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Introduction 
 
Most of the uses of GPU shaders seem to 
be for gaming and other forms of 
entertainment and simulation.  And, why 
not?  The effects that can be created are 
stunning, and definitely enhance the 
gaming experience.  But, there are 
visualization uses for GPU shaders as well 
– for the same reasons: appearance and 
performance.  In the drive to understand 
large, complex data sets, no method 
should be overlooked.  This column looks 
at the use of GPU shaders and the GLSL 
shading language in two very common 
visualization applications: point clouds 
and contour cutting planes. 
 
Previous Work 
 
Using shaders for visualization started 
with experiments using RenderMan, e.g., 
[Corrie1993].  Interactive (i.e., graphics 
hardware-based) GPU Shaders appeared in 
the early 2000’s [Mark2003].  Since then, 
researchers have pushed them into a 
variety of applications.  Many of these 
have involved scientific and data 
visualization involving volume rendering 
[Stegmaier2005], level of detail 
management [Petrovic2007], volume 
segmentation [Sherbondy2003], and level 
sets [Lefohn2003].  Other work has used 
GPU programming to combine and filter 
visualization data to show particular 
features of interest [McCormick2004]. 
 
 
 

Reading 3D scalar data into a 
shader 
 
Shaders were designed to accept relatively 
small sets of scene-describing graphics 
attributes such as colors, coordinates, 
vectors, and matrices, as input data.  
Passing general-purpose large amounts of 
data into them, such as through uniform 
variables, is inefficient.  It is better to find 
some way that looks more consistent with 
the graphics intent of shaders.  In this case, 
an excellent approach is to hide the data in 
a 3D texture. 
 
Textures, were designed to store RGBA 
color values.  The most common format 
for textures, still, is probably the unsigned 
byte format, specifically created to hold 8-
bit color components.  However, today’s 
graphics cards can also use 16- and 32-bit 
floating point formats to store texture 
components.  Thus, textures can hold any 
scale of numbers , within the limits of 
those floating-point formats, that we want.  
This makes them ideal as a way to hold 
3D data for visualization. 

Point Clouds 
However, a 3D texture is just data and 
data, by itself, cannot be displayed.  It 
needs some sort of geometry to hang itself 
on, or more accurately, it needs a 
geometry to map itself to.  A good start is 
to map it to a 3D point cloud, a uniform 
mesh of 3D points.  When you map the 
temperature distribution dataset above to a 
point cloud, you get the image in Figure 1: 



   

 
Figure 1.  Point cloud in orthographic 

projection 
 
One of the interesting aspects of this 
approach is that the resolution of the point 
cloud does not have to exactly match the 
resolution of the dataset.  Because this 
example uses texture mapping to access 
the data, the OpenGL display process will 
trilinearly interpolate the data values in the 
texture to the cloud’s 3D point locations.  
Making the resolution of the point cloud 
much less than that of the data is usually a 
bad idea, since some of the data values 
will be completely skipped over in the 
display.  A little less is not desirable, but 
not bad – the trilinear interpolation fills in 
the values nicely.  You can also give the 
point cloud a higher resolution than the 
data and get a really nice-looking display. 
 
Using a higher point cloud resolution 
assumes, of course, that interpolation 
makes sense for the particular data you 
have.  It doesn’t always.  For example, 
suppose the data values represent integer-
only data, such as the number of children 
per family.  Even though a point cloud dot 
could exist midway between two data 
values, it makes no sense to combine half 
of one with half of the other to produce a 
data point that represents a fraction of a 
child.  In this case, the resolution of the 
point cloud should be the same as the 
resolution of the data. 
 

The vertex shader in this case is simple.  It 
just needs to record model coordinates and 
do the proper transformations: 
 
varying vec3 MCposition; 
 
void 
main( void ) 
{ 
 MCposition = gl_Vertex.xyz; 
 gl_Position = 
gl_ModelViewProjectionMatrix * gl_Vertex; 
} 

 
The fragment shader uses those model 
coordinates to determine where each 
fragment is in texture coordinate space, 
and thus what its data value is there.  I 
personally like thinking of the data as 
living in a cube that ranges from -1 to 1 in 
all directions.  It is easy to position 
geometry in this space and easy to view 
and transform it.  This means that any 3D 
object in that space, not just a point cloud, 
can map itself to the 3D texture data 
space.  So, if we want the s texture 
coordinates to go from 0 to 1, then the  
linear mapping from the physical x 
coordinate to the texture s coordinate  is 
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and z to create the t and p texture 
coordinates.  Once we have the s-t-p 
texture coordinates, we can look up the 
data value at that location, which is then 
used to set the color for this fragment: 
 
varying vec3 MCposition; 
 
void 
main( void ) 
{ 
 vec3 stp = ( MCposition + 1. ) / 2.; // 
maps [-1.,1.] to [0.,1.] 
 
 if( any( lessThan( stp, vec3(0.,0.,0.) ) 
) ) 
  discard; 
  
 if( any( greaterThan( stp, 
vec3(1.,1.,1.) ) ) ) 
  discard; 
 
 float scalar = texture3D( TexUnit, stp 
).r; 
 
 if( scalar < Min ) 
  discard; 



   

 
 if( scalar > Max ) 
  discard; 
 
 float t = ( scalar - SMIN ) / ( SMAX - 
SMIN ); 
 vec3 rgb = Rainbow( t ); 
 
 gl_FragColor = vec4( rgb, 1. ); 
} 

 
Note that the SIMD parallelism inherent in 
the GPU is being taken advantage of by 
(1) computing the s-t-p mapping from x-y-
z in a single statement, and (2) checking 
for a fragment living beyond the bounds of 
the data in single if-tests.   
 
Also notice how the discard operator is 
used in this case -- it allows us to 
eliminate any points that lie outside our 
data areas of interest.  It doesn’t have to 
end there, though.  We could also have 
this shader cull data values based on lots 
of criteria, such as physical location, or 
even based on some derived properties 
such as data gradient or data curvature.  
Another variation could allow us to use 
the vertex shader code to set the point size 
based on some physical or data criterion. 
 
Point clouds are notorious for their 
artifacts, especially the row-of-corn 
problem in orthographic projection and 
Moiré patterns in perspective.  A common 
way to alleviate these artifacts is to use a 
different type of point cloud, known as a 
jitter cloud.  In a jitter cloud, the dots are 
randomly shifted by small amounts in x, y, 
and z, and the data values are 
reinterpolated to those new points.  
Because the s-t-p coordinates are 
computed automatically from the x-y-z 
model coordinates, the point data display 
is still correct.  Results from using a jitter 
cloud in orthographic and perspective are 
shown in Figure 2. 
 

    
 

  
Figure 2.  Jittered point cloud in 

orthographic and perspective projections 
 

 

Cutting Planes 
There are two general kinds of cutting 
planes.  In one, you interpolate data values 
(and thus colors) at each pixel in the plane, 
and in the other, you create contour lines 
in a reduced set of pixels.  As before, the 
color interpolation approach requires some 
sort of geometry to hang the data on.  In 
this case, we use a quadrilateral as the 
geometric primitive. 
 
The interesting part is that the code for the 
vertex and fragment shaders is nearly the 
same as the code for the point cloud 



   

shaders above.  Figure 3 below shows how 
this looks: 
 

 
Figure 3.  Interpolated Color Cutting 

Plane 
 
Now, let’s change the fragment shader to 
create contour lines.  There are geometric 
ways to create contour lines with real 
OpenGL line segments, but for this 
example, we will use almost the same 
fragment shader code as we did above.  
Let’s say that we want contour lines at 
each 10 degrees of temperature.  Then the 
main change to the shader will be that we 
need to find how close each fragment’s 
interpolated scalar data value is to an even 
multiple of 10.  To do this, we add this 
code to the fragment shader: 
 
 float scalar10 = float( 10*int( 
(scalar+5.)/10. ) ); 
 if( abs( scalar - scalar10 ) > Tol ) 
  discard; 

 
Notice that this uses a uniform variable 
called Tol, which is read from a slider 
and has a range of 0. to 5.  Tol is used to 
determine how close to an even multiple 
of 10 degrees we will accept, and thus 
how thick we want the contours to be.  
Various values for Tol produce the 
individual images in Figure 4: 
 

   
 

   
 

 
Figure 4.  Contour lines using Tol values 

of 1, 4, and 5. 
 
Take a close look at what this fragment-
based approach to contours gets you 
compared with a line-based approach.  
Notice that the contours have different 
thicknesses.  This is an indication of how 
much area was within Tol of a 10-degree 
value.  Standard contour lines show the 
gradient, how fast the data is changing, by 
how closely spaced they are.  This new 
method shows the gradient in a different 
way – it also lets us see how fast the data 
is changing based on the thickness of the 



   

contour.  Thus, we can tell that the data is 
changing slower at the blue areas than at 
the red areas.  
 
Also, notice that when Tol=5., the Tol 
if-statement always fails, and we end up 
with the same display as we had with the 
interpolated colors.  Thus, we wouldn’t 
actually need a separate cutting plane 
shader at all.  Shaders that can do double 
duty are always appreciated! 
 
It is important to notice that the shaders 
maintain the mapping from the 
coordinates of the cutting planes to the 
texture coordinates that hold the data.  
This means that the cutting planes do not 
need to be oriented parallel to principal 
axes, but can be rotated into any 
orientation.  It also means that the cutting 
geometry does not even need to be a plane 
at all.  It can be any shape for which you 
can produce the coordinates-to-texture 
mapping.  We saw this before in the point 
and jitter cloud examples.  It is also seen 
below, where a torus is being used as a 
“cutting plane” (although I would more 
likely call this a data probe).  And, like 
before, we have also played the 
“contouring trick” using the Tol uniform 
variable.  This, again, shows that the data 
is changing slower in the blue regions and 
faster in the red regions. 

 

 

 
Figure 5.  Torus 3D data probe, without 

and with contour tolerances 
 
Discard versus setting alpha 
 
In these examples, we used the fragment 
shader discard operator to eliminate 
fragments. Another way to do this might 
have been to set the opacity, alpha, to 0.  
But, this would not work.  Can you figure 
out why?  The images below show a 3D 
object (our favorite teapot) sitting behind a 
cutting plane.  When discard is used 
(top), you see through it just fine.  When 
alpha=0.is used (bottom), somehow you 
can’t 
 

   
 



   

 
 
The answer is in how OpenGL performs 
its alpha blending.  Even though you and I 
both know that alpha=0. means not to 
display the fragment, OpenGL does not 
know this.  It just knows to perform a 
blending using alpha=0. and then put the 
resulting fragment back in the 
framebuffer.  The problem is that putting 
this pixel back in the framebuffer sets its Z 
value into the z-buffer as well.  So, even 
though the pixel looks like it is not there, 
it really is, and its z-buffer value blocks 
the display of items behind it. 
 
Conclusions 
 
We usually think of data-mapping 
visualization techniques such as point 
clouds, jitter clouds, cutting planes, 
contour planes, and data probes as 
different techniques, but in fact they have 
more in common than they have 
differences – they are all part of a family 
of techniques that map data display to 
arbitrary geometry.   This can especially 
be seen in that the shader code to 
implement them is largely the same – it is 
mostly the underlying geometry that 
changes. 
 
This gives a lot of freedom to the person 
doing the visualization programming.  The 
choice of underlying geometry can be 

made based on what matches the inherent 
characteristics of the visualization 
situation rather than what is simply 
available.  Hopefully, this idea will be 
used to uncover new geometric shapes to 
map the data too, and in doing so, will 
reveal new insights into the nature of the 
data itself. 
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