

Video
Driver

CPU

Input
Devices

Double-buffered
Framebuffers

Rasterizer

Vertex
Processor

Cursor

Video
Input

B
u
s

Network Display
List

Texture Memory

Z-Buffer

Fragment
Processor

Front

Back

MC Vertices

SC Vertices

Pixel Parameters

RGBAZ
Pixels

MC = Model Coordinates
WC = World Coordinates
EC = Eye Coordinates
CC = Clip Coordinates
NDC = Normalized Device Coordinates
SC = Screen Coordinates
TC = Texture Coordinates

Unified Memory
Architecture (UMA) {

RGBA
Texels

TC

Shader
Memory

Varying variables

Varying variables

Attribute
variables

Uniform
variables

Transform gluLookAt Projection Viewport
NDCECWC

MC SC
Homogeneous

Division

CC

Uniform
variables

Video
Driver

CPU

Input
Devices

Double-buffered
Framebuffers

Rasterizer

Vertex
Processor

Cursor

Video
Input

B
u
s

Network Display
List

Texture Memory

Z-Buffer

Fragment
Processor

Front

Back

MC Vertices

SC Vertices

Pixel Parameters

RGBAZ
Pixels

MC = Model Coordinates
WC = World Coordinates
EC = Eye Coordinates
CC = Clip Coordinates
NDC = Normalized Device Coordinates
SC = Screen Coordinates
TC = Texture Coordinates

Unified Memory
Architecture (UMA) {

RGBA
Texels

TC

Shader
Memory

Varying variables

Varying variables

Attribute
variables

Uniform
variables

Transform gluLookAt Projection Viewport
NDCECWC

MC SC
Homogeneous

Division

CC
Transform gluLookAt Projection Viewport

NDCECWC

MC SC
Homogeneous

Division

CC

Uniform
variables

Eurographics 2006/Werner Hansmann and Judy Brown (Eds) Education Paper

Teaching OpenGL Shaders:
Hands-on, Interactive, and Immediate Feedback

Mike Bailey

Oregon State University, USA, mjb@cs.oregonstate.edu

Abstract
This paper describes the teaching of OpenGL shaders with hands-on a program called glman.
Hands-on education is at its best when the students’ experimental feedback loop is very fast. glman
allows students to create a shader scene description file which not only creates the 3D scene, but
creates an interactive user interface to adjust parameters. Our experience in an experimental class
taught in Spring 2006 is that glman is flexible enough to demonstrate and experiment with many
shader concepts, and creates a fast learning curve for the students.

Categories: 1.3 [Computer Graphics], 1.3.1 [Graphics Processors], K.3.1 [Computer Uses in
Education]

1. INTRODUCTION

GPU-programmable shaders are the most exciting

development in computer graphics in a long time. For
the first time, programmers can get both the flexibility
to perform amazing vertex-by-vertex and pixel-by-
pixel effects, combined with the performance to make
it interactive. The emergence of shader programming
will have profound effects on all areas of computer
graphics including science, engineering, art, animation,
and gaming. This is the good news. The bad news is
that shaders are difficult to learn and teach. The effects
of certain shader parameters in certain shader equations
are not obvious. Converging on good values is
difficult.

glman is a new program that was written to help
teach the OpenGL Shading Language (GLSL) [FER04,
PF05, ROS06]. It uses an input file called GLIB, (GL
Interface Bytestream),
which is modeled after the
style of the RenderMan
Interface Bytestream
(RIB) [UPS90, AG99].
glman reads a GLIB file as
well as one or more vertex
and fragment shader files.
It then creates the
requested scene, activates
the requested shaders, and
creates sliders for user-
defined global parameters.
glman also provides a
Perlin noise
[PER85,PER02] 3D
texture for use in the
shader. Our experience
with using glman in a
college class is that
students get a maximum
amount of quality learning
in the minimum amount of
time.

2. SHADERS IN THE GRAPHICS PIPELINE

Figure 1 shows a generic view of the computer

graphics rendering process. There are two locations in
this process into which an application developer can
inject custom shader code: the vertex processing and
the fragment processing. The Vertex Processor (VP)
takes 3D coordinates in the modeling coordinate space.
It transforms them into world coordinates using a
modeling transform, then transforms them into eye-
space coordinates using a viewing transform. It then
performs clipping, projective transformation, and
viewport mapping. When coordinates leave the vertex
processing stage, they have been changed into screen-
space coordinates, ready to be rasterized. The reason
that the VP is a great location to place custom code is
that there is considerable information about the
geometry available at that point, and the VP can do a
variety of things with it.

Figure 1: Generic Computer Graphics Process

The second location is the Fragment Processor (FP).

Because the output of the rasterizer is already an
interpolated red, green, blue color, students are greatly

confused about the function of the FP. The inputs to
the FP are every piece of information that is currently
available about this pixel. The most important pieces
of information include the pixel’s previously-assigned
red, green, and blue color; its alpha (transparency)
value; its texture coordinates; plus any information
passed from the Vertex Processor and interpolated in
the rasterizer such as the pixel’s x, y, and z location
and its surface normal. The FP also has access to any
global information passed by the application program
such as light positions. The Fragment Processor’s job
is to take all this information and produce the final red,
green, blue, and alpha for that pixel. It also has the
option to completely discard this pixel. The reason that
the FP is a great place to write custom code is that the
appearance of that pixel can be computed based on
whatever mathematics, optics, physics, or whimsy one
wants to program.

3. THE COURSE

This course, CS 519, is a multidisciplinary course,

with students from Computer Science, Engineering,
and Geosciences. The course teaches the theory
behind how shaders work, enough graphics software
and hardware to understand what is happening behind-
the-scenes, the mathematics of shader effects, and
shows their use in a variety of applications.

The assignments consist of several shader-creation
projects which solidify the students’ understanding of
various shader programming and mathematics
concepts. The class culminates in a Final Project, the
Shader Olympics, in which each student chooses their
own area of interest and develops a shader-based
application in that area.

The class lectures are in a hands-on lab. Thus, it
was important to be able to provide some sort of
environment where the students could run instructor-
provided examples, discover the effects of certain key
parameters, and then quickly change the examples to
perform new tasks.

4. WHAT DO SHADERS LOOK LIKE?

The following code shows a vertex shader example,

one of the first given to the students. This vertex
shader computes diffuse light source shading based on
the transformed surface normal. It sets up variables
Color, X, and LightIntensity to be interpolated by the
rasterizer into each instance of the fragment shader. It
also multiplies this model-space coordinate by the full
Model-View-Projection matrix and passes into the rest
of the pipeline.

varying float LightIntensity;
varying vec4 Color;
varying float X;

void
main(void)
{
 vec3 tnorm = normalize(gl_NormalMatrix * gl_Normal
);
 vec3 LightPos = vec3(0., 5., 10.);
 vec3 ECposition = vec3(gl_ModelViewMatrix *
gl_Vertex);
 LightIntensity = dot(normalize(LightPos -
ECposition), tnorm);
 LightIntensity = abs(LightIntensity);

 Color = gl_Color;
 X = gl_Vertex.x;
 gl_Position = gl_ModelViewProjectionMatrix *
gl_Vertex;
}

The following shows the corresponding fragment
shader code. Uniform variables are passed in by the
application. The fragment shader then uses the varying
and uniform variables to decide if this fragment is in a
stripe or not. It uses two instances of the GLSL-
provided smoothstep function to create a “smooth
pulse” so that the edges of the stripe are blended rather
than being blatantly aliased. It then passes this
procedurally-determined color into the rest of the
pipeline.

varying float X;
varying vec4 Color;
varying float LightIntensity;
uniform float A, P, Tol;

void
main(void)
{
 vec4 WHITE = vec4(1., 1., 1., 1.);
 float f = fract(A*X);

 float t = smoothstep(0.5-P-Tol, 0.5-P+Tol, f) -

smoothstep(0.5+P-Tol, 0.5+P+Tol, f);
 gl_FragColor = mix(WHITE, Color, t);
 gl_FragColor.rgb *= LightIntensity;
}

Figure 2 shows what this shader combination produced
when displaying a particular scene.

Figure 2: Procedural Stripes Computed in

Model Coordinates

5. INTRODUCING SHADERS TO STUDENTS

But, our experience is that
students learn shaders very
slowly if they must go through
the full edit-compile-execute
sequence for every little
feature they want to try. We
believe that learning shaders
works best when the students
are in a very tight try-it-myself
loop. With that in mind, we
created a program called
glman. The glman user
interface is shown in here.

glman is so named because
its input looks a lot like the
RIB files of RenderMan. As
such, its input files are called GLIB files, for GL
Interface Bytestream. The .glib file that produced
Figure 2 is shown here:

Perspective 90
Translate -5 0 0

Vertex stripesMC.vert
Fragment stripesMC.frag
Program StripesMC A <0 1. 10> P <0. .25 1.> \

Tol <0. 0. .5>
Color [1 0 0]
Sphere 1
Color [1 1 0]
Translate 1.5 0 0
Cone 0.5 1.
Color [0 1 0]
Translate 2 0 0
Torus .2 1.
Color [1 0.5 0]
Translate 4 0 0
Teapot

The lines:
 Vertex stripesMC.vert
 Fragment stripesMC.frag
 Program StripesMC A <0 1. 10> P <0. .25 1.> \

Tol <0. 0. .5>

are the most interesting. The
first line causes the file
stripesMC.vert to be read
and compiled as a vertex
shader. The second line
does the same for the
fragment shader file
stripesMC.frag. The third
line links the current vertex
and fragment shaders into a
single shader program,
which will then be applied to
subsequent geometry. That line also creates three
uniform global variables A, P, and Tol, and puts them
on sliders for the student to change interactively, as
shown here. The values in the angle brackets are the
minimum value on the slider, the initial value, and the
maximum value. Uniform variables that represent
colors are enclosed
in curly brackets.
They are {red
green blue [alpha]}
and will generate a
button in the UI
that, when clicked,
brings up a color
selector as shown
here. The color selector allows the user to change this
color variable on-the-fly.

Multiple vertex-fragment-program combinations
are allowed in the same GLIB file. If there is more
than one combination, they will appear as separate
rollout panels in the user interface

In this way, glman allows a student to create a scene,
a vertex shader, and a fragment shader, and
interactively test the effects of many different
parameter combinations in minutes, rather than hours.

6. TEACHING NOISE AS AN INTEGRAL PART OF
SHADERS

Noise is a major component of shader-writing.

Originally developed by Ken Perlin [PER85, PER02],
noise is used as a variation on surface properties to
make the surfaces more interesting. But, noise is a
difficult concept to explain to students. So, we have
written another program, NoiseGraph, to give the

students hands-on experience with creating and
controlling noise functions.

The following figures show three scenarios from
NoiseGraph. The first figure shows positional noise,
that is, random values are chosen at integer intervals
and a smooth function is fit through them.

Figure 3: (a) Positional Noise, (b) Gradient Noise

Figure 3a shows why positional noise is not used in

shaders. Based on random chance, there is a good
probability that the values at the integer positions will
not be very evenly distributed. Figure 3b shows
gradient noise, in which the integer points are forced to
have values midway through the range with the slopes
at those points chosen at random. As can be seen, the
distribution is much more uniform, without being “too
uniform”.

The noise function is made more interesting by using
it to create fractional Brownian motion (fBm), or 1/f
behavior. In this method, multiple noise functions are
summed. Each successive noise function is twice the
frequency and half the amplitude of the previous one.
This makes the noise more interesting. The low
frequency functions give it definition, and the high
frequency functions give it character. The students can
interactively experiment with this too, to experience
the effects of the different noise parameters for
themselves. Figure 4 shows four octaves of 1/f noise.

Figure 4: Four octaves of 1/f noise

Figure 5 shows an interesting noise example from

class: the teapot with a rainbow shader. The rainbow
shader uses the Model Coordinate position of each
fragment to assign the colors. In the middle image, a
pulse function is used to transition between the colors.
The width of the smooth step is controlled by a slider.
In the third image, a noise function is added to the
coordinate position. The magnitude of the noise is also
controlled by a slider.

Figure 5: Rainbow stripe shader with noise

This is a very simple example, but it readily explains
to students changing display parameters based on
coordinate position, the smoothstep function, and
noise. It also lets them quickly try it themselves with
their own functional parameters, instead of just being
shown

7. ASSIGNMENTS AND EXAMPLES

The following show some of the assignments used

in the class:

Figure 6: Dots, based on texture space coordinates in

the fragment shader
Figure 7: Surface displacement in the vertex shader

and gridline assignment in the fragment shader

Figure 8: Noise-based erosion shader, using texture-

space coordinates in the fragment shader
Figure 9: Interactive Line Integral Convolution using

texture manipulation in the fragment shader

Figure 10: Flow visualization object extrusion

in the vertex shader
Figure 11: Terrain visualization bump-in the fragment

shader

Figure 12: Volume visualization in the fragment

shader

8. CONCLUSIONS

The combination of glman and NoiseGraph has been

used in our college class to teach GLSL shaders. We
have found them to be excellent tools to explain how
certain shader parameters work and to let students
quickly explore on their own. Because students don’t
need to write full programs, and because glman creates
a user interface from user directives, it is fast and easy
to get started, and encourages individual exploration.
Because the uniform variables can so readily be
manipulated, it is easy to create sophisticated shaders
and determine what variables should be used and how
they should be set.

The class syllabus is located at:

http://eecs.oregonstate.edu/~mjb/cs519

The glman and NoiseGraph programs and

documentation can be obtained at:

http://eecs.oregonstate.edu/~mjb/glman

REFERENCES
[AG99] Tony Apodaca and Larry Gritz, Advanced

RenderMan: Creating CGI for Motion Pictures,
Morgan Kaufmann, 1999.

[FER04] Randima Fernando, GPU Gems, NVIDIA,

2004.

[PER85] Perlin, K., An Image Synthesizer, Proc.

ACM SIGGRAPH '85, Vol. 19, No.3, July, 1985, pp.
287-296.

[PER02] Perlin, K., Improving Noise, Proc. ACM

SIGGRAPH '02, Vol. 21, No.3, July, 2002, pp. 681-
682.

[PF05] Matt Pharr, Randima Fernando, GPU Gems 2,

NVIDIA, 2005.

[ROS06] Randi Rost, OpenGL Shading Language,

Addison-Wesley, 2006.

[UPS90] Steve Upstill, The RenderMan Companion,

Addison-Wesley, 1990.

