
Using GPU Shaders for Visualization

Mike Bailey, Oregon State University

Introduction

Most of the uses of GPU shaders seem to
be for gaming and other forms of
entertainment and simulation. And, why
not? The effects that can be created are
stunning, and definitely enhance the
gaming experience. But, there are
visualization uses for GPU shaders as well
– for the same reasons: appearance and
performance. In the drive to understand
large, complex data sets, no method
should be overlooked. This column looks
at the use of GPU shaders and the GLSL
shading language in two very common
visualization applications: point clouds
and contour cutting planes.

Previous Work

Using shaders for visualization started
with experiments using RenderMan, e.g.,
[Corrie1993]. Interactive (i.e., graphics
hardware-based) GPU Shaders appeared in
the early 2000’s [Mark2003]. Since then,
researchers have pushed them into a
variety of applications. Many of these
have involved scientific and data
visualization involving volume rendering
[Stegmaier2005], level of detail
management [Petrovic2007], volume
segmentation [Sherbondy2003], and level
sets [Lefohn2003]. Other work has used
GPU programming to combine and filter
visualization data to show particular
features of interest [McCormick2004].

Reading 3D scalar data into a
shader

Shaders were designed to accept relatively
small sets of scene-describing graphics
attributes such as colors, coordinates,
vectors, and matrices, as input data.
Passing general-purpose large amounts of
data into them, such as through uniform
variables, is inefficient. It is better to find
some way that looks more consistent with
the graphics intent of shaders. In this case,
an excellent approach is to hide the data in
a 3D texture.

Textures, were designed to store RGBA
color values. The most common format
for textures, still, is probably the unsigned
byte format, specifically created to hold 8-
bit color components. However, today’s
graphics cards can also use 16- and 32-bit
floating point formats to store texture
components. Thus, textures can hold any
scale of numbers , within the limits of
those floating-point formats, that we want.
This makes them ideal as a way to hold
3D data for visualization.

Point Clouds
However, a 3D texture is just data and
data, by itself, cannot be displayed. It
needs some sort of geometry to hang itself
on, or more accurately, it needs a
geometry to map itself to. A good start is
to map it to a 3D point cloud, a uniform
mesh of 3D points. When you map the
temperature distribution dataset above to a
point cloud, you get the image in Figure 1:

Figure 1. Point cloud in orthographic

projection

One of the interesting aspects of this
approach is that the resolution of the point
cloud does not have to exactly match the
resolution of the dataset. Because this
example uses texture mapping to access
the data, the OpenGL display process will
trilinearly interpolate the data values in the
texture to the cloud’s 3D point locations.
Making the resolution of the point cloud
much less than that of the data is usually a
bad idea, since some of the data values
will be completely skipped over in the
display. A little less is not desirable, but
not bad – the trilinear interpolation fills in
the values nicely. You can also give the
point cloud a higher resolution than the
data and get a really nice-looking display.

Using a higher point cloud resolution
assumes, of course, that interpolation
makes sense for the particular data you
have. It doesn’t always. For example,
suppose the data values represent integer-
only data, such as the number of children
per family. Even though a point cloud dot
could exist midway between two data
values, it makes no sense to combine half
of one with half of the other to produce a
data point that represents a fraction of a
child. In this case, the resolution of the
point cloud should be the same as the
resolution of the data.

The vertex shader in this case is simple. It
just needs to record model coordinates and
do the proper transformations:

varying vec3 MCposition;

void
main(void)
{
 MCposition = gl_Vertex.xyz;
 gl_Position =
gl_ModelViewProjectionMatrix * gl_Vertex;
}

The fragment shader uses those model
coordinates to determine where each
fragment is in texture coordinate space,
and thus what its data value is there. I
personally like thinking of the data as
living in a cube that ranges from -1 to 1 in
all directions. It is easy to position
geometry in this space and easy to view
and transform it. This means that any 3D
object in that space, not just a point cloud,
can map itself to the 3D texture data
space. So, if we want the s texture
coordinates to go from 0 to 1, then the
linear mapping from the physical x
coordinate to the texture s coordinate is

1

2

x
s

+= . The same mapping applies to y

and z to create the t and p texture
coordinates. Once we have the s-t-p
texture coordinates, we can look up the
data value at that location, which is then
used to set the color for this fragment:

varying vec3 MCposition;

void
main(void)
{
 vec3 stp = (MCposition + 1.) / 2.; //
maps [-1.,1.] to [0.,1.]

 if(any(lessThan(stp, vec3(0.,0.,0.))
))
 discard;

 if(any(greaterThan(stp,
vec3(1.,1.,1.))))
 discard;

 float scalar = texture3D(TexUnit, stp
).r;

 if(scalar < Min)
 discard;

 if(scalar > Max)
 discard;

 float t = (scalar - SMIN) / (SMAX -
SMIN);
 vec3 rgb = Rainbow(t);

 gl_FragColor = vec4(rgb, 1.);
}

Note that the SIMD parallelism inherent in
the GPU is being taken advantage of by
(1) computing the s-t-p mapping from x-y-
z in a single statement, and (2) checking
for a fragment living beyond the bounds of
the data in single if-tests.

Also notice how the discard operator is
used in this case -- it allows us to
eliminate any points that lie outside our
data areas of interest. It doesn’t have to
end there, though. We could also have
this shader cull data values based on lots
of criteria, such as physical location, or
even based on some derived properties
such as data gradient or data curvature.
Another variation could allow us to use
the vertex shader code to set the point size
based on some physical or data criterion.

Point clouds are notorious for their
artifacts, especially the row-of-corn
problem in orthographic projection and
Moiré patterns in perspective. A common
way to alleviate these artifacts is to use a
different type of point cloud, known as a
jitter cloud. In a jitter cloud, the dots are
randomly shifted by small amounts in x, y,
and z, and the data values are
reinterpolated to those new points.
Because the s-t-p coordinates are
computed automatically from the x-y-z
model coordinates, the point data display
is still correct. Results from using a jitter
cloud in orthographic and perspective are
shown in Figure 2.

Figure 2. Jittered point cloud in

orthographic and perspective projections

Cutting Planes
There are two general kinds of cutting
planes. In one, you interpolate data values
(and thus colors) at each pixel in the plane,
and in the other, you create contour lines
in a reduced set of pixels. As before, the
color interpolation approach requires some
sort of geometry to hang the data on. In
this case, we use a quadrilateral as the
geometric primitive.

The interesting part is that the code for the
vertex and fragment shaders is nearly the
same as the code for the point cloud

shaders above. Figure 3 below shows how
this looks:

Figure 3. Interpolated Color Cutting

Plane

Now, let’s change the fragment shader to
create contour lines. There are geometric
ways to create contour lines with real
OpenGL line segments, but for this
example, we will use almost the same
fragment shader code as we did above.
Let’s say that we want contour lines at
each 10 degrees of temperature. Then the
main change to the shader will be that we
need to find how close each fragment’s
interpolated scalar data value is to an even
multiple of 10. To do this, we add this
code to the fragment shader:

 float scalar10 = float(10*int(
(scalar+5.)/10.));
 if(abs(scalar - scalar10) > Tol)
 discard;

Notice that this uses a uniform variable
called Tol, which is read from a slider
and has a range of 0. to 5. Tol is used to
determine how close to an even multiple
of 10 degrees we will accept, and thus
how thick we want the contours to be.
Various values for Tol produce the
individual images in Figure 4:

Figure 4. Contour lines using Tol values

of 1, 4, and 5.

Take a close look at what this fragment-
based approach to contours gets you
compared with a line-based approach.
Notice that the contours have different
thicknesses. This is an indication of how
much area was within Tol of a 10-degree
value. Standard contour lines show the
gradient, how fast the data is changing, by
how closely spaced they are. This new
method shows the gradient in a different
way – it also lets us see how fast the data
is changing based on the thickness of the

contour. Thus, we can tell that the data is
changing slower at the blue areas than at
the red areas.

Also, notice that when Tol=5., the Tol
if-statement always fails, and we end up
with the same display as we had with the
interpolated colors. Thus, we wouldn’t
actually need a separate cutting plane
shader at all. Shaders that can do double
duty are always appreciated!

It is important to notice that the shaders
maintain the mapping from the
coordinates of the cutting planes to the
texture coordinates that hold the data.
This means that the cutting planes do not
need to be oriented parallel to principal
axes, but can be rotated into any
orientation. It also means that the cutting
geometry does not even need to be a plane
at all. It can be any shape for which you
can produce the coordinates-to-texture
mapping. We saw this before in the point
and jitter cloud examples. It is also seen
below, where a torus is being used as a
“cutting plane” (although I would more
likely call this a data probe). And, like
before, we have also played the
“contouring trick” using the Tol uniform
variable. This, again, shows that the data
is changing slower in the blue regions and
faster in the red regions.

Figure 5. Torus 3D data probe, without

and with contour tolerances

Discard versus setting alpha

In these examples, we used the fragment
shader discard operator to eliminate
fragments. Another way to do this might
have been to set the opacity, alpha, to 0.
But, this would not work. Can you figure
out why? The images below show a 3D
object (our favorite teapot) sitting behind a
cutting plane. When discard is used
(top), you see through it just fine. When
alpha=0.is used (bottom), somehow you
can’t

The answer is in how OpenGL performs
its alpha blending. Even though you and I
both know that alpha=0. means not to
display the fragment, OpenGL does not
know this. It just knows to perform a
blending using alpha=0. and then put the
resulting fragment back in the
framebuffer. The problem is that putting
this pixel back in the framebuffer sets its Z
value into the z-buffer as well. So, even
though the pixel looks like it is not there,
it really is, and its z-buffer value blocks
the display of items behind it.

Conclusions

We usually think of data-mapping
visualization techniques such as point
clouds, jitter clouds, cutting planes,
contour planes, and data probes as
different techniques, but in fact they have
more in common than they have
differences – they are all part of a family
of techniques that map data display to
arbitrary geometry. This can especially
be seen in that the shader code to
implement them is largely the same – it is
mostly the underlying geometry that
changes.

This gives a lot of freedom to the person
doing the visualization programming. The
choice of underlying geometry can be

made based on what matches the inherent
characteristics of the visualization
situation rather than what is simply
available. Hopefully, this idea will be
used to uncover new geometric shapes to
map the data too, and in doing so, will
reveal new insights into the nature of the
data itself.

References

CCoorrrriiee11999933
BBrriiaann CCoorrrriiee,, PPaauull MMaacckkeerrrraass.. ““DDaattaa SShhaaddeerrss,,””
PPrroocceeeeddiinnggss ooff IIEEEEEE VViissuuaalliizzaattiioonn 11999933,, pppp..
227755--228822..

Lefohn2003
Aaron Lefohn, Joe Kniss, Charles Hansen, Ross
Whitaker, “Interactive Deformation and
Visualization of Level Set Surfaces Using
Graphics Hardware”, Proceedings of IEEE
Visualization 2003, pp. 75-82

Mark2003
William Mark, Steven Glanville, Kurt Akeley,
and Mark Kilgard, “Cg: a system for
programming graphics hardware in a C-like
language,” Computer Graphics (Proceedings of
SIGGRAPH 2003), pp. 896-907.

McCormick2004
Patrick McCormick, Jess Inman, James Ahrens,
Charles Hansen, Greg Roth, “Scout: A
Hardware-Accelerated System for Quantitatively
Driven Visualization and Analysis, Proceedings
of IEEE Visualization 2004, pp. 171-179.
International Workshop on Volume Graphics,,
2005, pp. 187-241.

Petrovic2007
V. Petrovic, J. Fallon, F. Kuester, “Visualizing
Whole-Brain DTI Tractography with GPU-based
Tuboids and Level of Detail Management”,
IEEE Transactions on Visualization and
Computer Graphics, Volume 13, Number 6,
Nov.-Dec. 2007, pp. 1488 – 1495.

Scharsach 2005
H. Scharsach, “Advanced GPU raycasting”,
Central European Seminar on Computer
Graphics 2005, pp. 69-76.

Sherbondy2003

Anthony Sherbondy, Mike Houston, Sandy
Napel, “Fast Volume Segmentation with
Simultaneous Visualization using Programmable
Graphics Hardware”, Proceedings of IEEE
Visualization2003, pp. 171-176..

Stegmaier2005
S. Stegmaier, M. Strengert, T. Klein, T. Ertl, “A
simple and flexible volume rendering framework
for graphics-hardware-based raycasting”. Fourth
International Workshop on Volume Graphics,
2005, pp. 187-241.

