
Lessons from Scene Graphs:
Using Scene Graphs to Teach Hierarchical Modeling

Steve Cunningham

California State University Stanislaus

Michael J. Bailey
San Diego Supercomputer Center

University of California San Diego

Abstract

The scene graph, as defined in VRML and Java3D, is a powerful tool for modeling a
scene. The ideas contained in the scene graph are fundamental principles in
modeling. They give beginning computer graphics students the tools to understand
and apply the techniques of hierarchical modeling in scene design and can be directly
applied to graphics programming in several graphics APIs, including OpenGL and
RenderMan™. This note outlines the approach to modeling with scene graphs and
describes how students in a first computer graphics course can build their modeling
designs with this approach.

Introduction

We define modeling as the process of defining and organizing a set of geometry that
represents a particular scene. While modern graphics APIs can provide students with
a great deal of assistance in rendering their images, modeling is usually supported less
well and causes students difficulty in beginning computer graphics courses.
Organizing a scene with transformations, particularly when that scene involves
hierarchies of components and when some of those components are moving, involves
relatively complex concepts that should be presented to students systematically to
make them more understandable. Hierarchical modeling has long been done—and
taught—by using trees or tree-like structures to organize the components of the
model. This was done in some presentations of PHIGS [4] and is presented in
textbooks such as [5] and [2]. However, the treatments in textbooks have been casual
and often sketchy, leaving instructors or students to work out for themselves how to
implement these ideas for their work.

More recent graphics systems, such as Java3D [7], [6] and VRML 2 [1], have
extended the initial concept of scene graphs in Inventor [8] and other systems, and
have formalized the scene graph as a powerful tool for both modeling scenes and
organizing the rendering process for those scenes. By understanding and adapting the
structure of this more sophisticated scene graph, we can organize a careful and formal
tree approach to teaching both the design and the implementation of hierarchical
models. This can give students tools to manage not only modeling the geometry of
such models, but also animation and interactive control of these models and their
components.

In this paper we will lay out a graph structure very much like the formal scene graph
that students can use to design a scene and derive the three key transformations that
go into creating a scene: the projection transformation, the viewing transformation,
and the modeling transformation(s) for the scene’s content. This structure is very

 2

general and lets the student manage all the fundamental principles in defining a scene
and translating it into a graphics API.

A brief summary of scene graphs

We begin by reviewing the current state of the art in scene graphs based on the
specifications of Java3D [7][6]. The scene graph has many different aspects and can
be complex to understand fully, but it gives us an excellent model of thinking about
scenes that we can use in teaching modeling. A brief outline of the Java3D scene
graph in Figure 1 will give us a basis to discuss the general approach to graph-
structured modeling as it can be applied to teaching.

Virtual Universe

Locale
Content
Branch

View
Branch

View

View Platform

Transform Group
Shape node

Shape nodes

Transform Group

Transform Groups

Group node

Group node

Figure 1: the structure of the scene graph as defined in Java3D

A virtual universe holds one or more (usually one) locales, positions in the universe to
put scene graphs. Scene graphs have two kinds of branches: content branches,
containing shapes, lights, and other content, and view branches, containing viewing
information. This division is somewhat flexible, but we will focus on a standardized
approach to give students a framework to build their work upon.

The content branch is organized as a collection of nodes that contains group nodes,
transform groups, and shape nodes. A group node is a grouping structure that can
have any number of children; besides simply organizing its children, a group can
include a switch that selects which children to present in a scene. A transform group
is a collection of standard transformations that define a new coordinate system
relative to its parent. The transformations will be applied to any of the transform
group’s children with the convention that transforms “closer” to the geometry (as
defined in shape nodes lower in the graph) are applied first. A shape node includes
both geometry and appearance data for an individual graphic unit. The geometry data
includes standard 3D coordinates, normals, and texture coordinates, and can include

 3

points, lines, triangles, and quadrilaterals, as well as triangle strips and fans and
quadrilateral strips. The appearance data includes color, shading, or texture
information. Lights and eye points are included in the content branch as a particular
kind of geometry, having position, direction, and other appropriate parameters. Scene
graphs also include shared groups, or groups that are included in more than one
branch of the graph. In Java3D these are groups of shapes that are included indirectly
through link leaf nodes, and any change to a shared group affects all references to that
group. This allows scene graphs to include the kind of template-based modeling that
is common in graphics applications.

The view branch of the scene graph includes the specification of the display device,
and thus the projection appropriate for that device. It also specifies the user’s
position and orientation in the scene and includes a wide range of abstractions of the
different kinds of viewing devices that can be used by the viewer. It is intended to
permit viewing the same scene on a traditional computer monitor, on a synchronized
stereo screen, with a head-mounted display unit, or on multi-screen portals such as
CAVEs, and to support a wide range of positional devices including head tracking.
This is a much more sophisticated approach than we need for the simple modeling in
a beginning computer graphics course, where we need only the viewpoint from which
the user will view the scene. In our approach, we consider the eye point as part of the
geometry of the scene, so we set the view by including the eye point in the content
branch and extract the transformation information for the eye point to create the view
transformations in the view branch.

In addition to the modeling aspect of the scene graph, it is also used by the Java3D
runtime system to organize the processing as the scene is rendered. Recalling that the
scene graph is processed from the bottom up, the content branch is processed first,
followed by the viewing transformation and then the projection transformation. For
our purpose below, it is productive to think of the viewing transformation as if it were
placed at the top of the content branch with the actual view being simply the default.
An explicit feature of grouping nodes is that the system does not guarantee any
particular sequence in processing the node’s branches. Instead, the system can
optimize processing by selecting a processing order for efficiency, or can distribute
the computations over a networked or multiprocessor system. Thus the programmer
must be careful to make no assumptions about the state of the system when any shape
node is processed.

The analogue of scene graphs for hierarchical design

We propose a graph structure for designing a scene that is organized very closely
along the lines of the scene graph. The scene graph is a very strong structure and we
will use it as a reference model for design rather than as a strong structure model, but
this reference model will suffice for our teaching purposes. We describe our
approach by developing a graph organization for an example scene. Consider the
scene of Figure 2, where a helicopter is flying above a landscape and the scene is
viewed from a fixed eye point.

This scene contains two principal objects: a helicopter and a ground plane. The
helicopter is made up of a body and two rotors, and the ground plane is modeled as a
single set of geometry with a texture map. In addition, the scene contains a light and
an eye point, both at fixed locations. The first task in modeling such a scene is now
complete: to identify all the parts of the scene, organize the parts into a hierarchical

 4

set of objects, and put this set of objects into a viewing context. We must next
identify the relationship among the parts of the landscape way so we may create the
tree that represents the scene. Here we note the relationship among the ground and
the parts of the helicopter. Finally, we must put this information into a graph form.

The initial analysis of the scene in Figure 2, organized along the lines of view and
content branches, leads to an initial (and partial) graph structure shown in Figure 3.
The content branch of this graph captures the organization of the components for the
modeling process. This describes how content is assembled to form the image, and
the hierarchical structure of this branch helps us organize our modeling components.
The view branch of this graph corresponds roughly to projection and viewing. It
specifies the projection to be used and develops the projection transformation, as well
as the eye position and orientation to develop the viewing transformation.

Figure 2: a scene that we will describe with a scene graph

This initial structure is compatible with the approach beginners usually learn in
OpenGL, where the view is implemented by using the gluLookAt(...) function.
This approach only takes you so far, however, because it can be difficult to compute
the parameters of this function when the eye point is embedded in the scene and
moves with the other content.

 5

Scene

content branch

ground

helicopter

body top rotor back rotor

rotor

view branch

projection

view

Figure 3: a scene graph that organizes the modeling of our simple scene

This initial approach to the scene graph is incomplete, however, because it merely
includes the parts of the scene and describes which parts are associated with what
other parts. To expand this first approximation to a more complete graph, we must
add several things to the graph:
• the transformation information that describes the relationship among items in a

group node, to be applied separately on each branch as indicated,
• the appearance information for each shape node, indicated by the shaded portion

of those nodes,
• the light and eye position, either absolute (as shown in Figure 4) or relative to

other components of the model, and
• the specification of the projection and view in the view branch.
These are all included in the expanded version of the scene graph with
transformations, appearance, eye, and light shown in Figure 4.

Scene

content branch

helicopter

body top rotor back rotor

ground
transforms

eye light

transforms

view branch

projection

view

rotor geometry

eye placement
transforms

transforms

Figure 4: the more complete graph including transformations and appearance

 6

The content branch of this graph handles all the scene modeling and is very much like
the content branch of the scene graph. It includes all the geometry nodes of the graph
in Figure 3 as well as appearance information; includes explicit transformation nodes
to place the geometry into correct sizes, positions, and orientations; includes group
nodes to assemble content into logical groupings; and includes lights and the eye
point, shown here in fixed positions without excluding the possibility that a light or
the eye might be attached to a group instead of being positioned independently. In
the example above, it identifies the geometry of the shape nodes such as the rotors or
individual trees as shared. This might be implemented, for example, by defining the
geometry of the shared shape node in a function and calling that from each of the
rotor or tree nodes that uses it.

The view branch of this graph is similar to the view branch of the scene graph but is
treated much more simply, containing only projection and view components. The
projection component includes the definition of the projection (orthogonal or
perspective) for the scene and the definition of the window and viewport for the
viewing. The view component includes the information needed to create the viewing
transformation, which is simply a copy of the set of transformations that position the
eye point in the content branch.

The scene graph for a particular image is not unique because there are many ways to
organize a scene. When you have a well-defined transformation for the eye point,
you can take advantage of that information to organize the scene graph in a way that
can replace the gluLookAt() functionality. The real effect of gluLookAt() is to
create a viewing transformation that is the inverse of the transformation that placed
the eye. So as we noted when we discussed scene graphs initially, we can compute
the inverse transformation ourselves and place that at the top of the scene graph.
Thus we can restructure the scene graph of Figure 4 as shown below in Figure 5
taking any arbitrary eye position. This will be the key point below as we discuss
managing the eyepoint as a dynamic part of a scene.

 7

Scene

content branch

helicopter

body top rotor back rotor

ground
transforms

eye light

transforms

view branch

projection

default
view

rotor geometry

inverse of eye
placement
transforms

transforms

Figure 5: the scene graph with the viewing transformation figured in

It is very important to note that the scene graph need not describe a static geometry.
Callbacks for user interaction and other events can affect the graph by controlling
parameters of its components, as noted in the re-write guidelines in the next section.
This can permit a single graph to describe an animated scene or even alternate views
of the scene. The graph may thus be seen as having some components with external
controllers, and the controllers are the event callback functions.

As we said in the introduction, we need to extract the three key transformations from
this graph. The projection transformation is straightforward and is built from the
projection information in the view branch. The viewing transformation is created
from the transformation information in the view, and the modeling transformations
for the various components are built by working with the various transformations in
the content branch as the components are drawn. These operations are all
straightforward; we begin with the viewing transformation and move on to coding the
modeling transformations.

The viewing transformation

In a scene graph with no view specified, we assume that the default view puts the eye
at the origin looking in the negative z-direction with the y-axis upward. If we use a
set of transformations to position the eye differently, then the viewing transformation
is built by inverting those transformations to restore the eye to the default position.
This inversion takes the sequence of transformations that positioned the eye and
inverts the primitive transformations in reverse order, so if T1T2T3...TK is the original

transformation sequence, the inverse is TK
u...T3

uT2
uT1

u where the superscript u
indicates inversion, or “undo” as we might say to the beginning student. Because
each of the primitive scaling, rotation, and translation transformations is easily
inverted, the student will have no difficulty writing the set of inverse transformations.

 8

Deriving the eye transformations from the tree is straightforward. Because we
suggest that the eye be considered one of the content components of the scene, we can
place the eye at any position relative to other components of the scene. When we do
so, we can follow the path from the root of the content branch to the eye to obtain the
sequence of transformations that lead to the eye point. That sequence is the eye
transformation that we may record in the view branch.

In Figure 6 we show the change that results in the view of Figure 2 when we define
the eye to be immediately behind the helicopter, and in Figure 7 we show the change
in the scene graph of Figure 4 that implements the changed eye point. The eye
transform consists of the transforms that places the helicopter in the scene, followed
by the transforms that place the eye relative to the helicopter. Then as we noted
earlier, the viewing transformation is the inverse of the eye positioning
transformation, which in this case is the inverse of the transformations that placed the
eye relative to the helicopter, followed by the inverse of the transformations that
placed the helicopter in the scene.

Figure 6: the same scene as in Figure 2 but with the eye point following directly
behind the helicopter

helicopter

body top rotor back rotor

transforms

rotor geometry

eye

Figure 7: the change in the scene graph of Figure 2 to implement the view in Figure 6

 9

This change in the position of the eye means that the set of transformations that lead
to the eye point in the view branch must be changed, but the mechanism of writing
the inverse of these transformations in the display() function before beginning to
write the definition of the scene graph still applies; only the actual transformations to
be inverted will change.

This process can readily be generalized. If you want to design a scene with several
possible eye points and allow a user to choose among them, you can design the view
branch by creating one view for each eye point and using the set of transformations
leading to each eye point as the transformation for the corresponding view. The
choice of eye point will then create a choice of view, and the transformation for that
view will be inverted to create the viewing transformation being used at that time.

Because the viewing transformation is performed before the modeling
transformations, the student should be shown that the inverse transformations for the
eye are to be applied before the content branch is analyzed and its operations are
placed in the code. This has the effect of moving the eye to the top of the content
branch and placing the inverse of the eye path at the front of each set of
transformations for each shape node, and this explanation may help some students
understand the viewing transformation.

Inverting a Mechanism

A common technique in multi-body animation is to “ground” or freeze one of the
moving bodies and then let the other bodies continue their relative motion with
respect to the frozen body. In this way, the relative relationships among all the bodies
are maintained, but the chosen part is seen as being stationary. This is a useful
technique if a user wants to zoom in on one of the bodies and examine its relationship
to the universe around it in more detail. It is difficult to zoom in on something that is
moving. In Mechanical CAD, this process is known as “inverting the mechanism”
and it is often desired to allow a user to select and freeze a part as the CAD model is
being animated. At the moment of the selection, the chosen part is now “grounded,”
and the part that was initially grounded is now moving.

In MCAD applications, machine parts are usually hierarchically connected; they are
pinned, guided, or connected in some other way to adjacent bodies. In scene graph
terms, the relationship among the parts could be shown as in Figure 8. The boxes
represent both the geometry of and the relationships between the moving parts. It is
understood that there is a transformation between each box that positions a part with
respect to its parent. It is also understood that these transformations change with each
frame of the animation.

 10

Scene

Ground

Part 1

Part 2

Part 3

Figure 8: a hierarchy of parts in a mechanism

Note that the hierarchical relationships are not necessary for this discussion. If each
body undergoes an independently-computed motion, the scene graph could simply
appear as shown in Figure 9.

Scene

Ground Part 1 Part 2 Part 3

Figure 9: the same parts without a hierarchy

Inverting the mechanism is very similar to the eye placement we discussed in the
previous section. We must identify the transformations that place the part to be fixed,
and then must invert them so the rest of the mechanism will be seen to move relative
to the new now-fixed part. In order to identify the transformations that placed the
part to be fixed, we must capture the actual transformations at the moment the part is
frozen and then create a duplicate of the hierarchical tree at that moment. The full
duplicate branch is not needed, of course; we need create only the part of the tree as
deeply as the part that is being frozen. So, for example, if Part #2 was selected to be
frozen at a given time, the entire tree would now look like Figure 10, where the *
superscript on a part name indicates that it captures the transformations at the moment
that the part is frozen.

Scene

Ground

Part 1

Part 2

Part 3

Ground*

Part 1*

Part 2*

Figure 10: the scene graph with the transformations for Part 2* captured

 11

Grounding a moving part essentially means that an observer sitting on that part now
provides the overall scene eye position. So, using the techniques we developed
earlier in order to establish an eye position in a scene graph, and denoting the inverse
transformations by “Part-1,” we slide the right branch of the tree up and over so that
Part 2* is at the top of the tree as shown in Figure 11 and thus does not move as the
animation proceeds. We could call this mechanism an "AimAt" mechanism, because
we aim the view at the part being grounded.

Scene

Ground

Part 1

Part 2

Part 3

Ground*-1

Part 1*-1

Part 2*-1

Figure 11: the scene graph with the transformation for Part 2* inverted

The two parts of Figure 12 show time-exposures of a mechanical four-bar linkage.
The left-hand image image of the figure shows how the mechanism was originally
intended to function, with the bottom piece being ground. The right-hand image in
the figure shows the same mechanism in motion with the top piece grounded.

Figure 12: animated mechanisms with different parts fixed

RenderMan™

 12

In the PhotoRealistic RenderMan ™ system[3], the shadow-producing light source,
shadowdistant, has no explicit notion of an eye position or a light source position.
The eye must be explicitly positioned similarly to the OpenGL gluLookAt()
construct. Each light in the scene must be positioned with the AimAt() construct
discussed earlier. This makes RenderMan a particularly good example of using the
scene graphs described here as a way to organize the 3D scene and position the eye.

Using light sources to cast shadows in RenderMan also drops out nicely as well.
RenderMan’s approach to shadows requires the scene to be rendered first from the
point of view of each light source. These preliminary renderings do not record an
RGB image, but instead record a “shadow image” in which the distance from the light
to the closest object in the scene is recorded pixel-by-pixel. This is known as a
“shadow file”. For the final pass, the shadow files are ready in and used to determine
what is in a shadow and what is not. Thus, the preliminary renderings use the
LookAt() construct for each light:

RiFormat((RtInt) 256, (RtInt) 256, 1.0);
RiScreenWindow(-4.0, 4.0, -4.0, 4.0);
RiProjection("orthographic", RI_NULL);
RiDisplay(ZFILE, "zfile", RI_Z, RI_NULL);
LookAtv(LightFrom, LightTo, ZUp);
RiWorldBegin();
 . . .

and the final rendering uses the AimAt() construct.

RiTransformBegin();
 samples = 4;
 AimAtv(LightFrom, LightTo, ZUp);
 RiLightSource("shadowdistant",
 (RtToken)"shadowname", (RtPointer)&shadowfile,
 (RtToken)"samples", (RtPointer)&samples,
 (RtToken)"lightcolor", (RtPointer)&LightColor,
 (RtToken)"intensity", (RtPointer)&LightInten,
 RI_NULL);
RiTransformEnd();
 . . .

Note that the lights must be correctly positioned in the final rendering. Even though
that information is no longer needed for shadows, it is still needed to make the light
source shading look correct.

In Figure 13, the left-hand image shows a grayscale display of a RenderMan shadow
file image, with brighter shades implying a distance that is closer to the eye than the
distances shown by darker shades. The right-hand image shows a final rendering of
this scene in which the shadow file is read back in and the light source is properly
positioned to shade the scene correctly.

 13

Figure 13: a RenderMan™ shadow file and scene rendering

Using the scene graph analogue for coding

Let us use the name “modeling graph” for the analogue of the scene graph we
illustrated in the previous section. Because the modeling graph is intended as a
learning tool, we will resist the temptation to formalize its definition beyond the terms
we used there:

• shape node containing two components
- geometry content
- appearance content

• transformation node
• group node
• projection node
• view node

In this paper, we do not want to look at any kind of automatic parsing of the modeling
graph to create the scene. We intend our approach to be used for beginning students
who may not be computer science specialists and, even if they are, may not yet have
the experience to build a graph traverser. So instead of looking at automatic graph
parsing, we want to use the graph to help organize the structure and the relationships
in the model to help programmers organize their code to implement the hierarchical
modeling.

Once the student knows how to organize all the components of the model in the
modeling graph, he or she next needs to write the code to implement the model. This
turns out to be straightforward, and we can provide a set of re-write guidelines that
allow a student to re-write the graph as code. In this set of rules, we assume that
transformations are applied in the reverse of the order they are declared, as they are in
OpenGL, for example. This is consistent with most students’ first experience with
tree handling, which is usually an expression tree which is parsed in leaf-first order.
It is also consistent with the Java3D convention that transforms that are “closer” to
the geometry (nested more deeply in the scene graph) are applied first.

The informal re-write guidelines are as follows, including the re-writes for the view
branch as well as the content branch:

• Nodes in the view branch involve only the window, viewport, projection, and
viewing transformations. The window, viewport, and projection are handled
by simple functions in the API and should be at the top of the display function.

 14

• The viewing transformation is built from the transformations of the eye point
within the content branch by copying those transformations and undoing them
to place the eye effectively at the top of the content branch. This sequence
should be next in the display function.

• The content branch of the modeling graph is usually maintained fully within
the display function, but parts of it may be handled by other functions called
from within the display, depending on the design of the scene. A function that
defines the geometry of an object may be used by one or more shape nodes.
The modeling may be affected by parameters set by event callbacks, including
selections of the eye point, lights, or objects to be displayed in the view.

• Group nodes are points where several elements are assembled into a single
object. Each separate object is a different branch from the group node.
Before writing the code for a branch that includes a transformation group, the
student should push the modelview matrix; when returning from the branch,
the student should pop the modelview matrix.

• Transformation nodes include the familiar translations, rotations, and scaling
that are used in the normal ways, including any transformations that are part of
animation or user control. In writing code from the modeling graph, students
can write the transformations in the same sequence as they appear in the tree,
because the bottom-up nature of the design work corresponds to the last-
defined, first-used order of transformations. Because of the simple nature of
each transformation primitive, it is straightforward to undo each as needed to
create the viewing transformation.

• Shape nodes involve both geometry and appearance, and the appearance must
be done first because the current appearance is applied when geometry is
defined.
- An appearance node can contain texture, color, blending, or material

information that will make control how the geometry is rendered and thus
how it will appear in the scene.

- A geometry node will contain vertex information, normal information, and
geometry structure information such as strip or fan organization.

• Most of the nodes in the content branch can be affected by any interaction or
other event-driven activity. This can be done by defining the content by
parameters that are modified by the event callbacks. These parameters can
control location (by parametrizing rotations or translations), size (by
parametrizing scaling), appearance (by parametrizing appearance details), or
even content (by parametrizing switches in the group nodes).

In the example above, we would use the tree to write code as shown in skeleton form
in Figure 14. Most of the details, such as the parameters for the transformations and
the details of the appearance of individual objects, have been omitted, but we have
used indentation to show the push/pop pairs for the modelview matrix and to be able
to see the operations between these pairs easily. This is straightforward for a student
to understand and to learn to organize for himself or herself.

Animation is simple to add to this example. The rotors can be animated by adding an
extra rotation in their definition plane immediately after they are scaled and before the
transformations that orient them to be placed on the helicopter body, and by updating
angle of the extra rotation each time the idle event callback executes. The
helicopter’s behavior itself can be animated by updating the parameters of
transformations that are used to position it, again with the updates coming from the
idle callback. The helicopter’s behavior may be controlled by the user if the

 15

positioning transformation parameters are updated by callbacks of user interaction
events. So there are ample opportunities to have this graph represent a dynamic
environment and to include the dynamics in creating the model from the beginning.

Other variations in this scene could by developed by changing the position of the light
from its current absolute position to a position relative to the ground (by placing the
light as a part of the branch group containing the ground) or to a position relative to
the helicopter (by placing the light as a part of the branch group containing the
helicopter). The eye point could similarly be placed relative to another part of the
scene, or either or both could be placed with transformations that are controlled by
user interaction with the interaction event callbacks setting the transformation
parameters.

We emphasize that the student should include appearance content with each shape
node. Many of the appearance parameters involve a saved state in APIs such as
OpenGL [9] and so parameters set for one shape will be retained unless they are re-set
for the new shape. It is possible to design your scene so that shared appearances will
be generated consecutively in order to increase the efficiency of rendering the scene,
but this is a specialized organization that is inconsistent with more advanced APIs
such as Java3D. Thus in order to give students the best general background, re-
setting the appearance with each shape is better than relying on saved state, but
students can be given information on state so they can focus on efficiency if they
wish.

 16

display()
 set the viewport and projection as needed
 initialize modelview matrix to identity
 define viewing transformation by undoing eye location
 set eye through gluLookAt with default values
 define light position // note absolute location
 pushMatrix() // ground
 translate
 rotate
 scale
 define ground appearance (texture)
 draw ground
 popMatrix()
 pushMatrix() // helicopter
 translate
 rotate
 scale
 pushMatrix() // top rotor
 translate
 rotate
 scale
 define top rotor appearance
 draw top rotor
 popMatrix()
 pushMatrix() // back rotor
 translate
 rotate
 scale
 define back rotor appearance
 draw back rotor
 pushMatrix()
 // assume no transformation for the body
 define body appearance
 draw body
 popMatrix()
 swap buffers

Figure 14: code sketch to implement the modeling in Figure 4

Conclusions

The modeling graph presented in this paper is a natural analogue of the VRML or
Java3D scene graph that is itself a development of previous graph-oriented modeling,
and we have shown that it has many applications in modeling outside those original
systems. We believe that the modeling graph can give students assistance in
structuring their modeling that allows them to grasp modeling concepts more easily
and to create models that include both animation and interactive control of their
components. This kind of modeling and control is becoming particularly important as
the increasing power of low-cost computers and the ease of developing graphics
applications with APIs such as OpenGL lead to an increasing study of computer
graphics among students outside computer science.

References

[1] Andrea L. Ames, David R. Nadeau, and John L. Moreland, VRML 2.0

Sourcebook, Wiley, 1997

[2] Ed Angel, Interactive Computer Graphics with OpenGL, second edition,
Addison-Wesley, 2000

[3] Anthony A. Apodaca and Larry Gritz, Advanced Renderman, Morgan
Kaufmann, 2000

 17

[4] Maxine D. Brown, Understanding PHIGS: The Hierarchical Computer
Graphics Standard, Template Software Division of Megatek Corporation, 1985

[5] James D. Foley et al, Computer Graphics Principles and Practice, 2nd edition,
Addison-Wesley, 1990

[6] Henry Sowrizal, Kevin Rushforth, and Michael Deering, The Java3D™ 3D API
Specification, Addison-Wesley, 1995

[7] Henry A. Sowizral and David R. Nadeau, Introduction to Programming with
Java 3D, SIGGRAPH 99 Course Notes, Course 40

[8] Josie Wernecke, The Inventor Mentor, Addison-Wesley, 1994

[9] Mason Woo et al., OpenGL Programmers Guide, 3rd edition (version 1.2),
Addison-Wesley, 1999

Author contact information:

Steve Cunningham
Department of Computer Science
California State University Stanislaus
801 W. Monte Vista Avenue
Turlock, CA 95382
+1.209.667.3176; fax +1.209.667.3848
cunningham@siggraph.org

Michael J. Bailey
Senior Principal Scientist
San Diego Supercomputer Center
PO Box 85608
San Diego, CA 92186
+1.858.534.5142; fax +1.858.534.5152
mjb@sdsc.edu

