
1

Transitioning Students to Post-

Deprecation OpenGL

Mike Bailey

Introduction
From an Educator’s perspective, teaching OpenGL in the past has been a snap. The separation of

geometry from topology in the glBegin-glEnd, the simplicity of glVertex3f, and the classic

organization of the post-multiplied transformation matrices has been fast and easy to explain. This

considerably excited the students because going from zero-knowledge to cool-3D-program-you-

can-smugly-show-your-friends was a matter of a single day. This made motivation easy.

The Great OpenGL Deprecation has changed that. Creating and using vertex buffer objects is a lot

more time-consuming to explain than glBegin-glEnd. [Amgel2011] It’s also much more error-

prone. Creating and maintaining matrices and matrix stacks now requires deft handling of matrix

components and multiplication order. [GLM2011] In short, while post-deprecation OpenGL might

be more streamlined and efficient, it has wreaked havoc on those who need to teach it, and even

more on those who need to learn it.

So, the “old way” is not current, but the “new way” takes a long time to learn before one can see a

single pixel. How can we keep students enthusiastic and motivated, but still move them along the

road to learning things the new way?
1
 This chapter discusses intermediate solutions to this

problem by presenting C++ classes that ease the transition to post-deprecation OpenGL. These

C++ classes are:

1. Create vertex buffers with methods that look suspiciously like glBegin-glEnd

2. Load, compile, link, and use shaders

This chapter also suggests a naming convention that can be instrumental to keeping shader

variables untangled from each other.

Naming Shader Variables, I
This isn’t exactly a transition issue. It’s more of a confusion-prevention issue, which is always a good

thing.

With seven different places that GLSL variables can be set, it is convenient to adopt a naming convention

to help recognize what variables came from what sources. This works very well:

1 One option, of course, is not to transition at all, where the current penalty is simply falling behind the OpenGL

curve. However, in some instances, most notably OpenGL-ES 2.0 [Munshi2008], failing to transition is not even an

option.

2

Beginning letter(s) Means that the Variable …

a Is a per-vertex attribute from the application

u Is a uniform variable from the application

v Came from a vertex shader

tc Came from a tessellation control shader

te Came from a tessellation evaluation shader

g Came from a geometry shader

f Came from a fragment shader
Table 1. Variable Name Prefix Convention

Naming Shader Variables, II
Variables like gl_Vertex and gl_ModelViewMatrix have been built-in to the GLSL language from the

start. They are used like this:

vec4 ModelCoords = gl_Vertex;

vec4 EyeCoords = gl_ModelViewMatrix * gl_Vertex;

vec4 ClipCoords = gl_ModelViewProjectionMatrix * gl_Vertex;

vec3 TransfNorm = gl_NormalMatrix * gl_Normal;

However, starting with OpenGL 3.0, they have been deprecated in favor of defining our own variables

and passing them in from the application. The built-ins still work if compatibility mode is enabled, but

we should all be prepared for them to go away some day. Also, OpenGL- ES has already completely

eliminated the built-ins. What to do?

We have chosen to pretend that we have created variables in an application and have passed them in.

So, the previous lines of code would be changed to look like this:

vec4 ModelCoords = aVertex;

vec4 EyeCoords = uModelViewMatrix * aVertex;

vec4 ClipCoords = uModelViewProjectionMatrix * aVertex;

vec3 TransfNorm = uNormalMatrix * aNormal;

If they really are being passed in from the application, fine, go ahead and use these names. But, if you

haven’t made that transition yet, the new names can still be used (thus preparing for an eventual

transition), by including a set of #defines at the top of their shader code:

// uniform variables:

#define uModelViewMatrix gl_ModelViewMatrix

#define uProjectionMatrix gl_ProjectionMatrix

#define uModelViewProjectionMatrix gl_ModelViewProjectionMatrix

#define uNormalMatrix gl_NormalMatrix

#define uModelViewMatrixInverse gl_ModelViewMatrixInverse

// per-vertex attribute variables:

#define aColor gl_Color

3

#define aNormal gl_Normal

#define aVertex gl_Vertex

#define aTexCoord0 gl_MultiTexCoord0

#define aTexCoord1 gl_MultiTexCoord1

#define aTexCoord2 gl_MultiTexCoord2

#define aTexCoord3 gl_MultiTexCoord3

#define aTexCoord4 gl_MultiTexCoord4

#define aTexCoord5 gl_MultiTexCoord5

#define aTexCoord6 gl_MultiTexCoord6

#define aTexCoord7 gl_MultiTexCoord7

#line 1
Listing 1. #include file to translate new names to old names

If the graphics driver supports the ARB_shading_language_include extension
2
, then these lines can be

#include’d right into the shader code. If it is not supported, a #include can be “faked” by copying these

lines into the first of the multiple strings that are used to load shader source code before compiling.

The #line statement is there so that compiler error messages give the correct line numbers and do not

include these lines in the count.

Later on in this chapter, this set of #include lines will be referred to as gstap.h
3

Indexed Vertex Buffer Object C++ Class
There is no question that using glBegin-glEnd is convenient, especially when beginning to learn

OpenGL. With this in mind, here is a C++ class that looks like the application is using glBegin-glEnd,

but inside, its data structures are preparing to use indexed VBOs [Shreiner2009] when the class’s Draw(

) method is called. The Print() method’s print format shows the data in VBO-table form so the

students can see what they would have created if they had used VBOs in the first place.

The following methods are supported by the class:

void CollapseCommonVertices(bool collapse);

void Draw();

void Begin(GLenum type);

void Color3f(GLfloat red, GLfloat green, GLfloat blue);

void Color3fv(GLfloat *rgb);

void End();

void Normal3f(GLfloat nx, GLfloat ny, GLfloat nz);

void Normal3fv(GLfloat *nxyz);

void TexCoord2f(GLfloat s, GLfloat t);

void TexCoord2fv(GLfloat *st);

void Vertex2f(GLfloat x, GLfloat y);

void Vertex2fv(GLfloat *xy);

2
 … and if this line is placed at the top of the shader code:
#extension GL_ARB_shading_language_include : enable

3
 … which stands for Graphics Shaders: Theory and Practice, the book in which this file originally

appeared (Second Edition, A.K. Peters, 2011).

4

void Vertex3f(GLfloat x, GLfloat y, GLfloat z);

void Vertex3fv(GLfloat *xyz);

void Print(char *str = “”, FILE *out = stderr);

void RestartPrimitive();

void SetTol(float tol);
Listing 2. Vertex Buffer Object Class methods

Usage Notes:

• This implements an indexed VBO, that is, it keeps track of the vertices’ index in the VBO and

then uses glDrawElements() to display the object.

• Passing a true to the CollapseCommonVertices() method’s Boolean argument says that any

vertices “close enough” to each other should be collapsed to be treated as a single vertex.

“Close enough” is defined by the distance specified in SetTol(). The advantage to this is that

the single vertex gets transformed once per display update. The disadvantage is that the

collapsing process takes time, especially for large lists of vertices.

• The RestartPrimitive() method invokes an OpenGL-ism that restarts the current primitive

topology without starting a new VBO. It is especially handy for triangle strips and line strips. For

example, if the topology is triangle strip, then RestartPrimitive() would allow the

application to end one strip and start another, and have all the vertices end up in a single VBO.

This saves overhead.

• The first call to the Draw() method sends the VBO data to the graphics card and draws it.

Subsequent calls to Draw() just do the drawing.

Example Code:

#include “VertexBufferObject.h”

VertexBufferObject VB;

. . .

// this goes in the part of the program where graphics things

// get initialized once:

VB.CollapseCommonVertices(true);

VB.SetTol(.001f); // how close need to be to collapse

VB.Begin(GL_QUADS);

for(int i = 0; i < 6; i++)

{

 for(int j = 0; j < 4; j++)

 {

 VB.Color3fv(. . .);

 VB.Vertex3fv(. . .]);

 }

}

5

VB.End();

VB.Print(“VB:”); // verify that vertices were really collapsed

. . .

// this goes in the display-callback part of the program:

VB.Draw();
Listing 3. Vertex Buffer Object Class used to draw a colored cube

Figure 1. Colored Cube created with the VertexBufferObject class

coloredcube.tif

This next example shows drawing gridlines on a terrain map. The already-defined Heights[] array holds

the terrain heights. This is a good example of using the RestartPrimitive() method so that the next

grid line doesn’t have to be in a new line strip. The entire grid is saved as a single line strip, and is drawn

by blasting a single VBO into the graphics pipeline.

// create an instance of the class:

// (the real “constructor” is in the Begin method)

VertexBufferObject VB;

VB.CollapseCommonVertices(true);

VB.SetTol(.001f);

 . . .

// this goes in the part of the program where graphics things

// get initialized once:

int x, y; // loop indices

float ux, uy; // utm coordinates

6

VB.Begin(GL_LINE_STRIP);

for(y = 0, uy = meteryMin; y < NumLats; y++, uy += meteryStep)

{

 VB.RestartPrimitive();

 for(x = 0, ux = meterxMin; x < NumLngs x++, ux += meterxStep)

 {

 float uz = Heights[y*NumLngs + x];

 VB.Color3f(1., 1., 0.); // single color = yellow

 VB.Vertex3f(ux, uy, uz);

 }

}

for(x = 0, ux = meterxMin; x < NumLngs; x++, ux += meterxStep)

{

 VB.RestartPrimitive();

 for(y = 0, uy = meteryMin; y < NumLats; y++, uy += meteryStep)

 {

 float uz = Heights[y*NumLngs + x];

 VB.Color3f(1., 1., 0.);

 VB.Vertex3f(ux, uy, uz);

 }

}

VB.End();

VB.Print(“Terrain VBO:”);

. . .

// this goes in the display-callback part of the program:

VB.Draw();
Listing 4. Vertex Buffer Object Class used to draw a wireframe terrain

7

Figure 2. Wireframe Terraine created with the VertexBufferObject class

wireterrain.tif

Implementation Notes:

• This class uses the C++ Standard Template Library (STL) vector function to maintain the ever-

expanding array of vertices.

• It also uses the C++ STL map function to speed the collapsing of common vertices.

GLSLProgram C++ Class
The act of creating, compiling, linking, using, and passing parameters to shaders is very repetitive.

[Rost2009, Bailey2011] When teaching students, we have found it helpful to create a C++ class called

GLSLProgram that implements this process. This class has the tools to manage all the steps of shader

program development and use, including source file opening, loading, and compilation. It also has

methods that implement setting attribute and uniform variables.

The following methods are supported by the class:

bool Create(char *, char * = NULL, char * = NULL, char * = NULL, char * = NULL);

bool IsValid();

void SetAttribute(char *name, int val);

void SetAttribute(char *name, float val);

void SetAttribute(char *name, float val0, float val1, float val2);

8

void SetAttribute(char *name, float *valp);

void SetAttribute(char *name, Vec3& vec3);

void SetAttribute(char *name, VertexBufferObject& vb, GLenum which);

void SetGstap(bool set);

void SetUniform(char *name, int);

void SetUniform(char *name, float);

void SetUniform(char *name, float, float, float);

void SetUniform(char *name, float[3]);

void SetUniform(char *name, Vec3&);

void SetUniform(char *name, Matrix4&);

void Use();

void UseFixedFunction();
Listing 5. GLSLProgram class methods

Usage Notes:

• The Create() method takes up to five shader file names as arguments. From the filename

extensions, it figures out what type of shaders these are, loads them, compiles them, and links

them all together. All errors are written to stderr
4
. It returns true is the resulting shader binary

program is valid, or false if it is not. The IsValid() method can be called later if the

application wants to know if everything succeeded or not. The files listed in the Create() call

can be in any order.

• The filename extensions that the Create() method is looking for are:

Extension Shader Type

.vert GL_VERTEX_SHADER

.vs GL_VERTEX_SHADER

.frag GL_FRAGMENT_SHADER

.fs GL_FRAGMENT_SHADER

.geom GL_GEOMETRY_SHADER

.gs GL_GEOMETRY_SHADER

.tcs GL_TESS_CONTROL_SHADER

.tes GL_TESS_EVALUATION_SHADER
Table 2. Shader Type Filename Extensions

• The SetAttribute() methods set attribute variables, to be passed to the vertex shader.

• The vertex buffer version of the SetAttribute() method lets a VertexBufferObject be

specified along with which data inside it is to be assigned to this attribute name. For example, if

one might say:
GLSLProgram Ovals;

VertexBufferObject VB;

4
 Standard error is used for these messages because it is unbuffered. If a program crashes, the helpful messages

sent to standard output might still be trapped in a buffer and will not be seen. Those messages sent to standard

error were seen right away.

9

 . . .

Ovals.SetAttribute(“aNormal”, VB, GL_NORMAL_ARRAY);

• The SetUniform() methods set uniform variables, destined for any of the shaders.

• The Use() method makes this shader program active, so that it affects any subsequent drawing.

If someone insists on using the fixed functionality, the UseFixedFunction() method returns

the state of the pipeline to use the fixed-functionality.

• The SetGstap() method is there to give the option to have the gstap.h code included

automatically. Just pass true as the argument. Call this before the call to the Create()

method.

Example Code:

#include "GLSLProgram.h"

float Ad, Bd, NoiseAmp, NoiseFreq, Tol;

GLSLProgram Ovals;

VertexBufferObject VB;

. . .

// set everything up once:

Ovals.SetVerbose(true);

Ovals.SetGstap(true);

bool good = Ovals.Create("ovalnoise.vert", "ovalnoise.frag");

if(! good)

{

 fprintf(stderr, "GLSL Program Ovals wasn’t created.\n");

 . . .

}

. . .

// do this in the display callback:

Ovals.Use();

Ovals.SetUniform("uAd", Ad);

Ovals.SetUniform("uBd", Bd);

Ovals.SetUniform("uNoiseAmp", NoiseAmp);

Ovals.SetUniform("NoiseFreq", NoiseFreq);

Ovals.SetUniform("uTol", Tol);

Ovals.SetAttribute(“aVertex”, VB, GL_VERTEX_ARRAY);

Ovals.SetAttribute(“aColor”, VB, GL_COLOR_ARRAY);

Ovals.SetAttribute(“aNormal”, VB, GL_NORMAL_ARRAY);

VB.Draw();
Listing 6. GLSLProgram class application example

10

Implementation Notes:

• The SetAttribute() and SetUniform() methods use the C++ Standard Template

Library map function to relate variable names to variable locations in the shader program

symbol table. It only ever really looks them up once.

Conclusions
From a teaching perspective, the simplicity of explanation and the speed to develop an application have

long been advantages of using OpenGL in its fixed-function, pre-deprecation state. Students of OpenGL

do need to learn how to use OpenGL in the post-deprecation world. However, they don’t need to learn

it right from the start.

These notes have presented a way of starting students out in the ways that are easier for them to learn,

but are still using the recommended ways underneath. As they get comfortable with graphics

programming, the “underneath” can be revealed to them. This sets the students up for using shaders

and vertex buffer objects.

These notes have also suggested a shader-variable naming convention. As shaders become more

complex, and as more variables are being passed between the shaders, we have found this useful to

keep shader variables names untangled from each other. This naming convention, along with the

gstap.h file, sets students up for passing their own quantities into their shaders.

Bibliography
Angel2011 Edward Angel and Dave Shreiner, Interactive Computer Graphics: A Top-down Approach with

OpenGL, 6
th

 Edition, Addison-Wesley, 2011.

Bailey2011 Mike Bailey and Steve Cunningham, Computer Graphics Shaders: Theory and Practice, Second

Edition, AK Peters, 2011.

GLM2011 GLM: OpenGL Mathematics, http://glm.g-truc.net/

Munshi2008 Aaftab Munshi, Dan Ginsburg, and Dave Shreiner, OpenGL ES 2.0, Addison-Wesley, 2008.

Rost2009 Randi Rost, Bill Licea-Kane, Dan Ginsburg, John Kessenich, Barthold Lichtenbelt, Hugh Malan,

and Mike Weiblen, OpenGL Shading Language, Addison-Wesley, 2009. (3
rd

 Edition)

Shreiner2009 Dave Shreiner, OpenGL 3.0 Programming Guide, Addison-Wesley, 2009 (7
th

 edition).

