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Introduction 
 
GPU Shaders are not just for glossy 
effects.  In [Bailey2009] and [Bailey2011
we looked at some uses for GPU shaders in 
visualization.  In this article, we continue 
with that pattern by covering two of the 
newest features of OpenGL – compute 
shaders and shader storage buffer objects, 
which were just announced last 
part of OpenGL 4.3. 
 
Originally, OpenGL was for graphics 
But, it wasn’t long until practitioners were 
gazing longingly at the power on the GPU 
and wanting to use it for non-graphics data
parallel computing.  This created the
known as General Purpose GPU (GPGPU) 
[Owens2007].  This was quite effective, and 
some amazing results were achieved, but it 
was still an awkward workaround requiring 
the data-parallel problem to be recast as a 
pixel-parallel problem first. 
 
True mainstream general-purpose 
programming on GPUs emerged
NVIDIA’s Compute Unified Device 
Architecture (CUDA) [Kirk2010].  This 
treated the GPU as a real compute engine 
without any need to include graphics 
remnants.  Later, OpenCL [Gaster2012, 
Munshi2012] was developed to create a 
multi-vendor GPU-programming standard.
 
OpenGL 4.3 also introduced shader storage 
buffer objects which support the compute 
shaders, and make it much easier to get data 
into and out of them.  This means that, 
finally, using the GPU for data-
visualization computing is a first
feature of OpenGL.  This will have a very 
positive impact on real-time visualization
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Introduction to OpenGL Compute 
Shaders 
 
Using compute shaders looks very much like 
a standard two-pass rendering 
GPU gets invoked twice, once
compute operation and once (or more)
the graphics operation.  The compute shader 
manipulates GPU-based data.  The OpenGL 
rendering pipeline creates a scene based on 
those new data values. This process
shown in Figure 1. 
 

Figure 1.  The compute shader 
involves round-robin execution
the compute and rendering pieces of the 

application. 
I’LL SEND YOU A HIGH

VERSION OF THIS
 

 
At this point, we will start diving down into 
details, and will assume knowledge
OpenGL and GLSL shaders, including how 
to write them and how to compile and link 
them.1 
 
                                                  
1 For OpenGL background, see [Angel2011].  
For GLSL shader background, see [Rost2009] 
and [Bailey2012] 
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An OpenGL compute shader is a single-
stage GLSL program that has no direct role 
in the graphics rendering pipeline.  A 
compute shader sits outside the pipeline and 
manipulates data that it finds in the OpenGL 
buffers.  With the exception of a handful of 
dedicated built-in GLSL variables, compute 
shaders look identical to all other GLSL 
shader types.  The programming syntax is 
the same.  They have access to the same data 
that is found in the OpenGL readable data 
types, such as textures, buffers, image 
textures, atomic counters, etc.  Their outputs 
are any of the same OpenGL writeable data 
types, such as some buffer types, image 
textures, atomic counters, etc.  But, they 
have no previous-pipeline-stage inputs nor 
next-pipeline-stage outputs because, to 
them, there is no pipeline and there are no 
other stages.   
 
Comparison with OpenCL 
 
In many ways, GLSL compute shaders look 
a lot like OpenCL programs.  Both 
manipulate GPU-based data in a round-robin 
fashion with the rendering.  The 
programming languages look similar.2 But, 
there are some important differences: 
 
• OpenCL is its own entity.  Using OpenCL 

requires a several-step setup process in the 
application program. 

• OpenCL requires separate drivers and 
libraries. 

• Compute shaders use the same context as 
OpenGL rendering.  OpenCL requires a 
context switch before and after invoking 
its data-parallel compute functions. 

• OpenCL has more extensive 
computational support in its language. 

 
In summary, it appears that OpenCL should 
continue to be used for large GPU data-
parallel computing applications.  But, for 
many simpler applications, compute shaders 
                                                   
2 Most of the differences in language are 
superficial, such as OpenCL using SIMD 
variables named float[2-4] and GLSL using 
vec[2-4]. 

will slide more easily into your existing 
shader-based program. 
 
 
What Is Different about Using a 
Compute Shader Compared with 
any other Shader Type? 
 
For the most part, writing and using a 
compute shader looks and feels like writing 
and using any other GLSL shader type, with 
these exceptions: 
 
• The compute shader program must have 

no other shader types in it. 
• When creating a compute shader, use 

GL_COMPUTE_SHADER as the shader 
type in the glCreateShader( ) function call. 

• A compute shader has no concept of in or 
out variables. 

• A compute shader must declare the 
number of work-items in each of its work-
groups in a special GLSL layout 
statement. 

 
This last bullet is worth further discussion.  
In version 3, GLSL introduced the layout 
qualifier to tell the GLSL compiler and 
linker about the storage of your data.  It has 
been used for such things as telling 
geometry shaders what their input and 
output topology types are, what symbol 
table locations certain variables will occupy, 
and the binding points of indexed buffers.  
In OpenGL 4.3, the use of the layout 
qualifier has been expanded to declare the 
local data dimensions, like this: 
 
layout( local_size_x = 128 ) in; 
 
More will be covered on this later. 
 
Shader Storage Buffer Objects 
 
Oftentimes the tricky part of using GLSL 
shaders for visualization is getting large 
amounts of data in and out of them.  
OpenGL has created several ways of doing 
this over the years, but each seems to have 
had something about it that made it 



   

cumbersome for visualization use.  For 
example, textures and uniform buffer objects 
can only be read from, not written back to.  
Image textures can be both read and written, 
but are backed by textures, which are not as 
data-flexible as buffer objects. 
 
In a CPU-only data-parallel application, 
oftentimes the most convenient data 
structure is an array of structures, where 
each element of the array holds one instance 
of all the data variables.  But, none of these 
GLSL storage methods have allowed that 
familiar storage scheme to be used in shader 
programming. 
 
The new shader storage buffer object 
(SSBO) was created to fix all that.  SSBOs 
cleanly map to arrays of structures, which 
make them convenient and familiar for data-
parallel computing.  Rather than talk about 
them, it is easiest to show their use in actual 
code.  The following example shows a 
simple particle system, which uses both 
SSBOs and compute shaders.  Listing 1 
shows the CPU code being used to setup the 
required position and velocity SSBOs. 
 
 

Some things to note in the code: 
 
• Generating and binding a shader storage 

buffer object happens the same as any 
other buffer object type, except for its 
GL_SHADER_STORAGE_BUFFER 
identifier. 

• These SSBOs are specified with NULL as 
the data pointer.  The data could have 
been filled here from pre-created arrays of 
data, but oftentimes it is more convenient 
to create the data on the fly and fill the 
buffers rather than allocating large arrays 
first.  So, in this case, data values are filled 
a moment later using buffer-mapping. 

• The glBufferData( ) call shown here uses 
the hint GL_STATIC_DRAW.  The 
OpenGL books all say to “use 
GL_DYNAMIC_DRAW when the values 
in the buffer will be changed often.”  With 
compute shaders, that phrase is now 
incomplete.  It needs to be changed to say 

to “use GL_DYNAMIC_DRAW when the 
values in the buffer will be changed often 
from the CPU.”  When the data values 
will be changed from the GPU, 
GL_STATIC_DRAW causes them to be 
kept in GPU memory, which is what we 
want. 

• The expected call to glMapBuffer( ) has 
been replaced with a call to 
glMapBufferRange( ), which allows a 
parameter specifying that the buffer will 
be entirely discarded and replaced, thus 
hinting to the driver that is should remain 
in the memory (GPU) where it currently 
lives. 

• The calls to glBindBufferBase( ) allow 
these buffers to be indexed, meaning that 
they are assigned integer indices which 
can be referenced from the shader using a 
layout qualifier. 

 
Listing 2 shows how the compute shader 
accesses the SSBOs. Some things to note: 

 
• The shader code uses the same set of 

structures to access the data as the C code 
did, with the data types changed to match 
GLSL syntax. 

• The SSBO layout statements provide the 
binding indices so that the shader knows 
which SSBO to point to. 

• The open brackets in the SSBO layout 
statement show the new GLSL syntax to 
define an array of structures.  There can 
actually be more items in the definition 
than just that open-bracketed array, but it 
is required that the open-bracketed item be 
the final variable in the list.  

 
Calling the Compute Shader 
 
A compute shader is invoked from the 
application with the following function: 
 
glDispatchCompute( numgx, numgy, numgz ); 

 
where the arguments are the number of work 
groups in x, y, and z, respectively.  A 
compute shader expects you to treat your 
data parallel problem as a 3D array of work 



 

groups to process.3  The grid of work groups 
is shown in Figure 2. 

Figure 2.  The 3D grid of w
allows the data to be dimensioned in a 

way that is convenient to the application.
I’LL GET YOU A HIGH-RES VERSION 

OF THIS 
 
Each work group consists of some number 
of work items to process.  The number of 
work groups times the number of work 
items per work group gives the total number 
of elements that are being computed.
you divide your problem into work groups is 
up to you, however it is important to 
experiment with this as some combinations 
will starve the GPU processors of work to 
do.4  We did experiment with the local
group size for one particular application.  
The results are coming up in Figure 5.
 
Compute Shader Built-in Variables
 
GLSL compute shaders have several built
variables.  These are not accessible from any 
other shader types: 
 
in  uvec3 gl_NumWorkGroups ;
const  uvec3 gl_WorkGroupSize ;
in  uvec3 gl_WorkGroupID ;
in  uvec3 gl_LocalInvocationID ;
in  uvec3 gl_GlobalInvocationID ;
in  uint  gl_LocalInvocationIndex ;

 

                                                  
3 Although, for a 2D problem, the numgz will be 
1, and for a 1D problem, numgx and numgy will 
both be 1. 
4 Also, there are some OpenGL driver
limits on the number of work groups and on 
work group size. 
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for a 2D problem, the numgz will be 

1, and for a 1D problem, numgx and numgy will 

Also, there are some OpenGL driver-imposed 
number of work groups and on the 

gl_NumWorkGroups are the number of 
work groups in all three dimensions.  They 
are the same numbers as you used in the 
glDispatchCompute( ) call. 
 
gl_WorkGroupSize are the sizes of the 
work groups in all three dimensions.  They 
are the same numbers you used in the layout 
call. 
 
gl_WorkGroupID are the work group 
numbers in all three dimensions that the 
current instantiation of the computer shader 
is in. 
 
gl_LocalInvocationID is where, in all three 
dimensions, the current instantiation of the 
compute shader is inside its own work 
group. 
 
gl_GlobalInvocationID is where, in all 
three dimensions, the current instantiation of 
the compute shader is within all 
instantiations. 
 
gl_LocalInvocationIndex is a 1D 
abstraction of gl_LocalInvocationID.  It is 
used to allocate work-group shared data 
arrays (which we aren’t covering here).
 
These built-in variables have the following 
size ranges: 
 
0 ≤ gl_WorkGroupID ≤ gl_NumWorkGroups
 
0 ≤ gl_LocalInvocationID ≤ gl_WorkGroupSize 
 
gl_GlobalInvocationID = gl_WorkGroupID * 
gl_WorkGroupSize + gl_LocalInvocationID 
 
gl_LocalInvocationIndex = gl_LocalInvocationID.z * 
gl_WorkGroupSize.y * gl_WorkGroupSize.x    + 
gl_LocalInvocationID.y * gl_WorkGroupSize.x                                             
+ gl_LocalInvocationID.x 

 
The Particle System Physics
 
Listing 4 shows the code to perform the 
particle system physics: 
 
• A layout statement declares the 

group size to be 128x1x1 
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• Gravity (G) and the time step (DT) are 
defined.  G is a vec3 so that it can be used 
in a single line of code to produce the 
particle’s next position. 

• This code runs once for each particle.  The 
variable gid is that particle’s number in 
the entire list of particles.  gid
into the array of structures. 

 
 

Figure 3.  The particle system 
rate of 1.3 gigaparticles per second.
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Particle Advection 
 
Listing 5 shows how the particle system is 
turned into a first-order visualization particle 
advection, being fed by a velocity equation 
as a function of particle location.
 
Notice that: 
• The code uses #defines to simulate 

typedefs.  GLSL does not (yet) support 
typedefs, which, I think, impacts the 
readability of the code.  In this case, even 
though both points and velocities are 
really vec3s, it helps the code’s readability
when one can distinguish a coordinate 
from a vector. 

• This code runs once for each particle.  The 
variable gid is the global ID, that is,
particle’s number in the entire list of 
particles.  gid indexes into the array of 
structures. 

 

Gravity (G) and the time step (DT) are 
defined.  G is a vec3 so that it can be used 

line of code to produce the 

This code runs once for each particle.  The 
is that particle’s number in 
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• The Velocity( ) function computes 
(vx,vy,vz) as a function of position. 

• The equation is defined for x,y,z between 
-1. and 1.  If a point has moved out of 
bounds, it is reset to its original position.

• The line 
pp = p + DT * vel; 

performs a first-order particle step.
• The particle’s color is set fro

velocity components, as a way to keep 
track of each particle direction.  It could 
easily be colored to show other quantities.

 
However, most 3D flow field data 
given as an equation.  Listing 6
one would hide the velocity field values in a 
3D texture, using the r, g, and b texture 
components for the x, y, and z velocity 
components [Bailey2011].  The only trick is 
that the position must be converted from its 
coordinate values in the range [
texture lookup range of [0.,1.].  The code 
line 
 
vec3 stp = ( pos + 1. ) / 2.;
 

does that for us. 
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Figure 4.  A visualization particle 
advection is like the particle system, but 

includes a velocity vector lookup.
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Performance 
 
The code was tested with 1,048,576
particles on an NVDIA GeForce 480.  
Different work group sizes were 
Figure 5 shows the compute speeds, 
measured in GigaParticles/Second.
 
 

Figure 5.  This graph shows the c
shader performance as a function of 

group size. 
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The top performance was 1.3 
gigaparticles/sec resulting from 
group size of 64.  On the 480, each 
Streaming Multiprocessor has 32 SIMD 
units to perform the data parallel particle 
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 a work 
group size of 64.  On the 480, each 
Streaming Multiprocessor has 32 SIMD 

lel particle 

advection.  No work group size sm
32 would make sense, as it would leave 
some of those units unused.  By using a 
work group size of exactly 32, however, 
anytime the execution blocks (for a memory 
access, for instance) the SIMD units 
have nothing to do.  Thus, it makes sens
that a work group size of 64 or more
produce better performance than 32.
5 indicates that, for this application
beyond 64 doesn’t help and even hurts 
some.  This is application-dependent.  
Different shader applications behave 
differently, and so it is best to benchmark 
rather than assume. 
 
Conclusions 
 
After many years of using the GPU for 
parallel visualization computing by 
employing various hacks and workarounds, 
it is a relief to finally have all of the pieces 
become first-class citizens of the GLSL 
shader language.  Now we can realize the 
full potential of GPGPU using C
arrays of structures and fine-grained data 
parallel computing, all within the 
comfortable confines of OpenGL
 
We do have to change some of our rules of 
thumb, however.  The OpenGL books all 
say to “use GL_DYNAMIC_DRAW when 
the values in the buffer will be changed 
often” .  That now needs to be 
say to “use GL_DYNAMIC_DRAW when 
the values in the buffer will be changed 
often from the CPU.” 
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Listing 1.  Allocating and Filling the Shader Storage Buffer Objects 

 
#define NUM_PARTICLES    1024*1024  // 1M particles to move 
#define WORK_GROUP_SIZE    128   // # work-items per work-group 
 
struct pos 
{ 
 float x, y, z, w; // positions 
}; 
 
struct vel  
{ 
 float vx, vy, vz, vw; // velocities 
}; 
 
// need to do this for both position and velocity of the particles: 
 
GLuint  posSSbo; 
GLuint  velSSbo  
 
glGenBuffers( 1, &posSSbo); 
glBindBuffer( GL_SHADER_STORAGE_BUFFER, posSSbo ); 
glBufferData( GL_SHADER_STORAGE_BUFFER, 

  NUM_PARTICLES * sizeof(struct pos), 
  NULL, GL_STATIC_DRAW ); 

GLint bufMask = GL_MAP_WRITE_BIT | GL_MAP_INVALIDATE_BUFFER_BIT ; 
// the invalidate makes a big difference when re-writing 

struct pos *points = (struct pos *) glMapBufferRange( 
  GL_SHADER_STORAGE_BUFFER, 0, 

NUM_PARTICLES * sizeof(struct pos), bufMask ); 
 

for( int i = 0; i < NUM_PARTICLES; i++ ) 
{ 

points[ i ].x = Ranf( XMIN, XMAX ); 
points[ i ].y = Ranf( YMIN, YMAX ); 
points[ i ].z = Ranf( ZMIN, ZMAX ); 
points[ i ].w = 1.; 

} 
glUnmapBuffer( GL_SHADER_STORAGE_BUFFER ); 
 
 
glGenBuffers( 1, &velSSbo); 
glBindBuffer( GL_SHADER_STORAGE_BUFFER, velSSbo ); 
glBufferData( GL_SHADER_STORAGE_BUFFER, 

  NUM_PARTICLES * sizeof(struct vel), 
  NULL, GL_STATIC_DRAW ); 

struct vel *vels = (struct vel *) glMapBufferRange( 
  GL_SHADER_STORAGE_BUFFER, 0, 

NUM_PARTICLES * sizeof(struct vel), bufMask ); 
 
 
 
 
 
 



   

for( int i = 0; i < NUM_PARTICLES; i++ ) 
{ 

vels[ i ].vx = Ranf( VXMIN, VXMAX ); 
vels[ i ].vy = Ranf( VYMIN, VYMAX ); 
vels[ i ].vz = Ranf( VZMIN, VZMAX ); 
vels[ i ].vw = 0.; 

} 
glUnmapBuffer( GL_SHADER_STORAGE_BUFFER ); 
 
 
glBindBufferBase( GL_SHADER_STORAGE_BUFFER,  4,  posSSbo ); 
glBindBufferBase( GL_SHADER_STORAGE_BUFFER,  5,  velSSbo  ); 
 
 
  



   

 
Listing 2.  How the Shader Storage Buffer Objects Look in the Shader 

 
#version 430 compatibility 
#extension GL_ARB_compute_shader :                 enable 
#extension GL_ARB_shader_storage_buffer_object :   enable; 
 
struct pos  
{ 
 vec4 pxyzw;  // positions 
}; 
 
struct vel  
{ 
 vec4 vxyzw;  // velocities 
}; 
 
layout( std140, binding=4 )  buffer  Pos  { 
 struct  pos  Positions[  ];  // array of structures 
}; 
 
layout( std140, binding=5 )  buffer  Vel  {  
 struct  vel  Velocities[  ];  // array of structures  
}; 
 

 
  



   

Listing 3.  Invoking the Compute Shader 
 
glUseProgram( MyComputeShaderProgram ); 
glDispatchCompute( NUM_PARTICLES  / WORK_GROUP_SIZE, 1,  1 ); 
glMemoryBarrier( GL_SHADER_STORAGE_BARRIER_BIT ); 
 
 . . .  
 
glUseProgram( MyRenderingShaderProgram ); 
 
// render the scene 
 

 
  



   

Listing 4.  Shader Code for One Particle 
 
layout( local_size_x = 128,  local_size_y = 1, local_size_z = 1 )   in; 

 
const  vec3   G     =  vec3( 0., -9.8, 0. ); 
const  float  DT    =  0.1; 
 . . . 
uint gid = gl_GlobalInvocationID.x;  // the .y and .z are both 1 
vec3 p   = Positions[  gid  ].pxyzw.xyz; 
vec3 v   = Velocities[ gid  ].vxyzw.xyz; 
vec3  pp = p + v*DT + .5*DT*DT*G; 
vec3  vp = v + G*DT; 
Positions[   gid  ].pxyzw.xyz  = pp; 
Velocities[  gid  ].vxyzw.xyz  = vp; 
 
 
 
  



   

Listing 5.  Visualization First-order Particle Advection using a Velocity Equation 
 
// roll your own typedefs: 
 
#define point       vec3 
#define velocity    vec3 
 
 
velocity 
Velocity( point pos ) 
{ 
    // -1. <= pos.x,y,z <= +1 
    float x = pos.x; 
    float y = pos.y; 
    float z = pos.z; 
    return velocity( 

y * z * ( y*y + z*z ), 
x * z * ( x*x + z*z ), 
x * y * ( x*x + y*y ) 

); 
} 
 
void 
main( ) 
{ 
    uint  gid = gl_GlobalInvocationID.x; 
 
    point p  = Positions[ gid ].pxyzw.xyz; 
    point pp = p; 
 
    if( any(  greaterThan(  abs(p.xyz), point(1.,1.,1.)  )  )  ) 
    { 
        pp = OrigPositions[gid].pxyzw.xyz; 
        Colors[ gid ].crgba     = vec4( 0., 0., 0., 1. ); 
    } 
    else 
    { 
        velocity vel = Velocity( p ); 
        pp = p + DT * vel; 
        Colors[  gid  ].crgba     = vec4( abs(vel)/3., 1. ); 
    } 
 
    Positions[ gid ].pxyzw.xyz = pp; 
} 
 
 
 
 
  



   

Listing 6.  Visualization First-order Particle Advection using a Texture Velocity Field 
 

velocity 
Velocity( vec3 pos ) 
{ 
    // -1. <= pos.x,y,z <= +1 
    vec3 stp = ( pos + 1. ) / 2.; 
 
    // 0. <= s,t,p <= 1. 
    return texture( velocityTexture, stp ).rgb; 
} 
 
 


