 m. Combined dead and live load
were used in assigning lumped masses to the frame nodes. The
frame members are discretized into ten displacement-based frame
finite elements, each with constant axial strain and linear curva-
ture approximations (dispBeamColumn in OpenSees). Although
frame finite elements typically use a relatively coarse mesh, the
resulting element lengths are comparable to the characteristic size
of the fluid mesh so that a complete fluid–structure interface is
developed during the simulation. The corotational transformation
[37] captures geometric nonlinear response of the frame.

Fiber discretized cross-sections at the element Gauss points
capture material nonlinear response of the frame members. The
cross-section dimensions, reinforcing details, and concrete proper-
ties of the frame are shown in Fig. 8. Light transverse reinforce-
ment provides residual concrete compressive strength in the core
regions of the members. Zero tensile strength is assumed for the
concrete (Concrete01 in OpenSees) and the longitudinal reinforcing
steel is assumed bilinear with elastic modulus 200 GPa, yield
strength 420 MPa, and 1% kinematic strain hardening (Steel01).

Wave loading eminates from a tsunami bore of height 4 m trav-
eling at an initial velocity of 2 m/s with an out-of-plane thickness
0.3 m equal to the out-of-plane thickness of the frame. Tributary
loading from exterior walls is not taken into account during the
simulation. The wave runup, breaking, and surge are shown in
Fig. 9 at various snapshots of the response time history. Floor dis-
placement response time histories are shown in Fig. 10(a). The
peak displacements occur at about 4 s, well after the initial wave
impact, which occurred prior to 2 s. As the wave loading draws
down after 5 s, the time history shows damped vibration about

Fig. 8. Beam and column cross-sections of reinforced concrete frame.

Fig. 9. Time history of wave runup on coastal structure.
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small permanent floor displacements, indicating material nonlin-
earity in the structure. A comparison of the roof displacement time
history with an analysis where the concrete and reinforcing steel
respond linear-elastically with their initial stiffness is shown in
Fig. 10(b). The peak roof displacement of the elastic model is about
three times less than that of the material nonlinear model and, as
expected, there is no permanent displacement. Further calcula-
tions are required in order to find the internal forces of the struc-
ture; however, the time history of floor displacements shown in
Fig. 10 reveal the capabilities of modeling wave impact on struc-
tures using the nonlinear frame elements that are prevalent in
OpenSees.

7. Conclusions

The extension of the OpenSees framework to incorporate fluid–
structure interaction by the particle finite element method is an
important step in structural engineering research for multiple nat-
ural hazards involving earthquakes and tsunamis. The implemen-
tation was verified for water sloshing and validated for the
collapse of a water column. Wave loading was applied to a repre-
sentative coastal structure from which response quantities of
interest to structural engineers were obtained. Modeling of debris
impact and scour are the focus of future fluid–structure capabili-
ties in OpenSees, as is the simulation of cascading hazards involv-
ing fire after earthquake and tsunami. In addition, extension of the
implementation to three dimensions is underway in order to ac-
count for important wave load effects that cannot be captured in
a two-dimensional model and to take advantage of the high perfor-
mance computing capabilities of OpenSees.
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