
 

4. Manufacturing Isovolumes 
Michael Bailey 

4.1  Introduction 

Displaying a single isosurface provides considerable insight into the distribution of 
scalar values in a volume.  Being able to simultaneously see several isosurfaces 
provides even more insight.  The difference is that  a single isosurface displays a 
point solution.  Seeing several isosurfaces also provides “first derivative” 
information, that is, how fast values are changing in certain regions. 
 
Certainly this insight can be achieved by moving an isovalue slider back and forth 
very quickly.  But, too often, we cannot achieve such dynamics.  Either the dataset is 
too large to be re-displayed at interactive speeds or we are away from our display 
screens in a presentation environment.  The approach described here produces a 
series of closed isovolumes and then manufactures them, providing a non-volatile 
display of several isosurfaces.  The inspiration for this idea was the common 
Russian doll set, as shown below: 

 

 

Figure 4.1. Interlocking Volumes 
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This is essentially an interlocking isovolume situation.  It is easy and intuitive to see 
how the different layers merge into each other.  The display is clear and non-
volatile.  The question then becomes how to best accomplish this for scientific data. 

4.2 Previous Work 

Most isosurface work focuses on just producing the surfaces themselves because the 
end goal is usually a computer graphics display.  However, some recent work has 
focused on producing representations that encompass a complete volume. 
Tetrahedralizations are useful in volume visualization for display purposes and for 
determining properties. An excellent overview of triangulations and 
tetrahedralizations can be found in [1].  An important generalization of the 
tetrahedralization of a volume is known as the Interval Volume, and is described in 
[2].  An Interval Volume tetrahedralizes the gap between two isosurfaces to create 
an isovolume. 
 
However, as will be seen in the next section, tetrahedralization produces more 
information than is necessary for prototype manufacturing.  Prototype 
manufacturing only needs the outer “skin” to be defined.  The inner volume is then 
inferred from that.  In [3], the outer skin problem is addressed by creating a closed 
surface that is topologically equivalent to the outer skin of a sphere.  This method 
starts with a spherical grid in the middle of the volume and then spreads the grid 
points until they meet the isovalue.  This produces good results, but it cannot handle 
an isovolume that contains passages through it or is in multiple pieces, common 
occurrences within a single dataset.   

4.3 The Manufacturing Process and What 
Information It Requires 

To fabricate the isovolumes, we have been using the UCSD/SDSC 
TeleManufacturing Facility (TMF) [4,5].  The TMF has made solid freeform 
fabrication into a routinely-used “3D visualization hardcopy device”.  This project 
has connected a Helisys Laminated Object Manufacturing (LOM) [6] and a Z 
Corporation Z402 [7] system to the Internet.  The Z402 and LOM machines are 
shown below: 
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Figure 4.2. Z Corporation Z402 and Helisys LOM Machines 

These two technologies are ideally suited for manufacturing isovolumes of arbitrary 
shape.  Like all rapid prototyping or solid freeform fabrication processes, these two 
are additive manufacturing methods [8,9,10].  The LOM raw material is a roll of 
paper, .11 mm (.0044 inches) thick, with heat-activated glue on the underside.  For 
each layer, the paper is automatically rolled into place and laminated to the layers 
underneath it with heat and pressure.  A laser then traces the outline of the part at 
that level.  The Z402 raw material is a powder.  The 2D cross-section at each layer is 
hardened with a binder chemical, spread by means of a laserjet printing head.  
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When the fabrication is completed, both processes require scrap to be removed, 
revealing the final part.  For LOM, this involves plucking out paper scrap cubes.  
For the Z402, it involves vacuuming excess powder. 
 
Our machines are front-ended by web-based file submission procedures and 
automated geometry checking.  They are back-ended by web-based cameras that 
monitor the machines’ progress.  The project has found that physical models can 
provide considerable visualization insight in such diverse fields as biochemistry, 
earth science, fluid dynamics, mathematics, and terrain mapping. 
 
The required input for all solid freeform fabrication machines is the industry-
standard STL file.  To convert a solid geometry to an STL file requires creating a list 
of 3D triangles that bound the outer skin of the solid. [8]   STL-defined 3D objects 
must be legal solids, that is, they must be bounded by a complete shell with no holes 
or cracks.  In addition, the triangles of the outer skin must obey the vertex-to-vertex 
rule: each edge must bound exactly two triangles.  Any other edge configuration 
would result in cracks in the outer surface. 

4.4 Forcing the Isovolume to be a Legal Solid 

When requesting a graphical isosurface, a single scalar value, S* is given.  A 
manufacturable isovolume must be a legal solid, which means that it must be 
continuously bound on all sides. In requesting an isovolume, two scalar values, Smin

* 
and Smax

* must be specified.1 
 
Turning these two isovalues into a legal solid is a two-step process: 
 

1. Compute each isovalue’s corresponding isosurface 
2. At the boundaries of the volume, cap the gap between the isosurfaces. 

4.5 Triangle “Incremation” 

Much of the current graphics and visualization literature is concerned with polygon 
decimation.  Polygon decimation seeks to eliminate detail that is perceptually 
unnecessary, in order to achieve better graphics performance.  This technique is 
especially crucial for isosurfaces of large datasets. 
 
This works well for computer graphics.  Computer graphics displays can get away 
with too little detail through techniques such as smooth shading and dynamics.  But, 
physical solids can play no such trickery.  Large polygons that look smooth on a 
graphics display will create a fabricated surface that looks coarse and “chunky”.  

                                                            
1 If just the inside or just the outside is desired, the value of Smin

* can be set to -∞ or the value 
of  Smax

* can be set to +∞. 
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Fortunately, when fabricating isovolumes, display speed is not relevant. Whereas 
interactive graphics encourages the trading of display quality and accuracy for 
speed, fabrication encourages the most accuracy and quality regardless of polygon 
count.  
 
Thus, triangle decimation is not an issue here.  In fact, the only such issue is how 
much we should increase the scene detail in pursuit of a quality fabrication. We use 
the term triangle incremation to describe the adding of such scene detail.  We have 
made models composed of over one million 3D triangles, and the count could go 
quite a bit higher.  Thus, in typical volumes, we can apply a considerable amount of 
polygon incremation before running into manufacturing limits. 

4.6 Interpolating within a Marching Cube 

The standard isosurface algorithm is Marching Cubes [11,12].  The Marching Cubes 
algorithm looks at the trilinear behavior of an isosurface in a single cube and renders 
it as 1-4 polygons.  But, in fact, the isovalues within that cube are a smoothly-
varying trilinear function.  Thus, the real isosurface within that cube is a smooth 
surface, not a few flat polygons.  This surface can be obtained by solving the 
trilinear equations.  Furthermore, it can be made recursive and adaptive, subdividing 
the smooth isosurface within the cube as much as necessary to achieve a desired 
accuracy.  Such things are allowed to happen when you don’t care about polygon 
count. 

 
Assume the standard Marching Cube, with eight scalar values, Sijk, at the corners.  
Suvw is the interpolated scalar value somewhere within the cube, with the values of u, 
v, and w parameterized to lie in the range: 
 

0. ≤ u,v,w ≤ 1. 
 
 At an arbitrary (u,v,w), the interpolated scalar value is a function of blending 
equations and the scalar values at the cube’s corners: 

 

 SBS ijkijk
kji

uvw ∑=
,,

 (4.1) 

 
where the blending functions are: 
 
B000 = (1-u)*(1-v)*(1-w) 
B001 = (1-u)*(1-v)*w 
B010 = (1-u)*v*(1-w) 
B011 = (1-u)*v*w 
B100 = u*(1-v)*(1-w) 
B101 = u*(1-v)*w 
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B110 = u*v*(1-w) 
B111 = u*v*w 
 
Solving these equations for Suvw = S* along the edges of each face gives us the 
vertices of the Marching Cubes triangles.  We use these triangles as a first step.  The 
problem then becomes one of turning those triangles into a smoother surface that is 
closer to the actual isosurface that is passing through the cube.  To do this, we will 
recursively subdivide each triangle until it comes within a specified tolerance of the 
exact isovalue. 

4.7 Recursively Subdividing a Triangle 

A legal solid triangulation of an isovolume must not have any cracks where two 
adjacent surfaces do not precisely meet.  (This is often a graphics requirement too, 
but is sometimes fudged.  When the triangles are small, the cracks are less 
noticeable.)  The way to avoid cracks is to be sure that adjacent surfaces share the 
same edge and vertices.  In rapid prototyping terminology, this is called satisfying 
the “vertex-to-vertex” rule. 
 
Triangles within a single Marching Cube can be made to satisfy the vertex-to-vertex 
rule by keeping track of common subdivision vertices.  But, tracking vertex-to-
vertex information between Cubes requires a lot of extra bookkeeping.  Our strategy 
instead involved subdividing a triangle as a function of what is happening at its 
bounding vertices.  Because adjacent Cubes have the same corner vertices, each 
Cube’s subdivision decisions will be the same along the shared boundaries. 
 
The vertex data structure records each vertex’s u, v, and w normalized parametric 
coordinates.  This is a convenience in that all other needed quantities (x, y, z, and S) 
can be interpolated from these parameters as shown in equation (4.1). 
 
The first step in the triangle subdivision is to look at the midpoint of each edge.  The 
midpoint is determined in parametric space.  From that (u,v,w), a corresponding 
scalar value, Smid, is computed.  Smid is compared against the required isoalue, S*.  If 
it is outside a specified tolerance ε, it is flagged as needing to be subdivided.  As 
there are three edge midpoints in a triangle, there are 23 = 8 possible subdivision 
patterns.  The eight possibilities are shown below.  Note that there are really only 
four unique cases, the others being reflections of those four. 
 
 
 
 
 
 
 
 

Edge midpoint is outside Edge midpoint is within tolerance 

Triangle centroid 
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Figure 4.3. Triangle Subdivision Strategies 

 
For the case where no interpolated edge midpoint’s scalar value is outside the 
tolerance to S*, that triangle can be output as is.  For all other cases, the errant 
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midpoints are “pushed” so that their scalar value is equal to S* (see the next section 
for how this is done), and the triangle is subdivided as shown above.  Each of the 
subdivided triangles is then examined according to the same tests and possibly also 
subdivided.  This recursion proceeds until all triangles are within the tolerance of S*, 
or until a certain maximum recursion depth is reached. 
 
In the above diagrams, the exact way that the triangles are subdivided is probably 
not crucial so long as the following rules are obeyed: 
 
1. An edge with a midpoint that is out of tolerance needs to be turned into two 

edges for two triangles.  The rest of this original edge must have the chance to 
be further subdivided. 

 
2. An edge without a midpoint that is out of tolerance must not be subdivided. 
 
Note that what happens on a particular edge is only dependent on information on its 
own midpoint, and not on anything that has to do with the other two edges.  Thus, 
adjacent triangles will make the same decision on the shared edge.  This is how we 
can guarantee that no cracks are created in the resulting triangle model. 

4.8 Pushing an Arbitrary Point to the Exact 
Trilinear Isosurface 

If we work in parameterized (u,v,w) coordinates, we can slide an arbitrary point 
within the cube to the isosurface defined by S = S* by determining how much we 
need to move in u, v, and w.  If the isovalue Suvw at (u,v,w) is not within ε of S*, we 
need to push the (u,v,w) point enough to change its isovalue by ΔS = S* - Suvw.  
From multivariate calculus, 
 

w
w
Sv

v
Su

u
S

SSS uvw Δ
∂
∂

+Δ
∂
∂

+Δ
∂
∂

=−=Δ *   (4.2) 

 

where 
u
S
∂
∂

 is found within an individual Cube by differentiating (4.1): 
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Equation (4.2) has three unknowns, Δu, Δv, and Δw.  Thus, there is no unique (Δu, 
Δv, Δw) combination that will satisfy (4.2).  However, certain combinations will 
make more sense than others.  We chose to push the point (u,v,w) in the direction of 
the surface normal to the isosurface at that point. 
 

From [11], the surface normal N  ≡  (nu,nv,nw) is equal to ),,(
w
S

v
S

u
S

∂
∂

∂
∂

∂
∂

. 

 

Letting (Δu, Δv, Δw) = t * (nu,nv,nw) so that the point is pushed along N  , 
equation (4.2) becomes: 
 

)( 222 nwnvnutS ++•=Δ  
 
or, 
 

)( 222 nwnvnu
St
++

Δ
=  

 
so that: 
 

)( 222 nwnvnu
Snuu
++
Δ•

=Δ  (4.4a) 

 

)( 222 nwnznu
Snvv
++
Δ•

=Δ  (4.4b) 

 

)( 222 nwnvnu
Snww
++
Δ•

=Δ  (4.4c) 

 
 
The general algorithm is: 

 
-------------------------------------------------- 
Start with a point (u,v,w) from an edge midpoint 
Compute Suvw  from (4.1) 

while( ε>− || *
SS uvw  ) 

{ 
 Compute (nx,ny,nz) from (4.3) 

 SSS uvw−=Δ *  
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 Compute uΔ , vΔ and wΔ from (4.4a-c) 

 u = u + uΔ  

 v = v + vΔ  

 w = w + wΔ  

 compute Suvw  from (4.1) 

} 
-------------------------------------------------- 

4.9 Results of a Test Case 

An interesting test case is provided in [13].  This paper shows a method of using 
rational quadric Bezier surfaces as a trilinear interpolant.  A single Marching Cube is 
considered.  The scalar data values at the uvw corners are as follows: 
 
 

Table 4.1. Test Marching Cube 

 
 
 

 
 
 
 
 
 
 
 
 

What makes this test case so interesting is that the isosurface contains a saddle point 
within thisone cube.  This makes the traditional Marching Cubes algorithm produce 
a particularly jagged set of poygons. 
 
The figures below show the isovolume produced between isovalues of 0.44 and 
0.90, using different tolerances.  Figures 4.4a-c show the isovolume surfaces.  
Figures 4.5a-c have shrunk the triangles to show the triangulation decisions made by 
the algorithm.  Figure 4.6 shows a detailed close-up of one region of the 
triangulation. 

 
 

u,v,w Suvw 
0,0,0 0.2 
1,0,0 0.9 
0,1,0 0.7 
1,1,0 0.0 
0,0,1 0.9 
1,0,1 0.2 
0,1,1 0.1 
1,1,1 0.9 
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 Figure 4.4a. ε = .1, 38 triangles Figure 4.4b. ε = .01, 142 triangles 

 

 
 Figure 4.4c. ε = .001, 1152 triangles 
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Figure 4.5a. ε = .1, 38 triangles Figure 4.5b. ε = .01, 142 triangles 

 
 

 
Figure 4.5c. ε = .001, 1152 triangles 
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Figure 4.6. A Close-up View of the ε = .001 Triangulation 

4.10 An Interlocking Example 

One of the strengths of this method lies in producing a series of isovolumes with 
common S* values at their boundaries.  This makes them fit together like the 
Russian dolls.  This example uses a summation of decaying exponentials to seed the 
scalar values in a volume.  The scalar value was assigned by: 

e rAzyxS i

i
i

23

1
),,( −

=
∑=  

where: 

)()()( 2222 zizyiyxixri −−− ++=  

 
As expected, the isosurface shapes were spherical “waves” emmenating from the 
(xi,yi,zi) points.  Several different isovolume ranges were chosen, the STL files were 
generated, and the parts were fabricated.  The results are shown below: 
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Figure 4.7. Fabricated Interlocking Isovolumes 

4.11 Medical Applications 

One of the main reasons for this project was to develop better tools for examining 
medical volume data, as shown in Figures 4.8 and 4.9.  Figure 4.8 shows the skull 
data from the Visualization Toolkit (vtk) [14], turned into a manufactured 
isovolume.  Note in 4.8a how the triangles have been adaptively subdivided, 
providing more detail in areas of rapid change and less in flatter areas. Figure 4.9 
shows a 3D fetal ultrasound isovolume. 
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Figure 4.8a: Skull Isovolume Triangles 

 

 
Figure 4.8b. Manufactured Skull Isovolume 
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Figure 4.8c. Manufactured Skull Isovolume 

 
Figure 4.9: Fetal Isovolumes 
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4.12 Conclusions 

The results from the examples in Figures 4.7-4.9 show that manufacturing 
isovolumes are a viable way of examining the relationships between different 
isosurface shapes by looking at both sides of a single isovolume and by examining 
multiple isovolumes.  It is also a way to transport a volume visualization so it can be 
seen by multiple viewers without access to a graphics display. 
 
The polygon incremation creates an arbitrarily accurate surface by subdividing only 
where it is necessary to meet the tolerance.  Specifying this tolerance provides a 
convenient way to trade-off accuracy versus polygon count. 
 
The most obvious benefit of manufacturing isovolumes is that it brings our sense of 
touch to bear on the task of understanding data that may be too complex to 
understand by sight alone.  Being able to run fingers over and through a physical 
model conveys extra information that the eye does not even know was missing.  We 
have been surprised how much more is understood about the 3D shape after holding 
a physical model for even a short amount of time. 
 
There are some less obvious benefits to having a physical model of isovolumes.  
There appears to be some amount of insight that can be obtained by slightly twisting 
the interlocking pieces as they are being fit together.  This imparts a certain sense of 
spatial derivatives, that is, how much a small physical perturbation changes the 
isoshape.  This is hard to quantify, but everyone who handles these models seems to 
do this action intuitively.  Most likely, we unconsciously do this with items in our 
everyday life, and have learned to gain insight this way without realizing it. 
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4.14 Web Page 

For more information, see:  http://www.sdsc.edu/tmf 
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