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Improved fractional step method for simulating fluid-structure
interaction using the PFEM
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SUMMARY

Numerical difficulties are present in the particle finite element method even though it has been shown to be a
powerful and effective approach to simulating fluid-structure interaction. To overcome problems of mass loss
on the free surface and the added-mass effect, an improved fractional step method (FSM) that handles added-
mass terms in a mathematically exact way is developed. A further benefit is that no assumptions regarding
the structural response are made in handling added-mass terms, thus it is straightforward to incorporate
material nonlinearity in fluid-structure interaction (FSI) under this approach. Patch tests and comparisons
with experimental data are presented in order to verify and validate the improved FSM for FSI applications.
The computational cost of this approach is shown to be negligible compared with the other aspects of the
FSM, particularly when the size of the structure and the fluid-structure interface is small relative to the
volume of fluid. Copyright © 2014 John Wiley & Sons, Ltd.
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1. INTRODUCTION

As structural design codes evolve, for example, in response to the 2011 Tohoku earthquake and
tsunami, in order to safeguard coastal infrastructure against tsunami-induced wave and debris loads,
the prediction of structural response to these loads is of paramount importance. As a result, accu-
rate and efficient simulation models for fluid-structure interaction (FSI) are required in order to
simulate the laboratory experiments and field observations that will drive design code changes. A
variety of simulation approaches have been developed for fluid-structure interaction with incom-
pressible Newtonian flows using either the Lagrangian, Eulerian, or Arbitrary Lagrangian–Eulerian
formulations [1–5]. Although the Eulerian and Arbitrary Lagrangian–Eulerian formulations have
their advantages, important advantages of Lagrangian formulations for FSI simulation of engi-
neered coastal infrastructure include easy tracking of the fluid-free surface and conformity with the
Lagrangian formulation of structural mechanics.

The particle finite element method (PFEM), originally proposed by [6], has been shown to be an
effective Lagrangian approach to FSI. The PFEM uses a computational procedure that is analogous
to that used in finite element analysis of solids, thereby alleviating the need for awkward coupling
of disparate numerical modules in FSI simulations. The fractional step method (FSM) is used by the
PFEM in order to solve the monolithic system of pressure and momentum equations. In its original
form, the FSM splits the pressure from the momentum equations then solves for the pressure using
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a continuous Laplace matrix, which is an approximation of the exact pressure tangent matrix [6].
This required pressures to be imposed at the free surface as Dirichlet boundary conditions, which
was later found to be responsible for the mass loss at the free surface [7, 8]. Furthermore, interaction
between fluid and structure is calculated by a staggered scheme, which will become divergent if the
‘added-mass effect’ is strong. The added-mass effect is a numerical instability that can lead to non-
convergence of FSI simulations where the fluid and solid have similar densities, the structure is very
flexible, or the simulation time steps are very small [9]. As a result, the classic FSM is well-suited
for simulations of fluid interacting with rigid structures.

The problem of mass loss on the free surface can be mitigated by an FSM with incompressibility
(FSMI) on the free-surface [8]. The FSMI assumes a compressibility coefficient for fluid near the
free-surface so that a new boundary term on the free-surface is introduced in order to avoid singu-
larity of the continuous Laplace matrix. However, the compressibility is fictitious, and the choice of
the compressibility coefficient is problem dependent.

To avoid imposing problem-dependent pressure boundary conditions, an algebraic splitting
scheme can be applied directly to the monolithic system of discretized [7]. The resulting tangent
matrix for pressure, called the Pressure Schur Complement (PSC), replaces the continuous Laplace
matrix, which is an approximation of the PSC. The algebraic splitting scheme is also called ‘FSM
with discrete Laplace matrix’ [8], as opposed to the continuous Laplace matrix in the classical FSM.
The FSM with discrete Laplace matrix works well in solving the problem of mass loss for fluid
only problems; however, it becomes intractable for fluid-structure interaction because it requires
the inverse of a general structural tangent matrix. This method also suffers from numerical diver-
gence when the added-mass effect is strong because it uses a staggered scheme for fluid-structure
interaction.

To overcome the added-mass effect for FSI problems, [9] proposed an interface Laplace matrix
that adds mass and stiffness to the system of equations. With this interface Laplace matrix approach,
convergent solutions can be obtained when the added-mass effect is strong, and the convergence rate
is generally improved for problems where the effect is less significant. Even though the added-mass
effect is mitigated, a significant limitation of this approach is its restriction to elastic structures. This
can be important when attempting to simulate structural damage and/or collapse due to wave and
debris loading.

The objective of this paper is to develop the FSM with discrete Laplace matrix, or PSC, where
the exact added-mass terms are retained and handled in the general algebraic monolithic system of
FSI in a mathematically exact way. Both mass loss and the added-mass effect, which are caused by
approximation of the aforementioned terms, are mitigated to a significant degree, giving virtually no
mass loss and very fast convergence when compared with previous versions of the FSM. This comes
with the additional expense of computing the ‘exact’ PSC, which requires the inverse of a general
sparse matrix and two matrix-matrix multiplications. However, it will be shown that by utilizing
the structure of the monolithic system of algebraic equations for FSI, the cost of matrix inversion
is only related to the size of the structure and the fluid-structure interface, instead of the size of the
entire problem. For most realistic FSI applications, the size of the structure and the fluid-structure
interface is very small compared with the overall problem size. An additional, and perhaps more
attractive, advantage of the exact method is that no assumption is made towards the constitutive
response of the structure. As a result, the fluid is able to interact with material nonlinear structures
using the exact added-mass terms without any additional difficulties.

2. GOVERNING EQUATIONS OF THE PFEM

Like other FEMs, the PFEM discretizes the governing equations of FSI in to a system of linear
algebraic equations. Differential equations of linear momentum describe the structural response,
whereas for incompressible flow and additional mass conservation, equations constrain the fluid
velocities to be divergence free. The constitutive equations relate the strain in structures and the
stain rate in fluids to stresses.

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2014; 99:925–944
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2.1. Differential momentum equations

For both the fluid and structural domains, the differential equation for conservation of linear
momentum is

� Pvi D
@�ij

@xj
C �bi (1)

where vi is the velocity vector, �ij is the Cauchy stress tensor, xj is the current position vector, bi
is the body force vector, and � is the density. Neumann boundary conditions for both domains are
enforced for prescribed normal stresses on the surface, �t ,

�ijnj D ti (2)

where ti is the surface traction and nj is the unit normal vector to the boundary surface. The Dirichlet
boundary conditions and initial conditions are imposed on displacements or velocities

ui D u
p
i ui D u

0
i ; vi D v

p
i vi D v

0
i (3)

where upi and vpi are the fixed displacement, and velocity on the boundary and u0i and v0i are the
initial displacement and velocity, respectively. The current coordinates of each point in the structural
and fluid can be calculated by

xi D x
0
i C ui (4)

where x0i is the initial position.

2.2. Mass conservation equations

Conservation of mass is satisfied in the structural domain by construction, whereas for incompress-
ible flow in the fluid domain, mass conservation can be expressed as the divergence of the velocity
field equal to zero

@vi

@xi
D 0 (5)

2.3. Constitutive equations

To consider arbitrary structures in the interaction with fluid, a general stress-strain relationship is
used, encompassing both linear and nonlinear, elastic, and inelastic, constitutive models

�ij � �ij ."kl / (6)

where "kl is the strain tensor computed from derivatives of the displacement field,

"kl D
1

2

�
@uk

@xl
C
@ul

@xk

�
(7)

Newtonian fluid flows are assumed, for which the constitutive equations are

�ij D Sij � pıij (8)

where ıij is the Kronecker delta and p is the fluid pressure. The deviatoric stress tensor, Sij , is
related to the strain rate P"ij in the fluid by the viscosity �.

Sij D 2�P"ij (9)
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3. SHAPE FUNCTIONS FOR FINITE ELEMENT DISCRETIZATION

Using the particle velocity, vi , and pressure, p, as primary unknowns, the standard Galerkin
weighted residual method is applied to the differential momentum equations (1), mass conservation
equations (5), and boundary conditions,Z

V

ıvi

�
� Pvi �

@�ij

@xj
� �bi

�
dV �

Z
�t

ıvi ti d�t D 0 (10)

Z
V

q
@vi

@xi
dV D 0 (11)

where ıvi and q are weighting functions that satisfy the Dirichlet boundary conditions. The velocity
and pressure are approximated in the finite element space using shape functions [10],

vi D

nvX
jD1

N j
v v

j
i p D

npX
jD1

N j
pp

j (12)

where nv and np is the number of velocity and pressure nodes, respectively. N j
v and N j

p are the
shape functions for velocity and pressure. Suitable choices of shape functions for incompressible
fluid conditions are listed in [10]. Because Lagrangian formulation is used in the PFEM, triangu-
lar elements for planar analysis and tetrahedral elements for three dimensional analysis are better
choices than quadrilaterals for the fluid domain due the large displacements of fluid nodes.

4. DISCRETE ALGEBRAIC EQUATIONS

4.1. Discrete fluid equations

Through standard finite element procedures, the assembled algebraic equations for the fluid
domain are

Mf Pvf CKf vf �Gf p D Ff (13)

GT
f vf D 0 (14)

where vf and p are velocity and pressure vectors of fluid particles; Ff is the vector of external
forces; Mf is the fluid mass matrix; Kf represents the viscosity of the fluid, which is similar to
the stiffness matrix in the structure. The matrix Gf is the gradient operator of pressures. Further
information on these matrices is found in [11].

Equations (13) and (14) should be stabilized in order to satisfy the Inf-Sup condition for the veloc-
ity/pressure formulation. However, the discussion in this paper is independent of the stabilization
method chosen. Generally, a stabilized mass equation has the form of

GT
f vf C Sp D Fp (15)

where S is the stabilization matrix and Fp is the corresponding right-hand side vector. For example,
the S and Fp for the classic PFEM using finite calculus method [11] are

S D L (16)

Fp D �Q OM�1QT pj (17)
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where L is the Laplacian operator; Q and OM are stabilization matrices; and pj is the pressure
vector of the last iteration in a time step. For stable elements that satisfy the Inf-Sup condition for
incompressible fluid [12], S and Fp are both equal to zero, due to the fact that the pressure has been
stabilized by the mixed finite element formulations.

S D 0 (18)

Fp D 0 (19)

For stable elements with a bubble mode [13], static condensation within the element will cause S and
Fp to become non-zero. The equivalence between the bubble function and stabilization formulation
has been proved in the literature [14–16].

4.2. Discrete structural equations

Through the same finite element procedures, the assembled algebraic equations for the structural
response are

Ms Pvs C Csvs C Fints .us/ D Fs (20)

where vs is the velocity vector of the structural particles and Fs is the external load vector. The
static resisting force vector, Fints , is a nonlinear function of the nodal displacements us , which are
related to the velocities through time stepping methods. Finally, Ms and Cs are the structural mass
and damping matrices.

4.3. Discrete combined equations

Particles connected to both the fluid and structural domains are identified as interface particles,
whose contributions appear in both fluid and structural equations. From the structural system, the
interface equations are extracted from Equation (20) and assigned additional i and s subscripts

Mss Pvs CMsi Pvi C Cssvs C Csivi C Fints .us;ui / D Fs (21)

Mis Pvs CMs
i i Pvi C Cisvs C Ci ivi C Finti .us; ui / D Fsi (22)

where vi is the velocity vector of the interface particles. Similarly, the interface equations are
extracted from Equations (13) and (15) for the fluid domain and given additional i and f subscripts

Mff Pvf CKff vf �Gf p D Ff (23)

Mf
ii Pvi CKi ivi �Gip D Ffi (24)

GT
f vf CGT

i vi C Sp D Fp (25)

Equations (22) and (24) are combined in order to solve for the particle response on the fluid-structure
interface.

5. SOLUTION OF DISCRETIZED EQUATIONS

Equations (21) and (22) are nonlinear equations because of the nonlinear term Fints .us;ui / for the
structural response. The fluid equations Equation (23) to Equation (25) are also nonlinear equations
because of the geometric nonlinearity of fluid, for which all the matrices and vectors are computed
at current configuration for every iteration. A time stepping method is applied to Equation (21) to
Equation (25) in order to advance a simulation. The residual-based nonlinear solution algorithm is
used to iteratively solve the equations.

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2014; 99:925–944
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5.1. Backward Euler time integration

Backward Euler time integration is employed for the time stepping. The displacement and accelera-
tion are expressed in terms of the velocity at the current time step and the displacement and velocity
at the previous time step,

unC1 D un C�tvnC1

PvnC1 D
vnC1 � vn

�t

(26)

The linearization of Equation (26) gives

dunC1 D �tdvnC1

d PvnC1 D
1

�t
dvnC1

(27)

which gives the update formula when the velocity increment is computed,

ujC1nC1 D ujnC1 C�t�vnC1

vjC1nC1 D vjnC1 C�vnC1

PvjC1nC1 D Pv
j
nC1 C

1

�t
�vnC1

(28)

where n is the time step number and j is the iteration number.

5.2. Newton-Raphson algorithm

The Newton-Raphson algorithm expresses equations in residual form

rs D Fs �Mss Pvs �Msi Pvi � Cssvs � Csivi � Fints .us;ui /

ri D Fsi C Ffi � .M
f
ii CMs

i i /Pvi � .Ci i CKi i /vi
� Cisvs �Mis Pvs � Finti .us; ui /CGip

rf D Ff �Mff Pvf �Kff vf CGf p

rp D Fp �GT
f vf �GT

i vi � Sp

(29)

For clarity, all velocities are collected in a single vector, v, along with the vector, r, of residual
equations

v D

2
64
Pvs
Pvi
Pvf
p

3
75 r D

2
64

rs
ri
rf
rp

3
75 (30)

Following the procedure of Newton-Raphson algorithm, the derivative of the residual is taken with
respect to the unknowns, then the velocity increment can be computed

�vjC1 D
�

Kj
T

��1
rj (31)

Kj
T D �

@r
@v
D

2
66664
QKT ss

QKT si 0 0
QKT is

QKT ii 0 �Gi

0 0 QKTff �Gf

0 GT
i GT

f
S

3
77775 (32)
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Matrices with an over-tilde, for example, QKT ss , are the algorithmic tangent matrices, that is, owing
to the time integration method, for structural, interface, and fluid velocities. The matrix QKT ss is the
tangent of structural residual to structural velocities,

QKT ss D
@rs
@us
D

1

�t
Mss C Css C�tKT ss (33)

where, KT ss D @Fints .us;ui /=@us is the tangent matrix of resisting force in structure to structural
velocities. Analogous definitions for QKT si and QKT is are straightforward to obtain. The matrix QKTff

is the tangent of fluid residual to the fluid velocities,

QKTff D
@rf
@uf

D
1

�t
Mff CKff (34)

where Kff can be ignored for small �t or low fluid viscosity. The interface tangent matrix QKT ii

has contributions from both fluid and structure,

QKT ii D
@ri
@ui
D

1

�t

�
Mf
ii CMs

i i

�
C .Ci i CKi i /C�tKT ii (35)

where, KT ii D @Finti .us;ui /=@ui is the tangent matrix of the structural resisting force to the inter-
face velocities. Similar to the fluid tangent matrix in Equation (34), Ki i can be ignored for small�t
or low fluid viscosity.

6. FRACTIONAL STEP METHOD

The monolithic matrix in Equation (32) is ill-conditioned due to coupling of the velocity and pres-
sure fields, making it difficult to obtain a stable numerical solution for the incremental velocities
and pressures. This is the reason that the FSM is utilized [6–9] in the PFEM. The FSM segregates
the unknown pressures and velocities in to smaller systems of equations that are not ill-conditioned.
Generally, the FSM can be summarized in three steps:

(1) Compute predictor velocities by ignoring pressure contributions arising from Gi and Gf in
the first three rows of Equation (32);

(2) Solve for the pressures from the fourth row of Equation (32) using added or unadded, exact
or approximated, mass and stiffness from the predicted velocities;

(3) Correct the velocities using the pressures found in step 2.

The FSM is applied in a mathematically exact way to the algebraic system of Equation (32).
Using the first two rows of Equation (32),"

QKT ss
QKT si

QKT is
QKT ii

#�
�vs
�vi

�
�

�
0

Gi

�
�p D

�
rs
ri

�
(36)

the velocity increment for the structure and interface DOFs can be obtained

�
�vs
�vi

�
D

"
QKT ss

QKT si

QKT is
QKT ii

#�1 �
rs
ri

�
C

"
QKT ss

QKT si

QKT is
QKT ii

#�1 �
0

Gi

�
�p (37)

Similarly, using the third row of Equation (32)

QKTff�vf �Gf�p D rf (38)
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the incremental velocity for the fluid is

�vf D QK
�1
Tff rf C QK

�1
Tff Gf�p (39)

Because of the assumption of low viscosity fluid, the QKTff matrix is diagonal, making the incre-
mental fluid velocity trivial to compute. On the other hand, the QKT matrices shown in Equation (37)
are generally non-diagonal with unknown topology, making the solution for the incremental
velocities of the structure and interface computationally intense.

In an attempt to reduce the computational cost of solving Equation (37), the matrix inverse can
be written as

B D
�

Bss Bsi
Bis Bi i

�
�

"
QKT ss

QKT si

QKT is
QKT ii

#�1
(40)

where the blocks of the matrix B are the blocks of the matrix inverse, rather than the inverse of the
corresponding blocks of QKT . As shown in the following section, only selected entries from the B
matrix are required to carry out the FSM in a computationally efficient manner.

The first step of the FSM is to compute the intermediate predictor velocities under the assumption
that incremental pressures are zero. Using the B matrix defined in Equation (40), the predictor
velocities are obtained by setting �p to zero in Equations (37) and (39)�

�v�s
�v�i

�
D

�
Bss Bsi
Bis Bi i

� �
rs
ri

�
(41)

and

�v�f D QK
�1
Tff rf (42)

The final velocities from Equations (37) and (39) can be substituted in to the fourth row of
Equation (32), leading to the following system of equations for the incremental pressures�

GT
i Bi iGi CGT

f
QK�1Tff Gf C S

�
�p D rp �GT

i �v�i �GT
f�v�f (43)

where S is the stabilization matrix. The term GT
i Bi iGi is related to the added-mass effect owing

to both the mass and stiffness of the structure. For structures with high mass and/or stiffness, the
components of the B matrix generally decrease in magnitude, making the added-mass effect negli-
gible. Numerical experiments show, however, that retaining this term can lead to better convergence
rates for a PFEM analysis. To circumvent the global-level computation of the added-mass effect, [9]
approximated its effect using an interface Laplace matrix at the element level. The approach taken
herein is to retain the term GT

i Bi iGi in its exact discrete form while obtaining the columns of Bi i
from solutions to the following linear system of equations�

QKT ss
QKT si

QKT is
QKT ii

� �
xs
xi

�
D ej (44)

where ej is a basis vector with j th entry equal to one and all other entries equal to zero. The solution
Œxs xi �T is actually then the j th column of the inverse matrix, B. Equation (44) would be solved N
times to obtain Bsi and Bi i , whereN is the number of interface equations. For most FSI simulations,
the size of the fluid-structure interface is a small portion of the total number of equations, which
limits the computational cost of solving Equation (44) to only those DOFs along the interface.

The second term GT
f
QK�1
Tff

Gf is the Discrete Laplace matrix, or PSC. In the classic FSM
[6], this term was approximated by the Continuous Laplace matrix, which leads to mass loss on
the free surface. Because QK�1

Tff
is diagonal, computation of this term requires two matrix-matrix
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multiplications, and it can be performed exactly for the discrete system of equations, but with an
additional computational cost compared with the classical FSM. The cost of finding GT

f
QK�1
Tff

is

O.n2/, as it is a scaling of the columns of GT
f

by the corresponding diagonal entries of QKTff ,

whereas the cost of .GT
f
QKTff /Gf is O.n3/. These costs can be reduced further by exploiting the

topology of Gf via sparse matrix algorithms [17].
Using exact computations for the added-mass effect and the PSC, the solution of Equation (43)

for the pressure increment leads to improved convergence rate and accuracy, as shown in the forth-
coming examples. Once pressure is obtained, the incremental fluid velocities are corrected in order
to satisfy the fluid incompressibility condition

�vf D �v�f C QK
�1
Tff Gf�p (45)

Likewise, the incremental velocities of the structure and interface are corrected by�
�vs
�vi

�
D

�
�v�s
�v�i

�
C

�
Bss Bsi
Bis Bi i

� �
0

Gi

�
�p D

�
�v�s
�v�i

�
C

�
Bsi
Bi i

�
Gi�p (46)

where the matrices Bi i and Bsi are found from the solution to Equation (44) in order to correct the
structure and interface velocities. The correction of structural velocities by pressure in Equation (46)
shows that this is a monolithic, rather than staggered, system.

In the real computation, further optimization can be performed. For example, if a direct solver is
used, the factorization matrices can be stored, after the Equation (41) is solved. When Equation (44)
is solved, only backward and forward substitution steps need to be performed, which are both of the
order of O.n2/. The total extra cost will be O.n2/ � N , with n the size of the equations and N a
small number compared with n. Whereas for an iterative solver, the term GT

i Bi iGi does not have to
be constructed or stored. For the parallel computation environment, by using parallel direct solvers,
such as MUMPS [18] and SuperLU [19], the factorization matrices may be stored in parallel, the
columns of Bi i can be calculated in different processors simultaneously. For iterative solvers, they
are good for parallelization in nature. Through various methods mentioned, the computational cost
of the exact FSM on FSI can be reduced to a reasonable range, whereas the benefit is able to handle
more complex Fluid-Structure Interaction problems with higher accuracy and stability.

7. EXAMPLES

The foregoing FSM method has been implemented in the OpenSees finite element software frame-
work [20] as part of the framework’s modules for PFEM analysis [21]. In each example, fluid
response is simulated using a bubble function based MINI element [13], which satisfies the Inf-Sup
condition via an internal cubic bubble node that is condensed at the element level.

Four verification tests (two pressure patch tests, one mass conservation test, and one test of the
added-mass effect) are shown using the MINI fluid elements and various structural elements. These
are followed by a validation test of a breaking dam on an elastic obstacle, a problem studied by
many researchers. The final example demonstrates how the newly developed FSM handles structures
characterized by nonlinear material response.

7.1. FSI Patch test for pressures

The execution of two patch tests developed by [22] shows that the newly developed FSM transmits
constant stress boundary conditions to constant fluid pressures. An irregular mesh of fluid, solid, and
beam elements comprise the first patch test shown in Figure 1. Constant stress boundary conditions
of P= 105 Pa are applied on the side and bottom of the patch while all other boundaries are fixed.
The solid elements are linear-elastic with modulus E = 200 GPa and Poisson ratio � = 0.4999. The
fluid elements haven densitivy � = 1000 kg/m3 and visocity � = 0.001 kg/ms. Beam elements are
used along the bottom of the patch in order to add normal traction to the fluid surface. The pressure
contour in Figure 2 shows that an analysis using the new FSM leads to the exact solution of a
constant pressure field in the fluid domain.

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2014; 99:925–944
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Figure 1. Fluid-structure interaction patch test #1: solid and fluid meshes, and boundary conditions.

Figure 2. Fluid-structure interaction patch test #1: pressure plot in the fluid domain.

Figure 3. Fluid-structure interaction patch test #2: solid and fluid meshes, and boundary conditions.

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2014; 99:925–944
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In the second patch test, a regular mesh of fluid elements supports a line of displacement-based
beam elements and is fixed along all other boundaries, as shown in Figure 3. The properties of
the fluid and beam elements are the same as in the first patch test. A pressure load of P = 105 Pa
is applied on the beam. As in the previous patch test, analysis using the new FSM give the exact
solution of constant pressure in the fluid, as shown in Figure 4.

7.2. Mass conservation test

For an incompressible flow, the incompressibility condition constrains the velocity field to be diver-
gence free, resulting in conservation of the fluid mass. To ensure the corrected velocity is obtained,
it is important to verify that mass is conserved. In this example, mass conservation of the newly
developed FSM is compared with that for the classic FSM and FSMI [8].

Mass conservation is tested for viscous flow in a 1 m square container with five initial waves of
height 0.1 m, as shown in Figure 5. The fluid density and visocity are assumed to be � = 1000 kg/m3

and � = 0.01 kg/ms, respectively. Slipping conditions are applied on the sides and bottom of the
container. Although a seemingly simple example, this is a very difficult test for free-surface flow
problems [8].

Figure 4. Fluid-structure interaction patch test #2: pressure plot in the fluid domain.

Figure 5. Small waves on the free surface for mass conservation test.

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2014; 99:925–944
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The mass loss, computed as percentage change of volume, is shown in Figure 6(a) for the newly
developed and classic FSM approaches. Mass loss is apparent for the classic FSM, where by 0.1 s,
the volume has increased by nearly 4%. As shown in Figure 6(b), the volume decreases by about
0.012% when using the FSMI, whereas the newly developed FSM leads to a volume increase of
0.00081%, two orders of magnitude less than the FSMI. Snapshots of the simulation using the newly
developed FSM are shown in Figure 7 at different time steps and reveal the severe mesh distortions
that make this a difficult verification test.

7.3. Added-mass effect test

The so-called added-mass effect refers to numerical instabilities that can occur in FSI problems
where the fluid and structure have similar densities, and it can lead to unstable numerical solutions
for a variety of staggered and monolithic numerical schemes for FSI. Elasticity of the solid and the
simulation time step can also exacerbate the added-mass effect [9].

Figure 6. Comparison of total volume variation for mass conservation test.

Figure 7. Snap shots for small waves on the free-surface at different time steps.
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An incompressible water column over an elastic solid, shown in Figure 8, is the model used to test
the added-mass effect. The column width is 0.05 m and the heights of the fluid and solid columns
are 0.75 m and 0.25 m, respectively. The column walls are fixed in the horizontal direction, whereas
the upper boundary is a free surface and the bottom boundary is fixed in both directions. The solid
has density �s D 1500 kg/m3, elastic modulus, Es D 2:3 � 105 Pa, and Poisson ratio, � D 0:4;
while the fluid has density �f D 1000 kg/m3 and no viscosity. Vertical acceleration due to gravity
is assumed to be g D �10 m/s2.

Using the newly developed FSM, the vertical displacement response, which is the same for all
fluid particles, is shown in Figure 9(a). The period and magnitude of the response are similar to
the results in [9] but are slightly smaller due to the exact added-mass and PSC terms used in this
work. Figure 9(b) shows the vertical displacements for both the fluid and solid domains at different
time steps, where each line is the profile of vertical displacements at a single time step. The perfect
vertical segments in Figure 9(b) result from the incompressible condition of the water column.

To investigate how the newly developed FSM handles the added-mass effect, different values
for the density, elastic modulus, and simulated time step are used and the resulting convergence
behaviors are compared with those presented by [9]. A very strict tolerance on the velocity and
pressure increments is used here with tol.�v/ D 1e�10 and tol.�p/ D 1e�10.

Figure 8. Water column over an elastic beam for added-mass effect test.

Figure 9. Vertical displacements for added-mass effect test: (a) time history for any fluid point. (b) Along
the vertical direction for both domains at different time steps.
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Table I. Iterations to achieve convergence for different
density ratio in added-mass effect test.

�s
�h

Current ˇ ¤ 0 ˇ D 0

10 3 iterations 20 iterations 20 iterations
7 3 iterations 20 iterations More than 40 iterations
6 3 iterations 20 iterations More than 40 iterations
5 3 iterations 20 iterations Does not converge
3 3 iterations 19 iterations Does not converge
1 3 iterations 18 iterations Does not converge

Table II. Iterations to achieve convergence for different Young’s
modulus in added-mass effect test.

E (Pa);�t (s) Current ˇ ¤ 0 ˇ D 0

2e13; 0.2e-5 3 iterations 10 iterations More than 40 iterations
2e12; 0.5e-5 3 iterations 14 iterations Does not converge
2e11; 1e-5 3 iterations 18 iterations Does not converge
2e8; 1e-4 4 iterations 40 iterations Does not converge
2e7; 1e-3 5 iterations 36 iterations Does not converge
2e6; 1e-3 5 iterations 40 iterations Does not converge
2e6; 1e-2 11 iterations 34 iterations 33 iterations
2e5; 1e-2 8 iterations 36 iterations Does not converge

Table III. Iterations to achieve convergence for different time
steps in added-mass effect test.

�t (s) Current ˇ ¤ 0 ˇ D 0

2e-5 3 iterations 23 iterations 21 iterations
1e-5 3 iterations 20 iterations More than 40 iterations
0.75e-5 3 iterations 18 iterations Does not converge
0.5e-5 3 iterations 16 iterations Does not converge
0.25e-5 3 iterations 11 iterations Does not converge

For various ratios of solid to fluid density, Table I shows that current algorithm converges for all
the cases in three iterations. This is in contrast with the 18 to 20 iterations required when approxi-
mating the added-mass effect with an interface Laplace matrix (ˇ ¤ 0) and the slow (more than 40
iterations) or non-convergence when the added-mass effect is ignored (ˇ D 0).

To investigate further the performance of the newly developed FSM for the added-mass effect,
the same problem is run again with varying elastic modulus and simulation time steps, but equal
density of the fluid and solid columns. Table II shows that using the exact approach to the added-
mass effect leads to very fast convergence, with five or fewer iterations in all cases, save for those
with the large time step of 0.01 sec. For the specific case of E D 2e11 Pa and solid to fluid density
ratio equal to seven, the exact approach again is able to converge quickly (three iterations) for all
time steps listed in Table III.

7.4. Validation: deformation of an elastic plate subjected to water pressure

This example compares simulations using the PFEM and newly developed FSM with experimental
data and numerical results, obtained vis smoothed particle hydrodynamics, from a previous experi-
ment of water pressure on an elastic gate [23]. The initial configuration is shown in Figure 10 with
dimensions A D 0:1 m, L D 0:079 m, and H D 0:14 m. The elastic gate is made of rubber, which
is fixed at the upper end while its lower is end free and initially seals the container. The gate is mod-
eled using a mesh of elastic beam elements with the corotational geometric transformation [24] to
handle large displacements. The density of the gate is �s D 1100 kg/m3 and its elastic modulus
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Figure 10. Initial configuration for the container with water and elastic gate.

Figure 11. Comparison of the displacements of the free end of the elastic plate with experimental data and
smoothed particle hydrodynamics approach.

Figure 12. Snap shots of the deformation of elastic plate subjected to water pressure.

is assumed to be E D 10 MPa, although the true value of this property is uncertain and has been
assumed to be as high as 14 MPa in other replications of this experiment [25]. The fluid properties
for density and viscosity are �f D 1000 kg/m3 and � D 0:001 kg/ms, respectively.
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The horizontal and vertical displacements of the free end of the gate are shown in Figure 11
and compared with the experimental results and simulations performed using smoothed particle
hydrodynamics [23]. The agreement with experimental results is good considering the limitations of
how the elastic gate is modelled using beam elements. Figure 12 shows snapshots of the simulation
as the fluid reaches a steady state of flow out from behind the gate.

Due to the relatively large fluid-structure interface, this example provides an opportunity to assess
the computational cost of the exact approach to handling the added-mass effect. As previously
described and denoted in Equation (44), this approach requires the partial inverse of the structural
and interface tangent stiffness matrices. In addition, this exact approach requires a global matrix-
matrix multiplication of the discrete Laplace matrix, or PSC, as indicated in Equation (43). These
two items represent the extra computational expense of the newly developed FSM compared with
previous approaches that approximate the added-mass effect.

Table IV shows the CPU times required for the major operations required during one iteration
within a simulation time step for the elastic gate problem. Three different mesh sizes for the fluid
and gate are used in order to see how the operations scale with the increasing number of DOFs listed
in Table IV. Note that the numbers of structural and interface DOFs increase linearly because the
gate is discretized using line elements while the number of pressure DOFs increases quadratically.
As shown in the table, the CPU time for the partial matrix inverse is very small compared with
that required for matrix assembly and solving for pressure. This is due to the size of structure and
interface being small compared with the size of the fluid domain; however, this is common for

Table IV. Top time consuming operations in
one iteration with different mesh size for the

deformation of the elastic gate.

mesh size (m) 0.002 0.001 0.0005

# of structural dofs 42 81 160
# of interface dofs 78 156 314
# of pressure dofs 3623 14242 56482

CPU time (sec)

Solving pressure 0.57 7.22 84.66
Assembling 0.23 0.92 3.51
Matrix multiplication 0.01 0.04 0.18
Partial inverse <0.01 0.01 0.03

Figure 13. Breaking dam on elastic obstacle.
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realistic FSI simulation of coastal infrastructure where the structural model is small compared with
the volume of fluid with which it interacts.

7.5. Verification: breaking dam on elastic obstacle

This example serves to verify the current FSM with results obtained using different FSI numerical
methods. The model is of a dam break on an elastic obstacle fixed to be bottom of a tank, as shown
in Figure 13. The characteristic length, L, is equal to 0.146 m, and the elastic obstacle has a width
of b D 0:012 m and height 20b=3 D 0:08 m. As in the previous example, the elastic obstacle is
modeled as a corotational mesh of beam elements having density �s D 2500 kg/m3, elastic modulus
E D 106 Pa, and Poisson ratio � D 0. The fluid density is �f D 1000 kg/m3 and its viscosity is
� D 0:001 kg/ms.

Although experimental data is not available, this example has been studied by several
researchers [25–28] and thus provides a good point of comparison for the newly developed FSM
with previous simulation results. Snapshots of the dam break simulation using the newly devel-
oped FSM are shown in Figure 14. To highlight the final displaced shape of the elastic obstacle,
the fluid mesh is not drawn in the final snapshot of Figure 14. Comparisons of the time history of
horizontal tip displacement of the obstacle with simulations by the aforementioned researchers are
shown in Figure 15 along the numerical method used by each researcher. The results of the current
method agree well with the two previous PFEM formulations presented by [26] and [25], as shown
in Figure 15(a) and (c), respectively.

7.6. Demonstration: breaking dam on nonlinear material obstacle

The final example demonstrates the ability of the newly developed FSM to simulate the interaction
of fluid with a structure that responds in the nonlinear material range. The same breaking dam model
is used with the obstacle comprised of a corotational mesh of displacement-based beam elements
(constant axial deformation and linear curvature approximations). Two Gauss points are used in each
element where cross-sections are discretized by ten fibers, each with the uniaxial bilinear steel stress-
strain response shown in Figure 16(a). The stress-strain behavior is characterized by parameters
of yield strength Fy D 5e4 Pa, initial elastic tangent E0 D 106 Pa, and strain hardening ratio

Figure 14. Snap shots for breaking dam on elastic obstacle at different time steps.
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Figure 15. Comparison of the displacements of the free end of the elastic obstacle with different numerical
approaches.

Figure 16. Nonlinear material for obstacle in dam break problem and comparison of free end displacements
with elastic material.

b D 0:02. The initial elastic tangent is the same as in the previous example in order to show the
effects of nonlinear material response for the obstacle.

The time history of the obstacle’s horizontal tip displacement is shown in Figure 16(b) along with
snapshots of the simulation in Figure 17. Compared with the case of a linear-elastic obstacle, the
nonlinear material shows larger peak displacement and permanent deformation, as expected. Note
that the fluid mesh is not drawn in the final snapshot of Figure 17 in order to highlight the permanent
deformation of the obstacle.
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Figure 17. Snap shots for breaking dam on obstacle of nonlinear material at different time steps.

8. CONCLUSIONS

Handling added-mass terms with a mathematically exact approach in the FSM leads to improved
numerical convergence without significant additional computational expense in FSI simulations
using the PFEM. The additional computational expense depends on the size of the structure and
the fluid-structure interface, which is generally very small relative to the size of the fluid domain
for practical and realistic FSI simulations. Numerical examples show that pressure patch tests are
satisfied, whereas the added-mass effect and mass loss on the free surface are both mitigated. In
addition, verification and validation examples show that the exact method performs as well as pre-
vious incarnations of the FSM and is able to replicate physical experiments well. The ability to use
arbitrary structural elements, including those that respond with material nonlinearity, is a significant
advantage of this new FSM approach.
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