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ABSTRACT 
GPU programming is fast becoming an essential skill for 
computer graphics students. It has immediate application in all 
areas of graphics including science, engineering, art, animation, 
and gaming. Because it is new, experience with teaching GPU 
programming is scarce. This paper describes the teaching of a 
GPU programming course with a hands-on program called 
glman. glman allows students to create a shader scene 
description file which not only creates the 3D scene, but creates 
an interactive user interface to adjust shader parameters. Our 
experience in an experimental class taught in Spring 2006 is that 
glman is flexible enough to demonstrate and experiment with 
many shader concepts, and creates a fast and fun learning curve 
for the students. 

Categories and Subject Descriptors 
1.3 [Computer Graphics], 1.3.1 [Graphics Processors], K.3.1 
[Computer Uses in Education] 

Keywords 
Computer graphics, GPU, game development, graphics shaders, 
visualization 
 
1. INTRODUCTION 
GPU-programmable shaders are the most exciting development 
in computer graphics in a long time. Using shaders, 
programmers have the flexibility to perform amazing vertex-by-
vertex and pixel-by-pixel effects, combined with the parallel-
processor performance to use shaders in interactive graphics. 
The emergence of shader programming is having profound 
effects on all areas of computer graphics including science, 
engineering, art, animation, and gaming. But because GPU 
programming is fairly new, and because specialized hardware is 
needed to use it, teaching experience with this topic is scarce. 
Also, the mathematics of shader effects are such that the 
consequences of changing certain shader parameter values are 
not obvious. Converging on good values is difficult. 

 

2. THE COURSE 
The course, CS 519, was a multidisciplinary course, with 
students from Computer Science, Engineering, and Geosciences. 
The course taught the theory behind how shaders work, enough 
graphics software and hardware to understand what was 
happening behind-the-scenes, the mathematics of shader effects, 
and showed their use in a variety of applications.  

The assignments consisted of several shader-creation projects 
which solidified the students’ understanding of various shader 
programming and mathematics concepts. The class culminated 
in a final project, the Shader Olympics, in which each student 
chose their own area of interest and developed a shader-based 
application in that area. 

The class lectures were in a hands-on lab. We took advantage of 
this by dividing the class into teams of 2-3 students each and 
starting most classes with a “Team Challenge” – a small 
assignment that each team worked on together. The goal was to 
have the students help each other with key concepts. We also 
took advantage of the hands-on lab by having the students run 
and modify live examples during the class to reinforce lecture 
topics. 

With these pedagogic objectives in mind, it was important to be 
able to provide some sort of environment where the students 
could run instructor-provided examples, discover the effects of 
certain key parameters, and then quickly change the examples to 
perform new tasks. The answer was glman. 

glman is a program that was written to help teach the OpenGL 
Shading Language (GLSL) [FER04, PF05, ROS06]. It uses an 
input file type called GLIB (GL Interface Bytestream), which is 
modeled after the style of the RenderMan Interface Bytestream 
(RIB) [UPS90, AG99]. glman reads a GLIB file as well as one 
or more vertex and fragment shader files. It then creates the 
requested scene, activates the requested shaders, and creates 
sliders for user-defined global parameters. glman also provides a 
Perlin noise [PER85, PER02] 3D texture for use in the shaders. 
Our experience with using glman in an Oregon State University 
college class is that students get a maximum amount of quality 
learning in a minimum amount of time. 
 
3. THE GRAPHICS PIPELINE AND GPU 
PROGRAMMING 
Figure 1 shows a generic view of the computer graphics 
rendering process. There are two locations in this process into 
which an application developer can inject custom GPU code: the 
vertex processing and the fragment processing. The Vertex 
Processor (VP) takes 3D coordinates in the modeling coordinate 
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space. It transforms them into world coordinates using a 
modeling transform, then transforms them into eye-space 
coordinates using a viewing transform. It then performs 
projective transformation and normalized device coordinate 
mapping. When coordinates leave the vertex processing stage, 
they are then clipped and mapped into screen-space coordinates, 
ready to be rasterized. The reason that the VP is a great location 
to place custom code is that there is considerable information 
about the geometry available at that point, and the VP can do a 
variety of things with it. 

 
Figure 1: Generic Computer Graphics Process 

 
The second location is the Fragment Processor (FP). Because the 
output of the rasterizer is already an interpolated red, green, blue 
color, students are usually confused about the function of the FP. 
The inputs to the FP are every piece of information that is 
currently available about this pixel. The most important pieces 
of information include the pixel’s previously-assigned red, 
green, and blue color; its alpha 
(transparency) value; its texture 
coordinates. The pixel also has 
information passed from the 
Vertex Processor and 
interpolated in the rasterizer 
such as the pixel’s x, y, and z 
location and its surface normal. 
The FP also has access to any 
global information passed by 
the application program such as 
light positions. The Fragment 
Processor’s job is to take all 
this information and produce 
the final red, green, blue, and 
alpha for that pixel. It also has 
the option to completely 
discard this pixel. The reason 
that the FP is a great place to 
write custom code is that the 
appearance of that pixel can be 
computed based on whatever 
mathematics, optics, physics, 
or whimsy one wants to 
program. 

 
4. INTRODUCING SHADERS TO 
STUDENTS 
Our experience is that students learn shaders very slowly if they 
must go through the full edit-compile-execute sequence for 
every feature they want to try. We believe that learning shaders 
works best when the students are in a very tight try-it-myself 
loop. The glman user interface is shown here, and the glman tool 
was developed to give students the chance to have this 
experience.  

glman is so named because its input looks a lot like the RIB files 
of RenderMan. As such, its input files are called GLIB files, for 
GL Interface Bytestream. The .glib file that produced Figure 2 
(below) is shown here: 

Perspective 90 
Translate -2 0 0 
Vertex dots.vert 
Fragment dots.frag 
Program dots Diam <0 0.1 1.0> Tol <0. 0. .005> \ 
 DotColor {1.,1.,1.} 
Color [1 0 0] 
Sphere 1 
Color [1 0.5 0] 
Translate 4 0 0 
Teapot 

 
The lines: 

Vertex dots.vert 
Fragment dots.frag 
Program dots Diam <0 0.1 1.0> Tol <0. 0. .005> \ 
 DotColor {1.,1.,1.} 

 
are the most 
interesting. The 
first line causes the 
file dots.vert to be 
read and compiled 
as a vertex shader. 
The second line 
does the same for 
the fragment shader 
file dots.frag. The 
third line links the 
current vertex and 
fragment shaders 

into a single shader program, which will then be applied to 
subsequent geometry. That line also creates two uniform global 
variables Diam and Tol, and puts them in a rollout panel on 
sliders for the student to change interactively, as shown here.  
 
The values in the GLIB angle brackets are the minimum value 
on the slider, the initial value, and the maximum value. Uniform 
variables that 
represent colors 
are enclosed in 
curly brackets. 
They are {red 
green blue 
[alpha]} and will 
generate a 
button in the UI 
that, when 
clicked, brings 



   

up a color selector as shown here. The color selector allows the 
user to change this color variable on the fly. 
 
Finally, the lines: 

Color [1 0 0] 
Sphere 1 
Color [1 0.5 0] 
Translate 4 0 0 
Teapot 

 
define the scene model that the shaders act on: in this case, a red 
sphere and an orange teapot. These objects are shown in Figure 
2 with the shading applied. 

The following code shows the dots vertex shader in action -- it 
computes diffuse light source shading based on the transformed 
surface normal. It sets up the variables Color and 
LightIntensity to be interpolated by the rasterizer into each 
instance of the fragment shader. It also multiplies this model-
space coordinate by the full Model-View-Projection matrix and 
passes it into the rest of the pipeline. 
 
varying vec4 Color; 
varying float LightIntensity;  
 
void 
main( void ) 
{ 
 const vec3 LightPos = vec3( 0., 0., 10. ); 
 
 vec3 tnorm = normalize( gl_NormalMatrix * gl_Normal ); 
 vec3 ECposition = vec3( gl_ModelViewMatrix * gl_Vertex ); 
 LightIntensity = dot( normalize(LightPos - ECposition), tnorm ); 
 LightIntensity = abs( LightIntensity ); 
 
 Color = gl_Color; 
 gl_TexCoord[0] = gl_MultiTexCoord0; 
 gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex; 
} 
 
The following code shows the corresponding fragment shader, 
using the global variable values from the sliders. The fragment 
shader uses the varying and uniform variables to decide if this 
fragment is in a dot or not. It uses the GLSL-provided 
smoothstep function to create a blurred transition from the 
object’s real color to the dot color so that the edges of the dot are 
blended rather than being blatantly aliased. It then passes this 
procedurally-determined color into the rest of the pipeline. 
 
varying vec4 Color; 
varying float LightIntensity;  
 
uniform float Diam; 
uniform float Tol; 
uniform vec4 DotColor; 
 
void 
main( void ) 
{ 
 float sp = 2. * gl_TexCoord[0].s; 
 float tp = gl_TexCoord[0].t; 
 float numins = int( sp / Diam ); 
 float numint = int( tp / Diam ); 
 
 gl_FragColor = Color; 
 if( mod( numins+numint, 2. ) == 0. ) 
 { 
 sp = sp - numins*Diam; 
 tp = tp - numint*Diam; 

 float radius = Diam/2.; 
 vec3 sptp = vec3( sp, tp, 0. ); 
 vec3 cntr = vec3( radius, radius, 0. ); 
 float d = distance( sptp, cntr ); 
 float t = smoothstep( radius-Tol, radius+Tol, d ); 
 gl_FragColor = mix( DotColor, Color, t ); 
 } 
 
 gl_FragColor.rgb *= LightIntensity; 
} 
 
Figure 2 shows what this shader combination produced: 

 
Figure 2: Procedural Dots Computed in Model Coordinates 

 
Figure 3 shows the effect of blurring the dot transition with the 
Tol slider. 

  
Figure 3: Procedural Color Blurring  

(left:Tol=0., right: Tol = .005) 
 
Multiple vertex-fragment-program combinations are allowed in 
the same GLIB file. If there is more than one combination, they 
will appear as separate rollout panels in the user interface. In this 
way, glman allows a student to create a scene, vertex shaders 
and fragment shaders, and interactively test the effects of many 
different parameter combinations in seconds, rather than minutes 
or hours. 
 
5. ASSIGNMENTS AND EXAMPLES 
The following figures show some of the assignments and 
examples used in the class. Figure 4 uses a sine-sine function to 
displace the vertices of a sphere. Figure 5 uses a noise function 
to decimate geometry. The fragment shader uses the discard 
keyword to force certain pixels to not be displayed. Figure 6 
shows “Toon Rendering”, a fragment program which combines 
color quantization with an edge detection (programmed by 
performing a Sobel convolution with neighboring pixels in the 
image). Figure 7 shows a Line Integral Convolution 
programmed in the fragment shader very much like the edge 
detection, but by examining and blending pixel colors along 
flow lines. Figure 8 uses the vertex shader to displace the 
vertices of a 3D object in such a way that they follow a flow 
streamline and perform a time-based peristaltic motion to show 
flow speed. Figure 9 shows bump-mapping performed in the 



   

fragment shader to give the appearance of 3D terrain surfaces. 
Figure 10 shows the use of the fragment shader to composite 3D 
volume slices to give a visualization volume rendering. 
 

   
Figure 4: Surface displacement in the vertex shader and 

gridline assignment in the fragment shader 
 

 
Figure 5: Noise-based erosion shader, using texture-space 

coordinates in the fragment shader 
 

  
Figure 6: Interactive “Toon Rendering” 

 

 
Figure 7: Interactive Line Integral Convolution 

 

  
Figure 8: Flow visualization peristaltic object extrusion 

 

 
Figure 9: Terrain visualization bump-mapping 

 



   

 
Figure 10: Volume visualization in the fragment shader 

 
6. FUTURE TOPICS: 
GEOMETRY SHADERS AND GPGPU 
When the class is offered next year, we will incorporate two new 
topics: Geometry Shaders and General-Purpose GPU (GPGPU). 
The newly-announced Geometry Shader capability adds a user-
programmable geometry-creation step into the graphics pipeline 
after the Vertex Shader. This allows a user to automatically 
tessellate complex geometry, or perform various geometry-
dependent graphics operations such as silhouettes, sprites, and 
shadows. 

In GPGPU ([GPGPU06]), the GPU is used for general equation-
solving, taking advantage of its considerable parallel 
programming capability.1 By treating a 2D array of data as a 2D 
image of pixels, equations can be solved by generating a large 
number of fragments, typically by drawing a single large 
quadrilateral. An example of this is using the GPU to solve John 
Conway’s equations for the Game of Life [CONW70]. An 
output from this application is shown below. The speed of the 
GPU is apparent in that this application is able to solve these 
equations at a rate of 300 million computed-pixels per second, 
almost too fast to see. 
 
7. CONCLUSIONS 
glman has been used in our university class to teach GPU 
programming. We have found it to be an excellent tool to 
explain how certain shader parameters work and to let students 
quickly explore on their own. It also nicely supports our in-class 
hands-on examples and Team Challenges. Because students 
don’t need to write full programs, and because glman creates a 
user interface from user directives, it is fast and easy to get 
started, and encourages individual exploration. Because the 
uniform variables can be so readily manipulated, it is easy to 
create sophisticated shaders and determine what variables 
should be used and how they should be set. 

The class syllabus is located at: 

http://eecs.oregonstate.edu/~mjb/cs519 

The glman program and documentation can be obtained at: 

http://eecs.oregonstate.edu/~mjb/glman 

 

                                                 
1 For example, the new NVIDIA 8800 has up to 128 parallel 
vertex/fragment processors. 

 
Figure 11: A Game-of-Life Parallel Fragment Program 
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