

4. Manufacturing Isovolumes
Michael Bailey

4.1 Introduction

Displaying a single isosurface provides considerable insight into the distribution of
scalar values in a volume. Being able to simultaneously see several isosurfaces
provides even more insight. The difference is that a single isosurface displays a
point solution. Seeing several isosurfaces also provides “first derivative”
information, that is, how fast values are changing in certain regions.

Certainly this insight can be achieved by moving an isovalue slider back and forth
very quickly. But, too often, we cannot achieve such dynamics. Either the dataset is
too large to be re-displayed at interactive speeds or we are away from our display
screens in a presentation environment. The approach described here produces a
series of closed isovolumes and then manufactures them, providing a non-volatile
display of several isosurfaces. The inspiration for this idea was the common
Russian doll set, as shown below:

Figure 4.1. Interlocking Volumes

2 Bailey

This is essentially an interlocking isovolume situation. It is easy and intuitive to see
how the different layers merge into each other. The display is clear and non-
volatile. The question then becomes how to best accomplish this for scientific data.

4.2 Previous Work

Most isosurface work focuses on just producing the surfaces themselves because the
end goal is usually a computer graphics display. However, some recent work has
focused on producing representations that encompass a complete volume.
Tetrahedralizations are useful in volume visualization for display purposes and for
determining properties. An excellent overview of triangulations and
tetrahedralizations can be found in [1]. An important generalization of the
tetrahedralization of a volume is known as the Interval Volume, and is described in
[2]. An Interval Volume tetrahedralizes the gap between two isosurfaces to create
an isovolume.

However, as will be seen in the next section, tetrahedralization produces more
information than is necessary for prototype manufacturing. Prototype
manufacturing only needs the outer “skin” to be defined. The inner volume is then
inferred from that. In [3], the outer skin problem is addressed by creating a closed
surface that is topologically equivalent to the outer skin of a sphere. This method
starts with a spherical grid in the middle of the volume and then spreads the grid
points until they meet the isovalue. This produces good results, but it cannot handle
an isovolume that contains passages through it or is in multiple pieces, common
occurrences within a single dataset.

4.3 The Manufacturing Process and What
Information It Requires

To fabricate the isovolumes, we have been using the UCSD/SDSC
TeleManufacturing Facility (TMF) [4,5]. The TMF has made solid freeform
fabrication into a routinely-used “3D visualization hardcopy device”. This project
has connected a Helisys Laminated Object Manufacturing (LOM) [6] and a Z
Corporation Z402 [7] system to the Internet. The Z402 and LOM machines are
shown below:

Manufacturing Isovolumes 3

Figure 4.2. Z Corporation Z402 and Helisys LOM Machines

These two technologies are ideally suited for manufacturing isovolumes of arbitrary
shape. Like all rapid prototyping or solid freeform fabrication processes, these two
are additive manufacturing methods [8,9,10]. The LOM raw material is a roll of
paper, .11 mm (.0044 inches) thick, with heat-activated glue on the underside. For
each layer, the paper is automatically rolled into place and laminated to the layers
underneath it with heat and pressure. A laser then traces the outline of the part at
that level. The Z402 raw material is a powder. The 2D cross-section at each layer is
hardened with a binder chemical, spread by means of a laserjet printing head.

4 Bailey

When the fabrication is completed, both processes require scrap to be removed,
revealing the final part. For LOM, this involves plucking out paper scrap cubes.
For the Z402, it involves vacuuming excess powder.

Our machines are front-ended by web-based file submission procedures and
automated geometry checking. They are back-ended by web-based cameras that
monitor the machines’ progress. The project has found that physical models can
provide considerable visualization insight in such diverse fields as biochemistry,
earth science, fluid dynamics, mathematics, and terrain mapping.

The required input for all solid freeform fabrication machines is the industry-
standard STL file. To convert a solid geometry to an STL file requires creating a list
of 3D triangles that bound the outer skin of the solid. [8] STL-defined 3D objects
must be legal solids, that is, they must be bounded by a complete shell with no holes
or cracks. In addition, the triangles of the outer skin must obey the vertex-to-vertex
rule: each edge must bound exactly two triangles. Any other edge configuration
would result in cracks in the outer surface.

4.4 Forcing the Isovolume to be a Legal Solid

When requesting a graphical isosurface, a single scalar value, S* is given. A
manufacturable isovolume must be a legal solid, which means that it must be
continuously bound on all sides. In requesting an isovolume, two scalar values, Smin

*
and Smax

* must be specified.1

Turning these two isovalues into a legal solid is a two-step process:

1. Compute each isovalue’s corresponding isosurface
2. At the boundaries of the volume, cap the gap between the isosurfaces.

4.5 Triangle “Incremation”

Much of the current graphics and visualization literature is concerned with polygon
decimation. Polygon decimation seeks to eliminate detail that is perceptually
unnecessary, in order to achieve better graphics performance. This technique is
especially crucial for isosurfaces of large datasets.

This works well for computer graphics. Computer graphics displays can get away
with too little detail through techniques such as smooth shading and dynamics. But,
physical solids can play no such trickery. Large polygons that look smooth on a
graphics display will create a fabricated surface that looks coarse and “chunky”.

1 If just the inside or just the outside is desired, the value of Smin

* can be set to -∞ or the value
of Smax

* can be set to +∞.

Manufacturing Isovolumes 5

Fortunately, when fabricating isovolumes, display speed is not relevant. Whereas
interactive graphics encourages the trading of display quality and accuracy for
speed, fabrication encourages the most accuracy and quality regardless of polygon
count.

Thus, triangle decimation is not an issue here. In fact, the only such issue is how
much we should increase the scene detail in pursuit of a quality fabrication. We use
the term triangle incremation to describe the adding of such scene detail. We have
made models composed of over one million 3D triangles, and the count could go
quite a bit higher. Thus, in typical volumes, we can apply a considerable amount of
polygon incremation before running into manufacturing limits.

4.6 Interpolating within a Marching Cube

The standard isosurface algorithm is Marching Cubes [11,12]. The Marching Cubes
algorithm looks at the trilinear behavior of an isosurface in a single cube and renders
it as 1-4 polygons. But, in fact, the isovalues within that cube are a smoothly-
varying trilinear function. Thus, the real isosurface within that cube is a smooth
surface, not a few flat polygons. This surface can be obtained by solving the
trilinear equations. Furthermore, it can be made recursive and adaptive, subdividing
the smooth isosurface within the cube as much as necessary to achieve a desired
accuracy. Such things are allowed to happen when you don’t care about polygon
count.

Assume the standard Marching Cube, with eight scalar values, Sijk, at the corners.
Suvw is the interpolated scalar value somewhere within the cube, with the values of u,
v, and w parameterized to lie in the range:

0. ≤ u,v,w ≤ 1.

 At an arbitrary (u,v,w), the interpolated scalar value is a function of blending
equations and the scalar values at the cube’s corners:

 SBS ijkijk
kji

uvw ∑=
,,

 (4.1)

where the blending functions are:

B000 = (1-u)*(1-v)*(1-w)
B001 = (1-u)*(1-v)*w
B010 = (1-u)*v*(1-w)
B011 = (1-u)*v*w
B100 = u*(1-v)*(1-w)
B101 = u*(1-v)*w

6 Bailey

B110 = u*v*(1-w)
B111 = u*v*w

Solving these equations for Suvw = S* along the edges of each face gives us the
vertices of the Marching Cubes triangles. We use these triangles as a first step. The
problem then becomes one of turning those triangles into a smoother surface that is
closer to the actual isosurface that is passing through the cube. To do this, we will
recursively subdivide each triangle until it comes within a specified tolerance of the
exact isovalue.

4.7 Recursively Subdividing a Triangle

A legal solid triangulation of an isovolume must not have any cracks where two
adjacent surfaces do not precisely meet. (This is often a graphics requirement too,
but is sometimes fudged. When the triangles are small, the cracks are less
noticeable.) The way to avoid cracks is to be sure that adjacent surfaces share the
same edge and vertices. In rapid prototyping terminology, this is called satisfying
the “vertex-to-vertex” rule.

Triangles within a single Marching Cube can be made to satisfy the vertex-to-vertex
rule by keeping track of common subdivision vertices. But, tracking vertex-to-
vertex information between Cubes requires a lot of extra bookkeeping. Our strategy
instead involved subdividing a triangle as a function of what is happening at its
bounding vertices. Because adjacent Cubes have the same corner vertices, each
Cube’s subdivision decisions will be the same along the shared boundaries.

The vertex data structure records each vertex’s u, v, and w normalized parametric
coordinates. This is a convenience in that all other needed quantities (x, y, z, and S)
can be interpolated from these parameters as shown in equation (4.1).

The first step in the triangle subdivision is to look at the midpoint of each edge. The
midpoint is determined in parametric space. From that (u,v,w), a corresponding
scalar value, Smid, is computed. Smid is compared against the required isoalue, S*. If
it is outside a specified tolerance ε, it is flagged as needing to be subdivided. As
there are three edge midpoints in a triangle, there are 23 = 8 possible subdivision
patterns. The eight possibilities are shown below. Note that there are really only
four unique cases, the others being reflections of those four.

Edge midpoint is outside Edge midpoint is within tolerance

Triangle centroid

Manufacturing Isovolumes 7

Figure 4.3. Triangle Subdivision Strategies

For the case where no interpolated edge midpoint’s scalar value is outside the
tolerance to S*, that triangle can be output as is. For all other cases, the errant

8 Bailey

midpoints are “pushed” so that their scalar value is equal to S* (see the next section
for how this is done), and the triangle is subdivided as shown above. Each of the
subdivided triangles is then examined according to the same tests and possibly also
subdivided. This recursion proceeds until all triangles are within the tolerance of S*,
or until a certain maximum recursion depth is reached.

In the above diagrams, the exact way that the triangles are subdivided is probably
not crucial so long as the following rules are obeyed:

1. An edge with a midpoint that is out of tolerance needs to be turned into two

edges for two triangles. The rest of this original edge must have the chance to
be further subdivided.

2. An edge without a midpoint that is out of tolerance must not be subdivided.

Note that what happens on a particular edge is only dependent on information on its
own midpoint, and not on anything that has to do with the other two edges. Thus,
adjacent triangles will make the same decision on the shared edge. This is how we
can guarantee that no cracks are created in the resulting triangle model.

4.8 Pushing an Arbitrary Point to the Exact
Trilinear Isosurface

If we work in parameterized (u,v,w) coordinates, we can slide an arbitrary point
within the cube to the isosurface defined by S = S* by determining how much we
need to move in u, v, and w. If the isovalue Suvw at (u,v,w) is not within ε of S*, we
need to push the (u,v,w) point enough to change its isovalue by ΔS = S* - Suvw.
From multivariate calculus,

w
w
Sv

v
Su

u
S

SSS uvw Δ
∂
∂

+Δ
∂
∂

+Δ
∂
∂

=−=Δ * (4.2)

where
u
S
∂
∂

 is found within an individual Cube by differentiating (4.1):

 S
u

B
u

S
ijk

uvw

kji

uvw

∂
∂

=
∂

∂ ∑
,,

 (4.3)

and similarly for
v
S
∂
∂

 and
w
S
∂
∂

.

Manufacturing Isovolumes 9

Equation (4.2) has three unknowns, Δu, Δv, and Δw. Thus, there is no unique (Δu,
Δv, Δw) combination that will satisfy (4.2). However, certain combinations will
make more sense than others. We chose to push the point (u,v,w) in the direction of
the surface normal to the isosurface at that point.

From [11], the surface normal N ≡ (nu,nv,nw) is equal to),,(
w
S

v
S

u
S

∂
∂

∂
∂

∂
∂

.

Letting (Δu, Δv, Δw) = t * (nu,nv,nw) so that the point is pushed along N ,
equation (4.2) becomes:

)(222 nwnvnutS ++•=Δ

or,

)(222 nwnvnu
St
++

Δ
=

so that:

)(222 nwnvnu
Snuu
++
Δ•

=Δ (4.4a)

)(222 nwnznu
Snvv
++
Δ•

=Δ (4.4b)

)(222 nwnvnu
Snww
++
Δ•

=Δ (4.4c)

The general algorithm is:

--
Start with a point (u,v,w) from an edge midpoint
Compute Suvw from (4.1)

while(ε>− || *
SS uvw)

{
 Compute (nx,ny,nz) from (4.3)

 SSS uvw−=Δ *

10 Bailey

 Compute uΔ , vΔ and wΔ from (4.4a-c)

 u = u + uΔ

 v = v + vΔ

 w = w + wΔ

 compute Suvw from (4.1)

}
--

4.9 Results of a Test Case

An interesting test case is provided in [13]. This paper shows a method of using
rational quadric Bezier surfaces as a trilinear interpolant. A single Marching Cube is
considered. The scalar data values at the uvw corners are as follows:

Table 4.1. Test Marching Cube

What makes this test case so interesting is that the isosurface contains a saddle point
within thisone cube. This makes the traditional Marching Cubes algorithm produce
a particularly jagged set of poygons.

The figures below show the isovolume produced between isovalues of 0.44 and
0.90, using different tolerances. Figures 4.4a-c show the isovolume surfaces.
Figures 4.5a-c have shrunk the triangles to show the triangulation decisions made by
the algorithm. Figure 4.6 shows a detailed close-up of one region of the
triangulation.

u,v,w Suvw
0,0,0 0.2
1,0,0 0.9
0,1,0 0.7
1,1,0 0.0
0,0,1 0.9
1,0,1 0.2
0,1,1 0.1
1,1,1 0.9

Manufacturing Isovolumes 11

 Figure 4.4a. ε = .1, 38 triangles Figure 4.4b. ε = .01, 142 triangles

 Figure 4.4c. ε = .001, 1152 triangles

12 Bailey

Figure 4.5a. ε = .1, 38 triangles Figure 4.5b. ε = .01, 142 triangles

Figure 4.5c. ε = .001, 1152 triangles

Manufacturing Isovolumes 13

Figure 4.6. A Close-up View of the ε = .001 Triangulation

4.10 An Interlocking Example

One of the strengths of this method lies in producing a series of isovolumes with
common S* values at their boundaries. This makes them fit together like the
Russian dolls. This example uses a summation of decaying exponentials to seed the
scalar values in a volume. The scalar value was assigned by:

e rAzyxS i

i
i

23

1
),,(−

=
∑=

where:

)()()(2222 zizyiyxixri −−− ++=

As expected, the isosurface shapes were spherical “waves” emmenating from the
(xi,yi,zi) points. Several different isovolume ranges were chosen, the STL files were
generated, and the parts were fabricated. The results are shown below:

14 Bailey

Figure 4.7. Fabricated Interlocking Isovolumes

4.11 Medical Applications

One of the main reasons for this project was to develop better tools for examining
medical volume data, as shown in Figures 4.8 and 4.9. Figure 4.8 shows the skull
data from the Visualization Toolkit (vtk) [14], turned into a manufactured
isovolume. Note in 4.8a how the triangles have been adaptively subdivided,
providing more detail in areas of rapid change and less in flatter areas. Figure 4.9
shows a 3D fetal ultrasound isovolume.

Manufacturing Isovolumes 15

Figure 4.8a: Skull Isovolume Triangles

Figure 4.8b. Manufactured Skull Isovolume

16 Bailey

Figure 4.8c. Manufactured Skull Isovolume

Figure 4.9: Fetal Isovolumes

Manufacturing Isovolumes 17

4.12 Conclusions

The results from the examples in Figures 4.7-4.9 show that manufacturing
isovolumes are a viable way of examining the relationships between different
isosurface shapes by looking at both sides of a single isovolume and by examining
multiple isovolumes. It is also a way to transport a volume visualization so it can be
seen by multiple viewers without access to a graphics display.

The polygon incremation creates an arbitrarily accurate surface by subdividing only
where it is necessary to meet the tolerance. Specifying this tolerance provides a
convenient way to trade-off accuracy versus polygon count.

The most obvious benefit of manufacturing isovolumes is that it brings our sense of
touch to bear on the task of understanding data that may be too complex to
understand by sight alone. Being able to run fingers over and through a physical
model conveys extra information that the eye does not even know was missing. We
have been surprised how much more is understood about the 3D shape after holding
a physical model for even a short amount of time.

There are some less obvious benefits to having a physical model of isovolumes.
There appears to be some amount of insight that can be obtained by slightly twisting
the interlocking pieces as they are being fit together. This imparts a certain sense of
spatial derivatives, that is, how much a small physical perturbation changes the
isoshape. This is hard to quantify, but everyone who handles these models seems to
do this action intuitively. Most likely, we unconsciously do this with items in our
everyday life, and have learned to gain insight this way without realizing it.

4.13 Acknowledgements

This work was supported by ONR grant N00014-97-1-0183 and NSF grant MIP-
9420099.
The fetal ultrasound data is from Dr. Tom Nelson of the UCSD Medical School.

4.14 Web Page

For more information, see: http://www.sdsc.edu/tmf

4.15 References

1. Gregory Nielson, “Tools for Triangulations and Tetrahedralizations and
Constructing Functions Defined over Them”, from Gregory Nielson, Hans

18 Bailey

Hagen, and Heinrich Muller, Scientific Visualization: Overviews,
Methodologies, Techniques, IEEE Computer Society, 1997, pp. 429-525.

2. Gregory Nielson and Junwon Sung, “Interval Volume Tetrahedralization”,

Proceedings of IEEE Visualization ’97, pp. 221-228.

3. J. V. Miller, D. E. Breen, W. E. Lorensen, R. M. O’Bara, and M. J. Wozny,

“Geometrically Deformed Models: A Method for Extracting Closed Geometric
Models from Volume Data”, Computer Graphics (SIGGRAPH ’91 Conference
Proceedings), Volume 25, July 1991, pp. 217-226.

4. Michael Bailey, “Tele-Manufacturing: Rapid Prototyping on the Internet with

Automatic Consistency-Checking,” IEEE Computer Graphics and
Applications, November 1995, pp. 20-26.

5. Kathy Svitil, “A Touch of Science”, Discover magazine, June 1998, pp. 80-84.

6. Helisys, Inc., http://www.helisys.com , 1999.

7. Z Corporation, http://www.zcorp.com, 1999.

8. Michael Bailey, “The Use of Solid Rapid Prototyping in Computer Graphics

and Scientific Visualization,” SIGGRAPH Course Notes for The Use of Touch
as an I/O Device for Graphics and Visualization, 1996.

9. Marshall Burns, Automated Fabrication, Prentice-Hall, 1993.

10. Jerome L. Johnson, A Unified Description of All Free Form Fabrication

Technologies Based on Fundamental Principles, Palatino Press, 1994.

11. W. E. Lorensen and H. E. Cline, “Marching Cubes: A high resolution 3D

Surface Construction Algorithm”, Computer Graphics (SIGGRAPH ’87
Conference Proceedings), Volume 21, Number 3, pp. 163-169.

12. Gregory Nielson and Bernd Hamann, “The Asymptotic Decider: Resolving the

Ambiguity in Marching Cubes”, Proceedings of IEEE Visualization ’91, pp. 83-
91.

13. Bernd Hamann, Isaac Trotts, and Gerald Farin, “On Approximating Contours of

the Piecewise Trilinear Interpolant Using Triangular Rational-Quadric Bezier
Patches”, IEEE Transactions on Visualization and Computer Graphics, Vol 3,
Number 3, July-Sept 1997, pp. 215-227.

14. Will Schroeder, Ken Martin, and Bill Lorensen, The Visualization Tooliit: An

Object-Oriented Approach to 3D Graphics, Second Edition, Prentice Hall PTR,
1998.

