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Abstract 
 

Stereographics is an effective way to enhance insight in 3D scientific 
visualization.  This is especially true for visualizations consisting of complex 
geometry, such as molecular studies, or where one dataset needs to be registered 
against another, such as in earth science.  But, as effective as it is, stereoviewing 
sees only limited use in scientific visualization because of the difficulty and 
expense of creating images that everyone can see.  This paper demonstrates how a 
low-end, inexpensive viewing technique can be used as a “quick trick” to produce 
many of the same effects as high-end stereoviewing.  Not only is this technique 
easy to view and easy to publish, it is easy to create.  This paper shows how 
standard OpenGL features can be used to create such images, both statically and 
interactively. 
  

 
Stereoviewing for Interactive and Published Scientific Visualization 
 
The benefits of using stereoviewing in entertainment and scientific visualization are well known.  
By simulating human binocular vision, stereo imagery can greatly enhance a user’s 
understanding and enjoyment of a 3D scene.  The methods for simulating the views seen by the 
left and right eyes are fairly straightforward.  If this is a real scene, then two cameras are 
typically used, each one separated by a distance that approximates the eye separation distance.  If 
this is a synthetic scene, then special off-axis viewing transformations need to be used 
([LIPTON91, HODGES85]). 
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The real trick is figuring out the best way to present the left and right eye images to just the left 
and right eyes, respectively. Over the years, a number of stereo viewing methods have been 
introduced. 
 
1. Optical Separation Devices: left and right eye images are presented side-by-side with some 

sort of optical device used to channel the proper image into the proper eye.  Many systems 
work this way, from mirrors that mount to monitor faces to stereo slide viewers to View-
Masters™ to sophisticated virtual reality display devices.  Some people can freeview side-
by-side stereo views without any special equipment (in either a parallel or cross-eye viewing 
mode), but this is not common in the general population. 
 

2. Red/Blue Anaglyph:  left and right eye images are combined into a single image consisting 
of blues for the left eye portion of the scene, reds for the right eye portion of the scene, and 
shades of magenta for portions of the scene occupied by both images.  The viewer wears a 
pair of glasses with red over the left eye and blue over the right eye.  Each eyepiece causes 
linework destined for the other eye to meld into the background and causes linework destined 
for its own eye to appear black.  Many people’s first experience with stereo vision was using 
this technique while watching the classic movie Creature from the Black Lagoon.  
 

3. Polarized Lenses: left and right views are projected through orthogonal polarizing filters 
into a single image, which is the viewed through polarizing lenses.  Highly informative 
stereo slide presentations can be done this way, as well as movie and video presentations.  
This is also the basis for Disney’s stereo movies Captain Eo and Honey, I Shrunk the 
Audience. 
 

4. CrystalEyes™: this variation of the polarizing lenses is the most common of the single-
monitor computer graphics stereo display methods.  CrystalEyes displays the left and right 
eye views of a synthetic scene in sequential refresh scans of a monitor and then uses 
synchronized polarized shutter glasses to channel the correct image into the correct eye.  This 
is also the basis for the stereographics in the CAVE virtual reality display environment 
([CRUZ-NEIRA93]). 
 

Other techniques have also been used for stereoviewing, such as lenticular displays, random dot 
stereograms, and the Pulfrich effect.  There are surely others.  As these are less relevant to 
interactive and published scientific visualization, they were not covered here. 
 
Limitations of Existing Methods 
 
These methods all work reasonably well for limited uses.  But, they all have problems when used 
for serious interactive and publication scientific visualization: 
 
• Methods 3 and 4 cannot be reproduced in print because their stereo effect is tied to their 

display method.  This means that they cannot be used for stereo presentation in papers, 
articles, or on web pages. 

 



   

• Methods 2, 3, and 4 create an image that is unrecognizeable unless the viewer is wearing the 
proper glasses.  This also limits the use of these methods in print or on web pages. 

 
• Method 1 cannot be seen by most people without special glasses. A large number of people 

cannot get these images to converge, even with the special glasses. 
 
For scientific visualization, we need a stereoviewing method that can create an image that can: 
 
• be viewed clearly as a single image without glasses 
 
• be viewed as a stereographics image with inexpensive glasses 
 
• appear in print 
 
• appear on a web page 
 
• be used with fast display hardware for interactive use. 
 
ChromaDepth 
 
ChromaDepth™ was invented by Richard Steenblik ([STEENBLIK87]) as a way to amplify the 
common chromostereoscopy phenomenon into a useful display tool.  ChromaDepth consists of 
two pieces: a simple pair of glasses and a display methodology. 
 
The glasses, shown below in Figure 1, contain very thin diffractive optics that have the 
efficiency of refractive optics.  While being very thin and inexpensive2, they behave like thicker 
glass prisms.  The optics are designed so that red light is bent more than green and green more 
than blue.  The lenses are oriented sideways, so the overall bending effect looks like parts of the 
scene have been shifted horizontally inwards (ie, towards the center of your nose). The red hues 
are shifted more than the greens and the greens are shifted more than the blues.  Thus, red 
elements in the 3D scene appear to converge closest to the viewer and the blue elements appear 
to converge the farthest away. 

 

Figure 1: ChromaDepth Glasses 
                                                 
2 Prices for the “opera-style” ChromaDepth glasses shown in Figure 1 range from 10¢ to 90¢, depending on 
volume. 



   

 
The corresponding display methodology is then quite simple: color code the scene in linear a 
rainbow spectrum based on depth so that those elements that are close to the eye are displayed as 
red and those farthest away are displayed as blue. 
 
Creating  ChromaDepth Scenes with OpenGL 
 
In order to create a ChromaDepth scene in OpenGL, a 1D texture representing a color ramp from 
red to green to blue needs to be created.  This can be done in a number of ways.  We did ours by 
interpolating in hue-saturation-value (HSV) space ([FOLEY90]). 
 
The next step is to specify how to compute the texture coordinate based on scene depth. 
[WOO97] provides a good description of the OpenGL automatic texture-coordinate generation 
capability.  This can be used to generate contours on a 3D model in world or eye space, or can be 
used for dramatic environment mapping effects.  It can also be used to automatically generate 
coloring for ChromaDepth. 
 
The OpenGL texgen capability requires the program to supply four coefficients, A, B, C, and D 
for the texture coordinate equation: 
 
s = A*x + B*y + C*z + D (1) 
 
Because we want to apply the coloring based on depth with respect to the eye coordinate system, 
we must choose the coefficients based on how close to the eye we want objects to become solid 
red and how far from the eye we want them to become solid blue.  The situation looks like this: 



   

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Ramp from Red to Blue as a Function of Distance in Front of the Eye 

 
The texture coordinate, s, needs to be 0. for objects that are D1 units in front of the eye and 1. for 
objects that are at D2 units.  The equation to do this is: 
 
 
 

 (2) 

 
giving us the coefficients for the texgen texture coordinate equation: 
 
A = 0. 
B = 0. 
C = -1. /( D2- D1 ) 
D = -D1 /( D2- D1 ) 
 
The choices for D1 and D2 are purely up to the viewer’s taste.  It is tempting to make them the 
same as the near and far variables that are specified for the viewing volume.  This works well, 
however the full dynamic ChromaDepth range will only be achieved when objects fill the entire 
depth of the viewing volume.  In other words, this requires the programmer to place the near and 
far clipping planes very tightly around the scene. 
 
It works even better to set D1 and D2 to be somewhere between the near and far clipping planes.  
Typically we try to fit a spherical bounding volume around the center of the scene, and set D1 
and D2 to the limits of the sphere. 
 
But, the final choice for D1 and D2 rests with the nature of the scene and the viewing tastes of the 
programmer.  In practice it is nice to make D1 and D2 setable from sliders, although this is more 
work. 
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Sample OpenGL code to set and use these texture generation parameters is: 
 
#define D1   5.0 
#define D2  15.0 
 
float TexGenParams[] = 
{ 
 0., 
 0., 
 -1./(D2-D1), 
 -D1/(D2-D1) 
}; 

. . . 
 
glMatrixMode( GL_MODELVIEW ); 
glLoadIdentity(); 
 
glTexGeni( GL_S, GL_TEXTURE_GEN_MODE, 
  GL_EYE_LINEAR ); 
 
glTexGenfv( GL_S, GL_EYE_PLANE, 
  TexGenParams ); 
 
glEnable( GL_TEXTURE_GEN_S ); 
glEnable( GL_TEXTURE_1D ); 
 
 
gluLookAt( 0., 0., 10.,  0., 0., 0., 
  0., 1., 0. ); 
 

<< Object Transformations >> 
 
glCallList( ObjectList ); 

 
 
The glTexGeni() call sets the texture generation mode to be in the eye coordinate space.  The 
glTexGenfv() call supplies the texture coordinate equation coefficients. 
 
The scene and its objects can be dynamically transformed, but all of those transformations must 
come after the calls to glTexGeni() and glTexGenfv().  This is because the texture coordinate 
equation parameters apply to the model-view coordinate system as it exists at the moment 
glTexGenfv() is called.  Because we want the coloring to vary strictly by depth in the eye-
viewing direction, the model-view coordinate system must be untransformed when the texture 
coordinate equation is specified.  In practice, this is not a restrictive limitation, as all scene and 
object transformations can be included  



   

 
Examples 
 

  
Figure 3: Two views of an earthquake fault valley 

 

  
 Figure 4: Protein Kinase Figure 5: Grid of Phenanthroline 

 
 



   

  
Figure 6: Mechanical CAD 

 
 

  
 Figure 7: United States Map Figure 8: Oahu Map 

 
 
 
Conclusions 
 
ChromaDepth is a very useful “quick trick” to display 3D scenes in apparent stereovision. 
Scenes can be viewed highly interactively on an OpenGL-based graphics system or statically in a 
publication or a web page. There are no problems with having to separate and converge the two 
elements of a stereopair.  ChromaDepth uses a single image that is valid with or without the 
glasses. Because the glasses are so simple and inexpensive, this method is practical for 
widespread use.   
 



   

The major disadvantage of this method is that control of the color is given up to the depth 
display.  Many scientific visualizations use color to represent a scalar variable overlaid on top of 
the geometry.  In this case, that ability is lost. 
 
It should also be noted that this technique usually looks better color-printed than on a monitor.  
The underlying technology for CRT monitors uses three unique wavelengths.  Intermediate 
colors are obtained by displaying those unique wavelengths side-by-side.  This tends to 
discretize the depth of the ChromaDepth scene somewhat.  The underlying technology for color 
printing, however, can use more colors to get a wider range of wavelengths, so its range of 
depths can appear more continuous. 
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Web Page 
 
Links to a gallery of our scientific visualization ChromaDepth images and to more information 
about the ChromaDepth process can be found at: 
 

http://web.engr.oregonstate.edu/~mjb/chromadepth 
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