

A Hands-on Environment for Teaching GPU Programming

Mike Bailey
Oregon State University

2117 Kelley Engineering Center
Corvallis, OR 97331-5501

+1.541.737.2542

mjb@cs.oregonstate.edu

Steve Cunningham
Grinnell College

715 Mesquite Drive
Coralville, IA 52241
+1.319.351.6800

cunningham@siggraph.org

ABSTRACT
GPU programming is fast becoming an essential skill for
computer graphics students. It has immediate application in all
areas of graphics including science, engineering, art, animation,
and gaming. Because it is new, experience with teaching GPU
programming is scarce. This paper describes the teaching of a
GPU programming course with a hands-on program called
glman. glman allows students to create a shader scene
description file which not only creates the 3D scene, but creates
an interactive user interface to adjust shader parameters. Our
experience in an experimental class taught in Spring 2006 is that
glman is flexible enough to demonstrate and experiment with
many shader concepts, and creates a fast and fun learning curve
for the students.

Categories and Subject Descriptors
1.3 [Computer Graphics], 1.3.1 [Graphics Processors], K.3.1
[Computer Uses in Education]

Keywords
Computer graphics, GPU, game development, graphics shaders,
visualization

1. INTRODUCTION
GPU-programmable shaders are the most exciting development
in computer graphics in a long time. Using shaders,
programmers have the flexibility to perform amazing vertex-by-
vertex and pixel-by-pixel effects, combined with the parallel-
processor performance to use shaders in interactive graphics.
The emergence of shader programming is having profound
effects on all areas of computer graphics including science,
engineering, art, animation, and gaming. But because GPU
programming is fairly new, and because specialized hardware is
needed to use it, teaching experience with this topic is scarce.
Also, the mathematics of shader effects are such that the
consequences of changing certain shader parameter values are
not obvious. Converging on good values is difficult.

2. THE COURSE
The course, CS 519, was a multidisciplinary course, with
students from Computer Science, Engineering, and Geosciences.
The course taught the theory behind how shaders work, enough
graphics software and hardware to understand what was
happening behind-the-scenes, the mathematics of shader effects,
and showed their use in a variety of applications.

The assignments consisted of several shader-creation projects
which solidified the students’ understanding of various shader
programming and mathematics concepts. The class culminated
in a final project, the Shader Olympics, in which each student
chose their own area of interest and developed a shader-based
application in that area.

The class lectures were in a hands-on lab. We took advantage of
this by dividing the class into teams of 2-3 students each and
starting most classes with a “Team Challenge” – a small
assignment that each team worked on together. The goal was to
have the students help each other with key concepts. We also
took advantage of the hands-on lab by having the students run
and modify live examples during the class to reinforce lecture
topics.

With these pedagogic objectives in mind, it was important to be
able to provide some sort of environment where the students
could run instructor-provided examples, discover the effects of
certain key parameters, and then quickly change the examples to
perform new tasks. The answer was glman.

glman is a program that was written to help teach the OpenGL
Shading Language (GLSL) [FER04, PF05, ROS06]. It uses an
input file type called GLIB (GL Interface Bytestream), which is
modeled after the style of the RenderMan Interface Bytestream
(RIB) [UPS90, AG99]. glman reads a GLIB file as well as one
or more vertex and fragment shader files. It then creates the
requested scene, activates the requested shaders, and creates
sliders for user-defined global parameters. glman also provides a
Perlin noise [PER85, PER02] 3D texture for use in the shaders.
Our experience with using glman in an Oregon State University
college class is that students get a maximum amount of quality
learning in a minimum amount of time.

3. THE GRAPHICS PIPELINE AND GPU
PROGRAMMING
Figure 1 shows a generic view of the computer graphics
rendering process. There are two locations in this process into
which an application developer can inject custom GPU code: the
vertex processing and the fragment processing. The Vertex
Processor (VP) takes 3D coordinates in the modeling coordinate

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGCSE ’07, March 7–11, 2007, Convington, Kentucky, USA.
Copyright 2007 ACM 1-59593-361-1/07/0003…$5.00.

space. It transforms them into world coordinates using a
modeling transform, then transforms them into eye-space
coordinates using a viewing transform. It then performs
projective transformation and normalized device coordinate
mapping. When coordinates leave the vertex processing stage,
they are then clipped and mapped into screen-space coordinates,
ready to be rasterized. The reason that the VP is a great location
to place custom code is that there is considerable information
about the geometry available at that point, and the VP can do a
variety of things with it.

Figure 1: Generic Computer Graphics Process

The second location is the Fragment Processor (FP). Because the
output of the rasterizer is already an interpolated red, green, blue
color, students are usually confused about the function of the FP.
The inputs to the FP are every piece of information that is
currently available about this pixel. The most important pieces
of information include the pixel’s previously-assigned red,
green, and blue color; its alpha
(transparency) value; its texture
coordinates. The pixel also has
information passed from the
Vertex Processor and
interpolated in the rasterizer
such as the pixel’s x, y, and z
location and its surface normal.
The FP also has access to any
global information passed by
the application program such as
light positions. The Fragment
Processor’s job is to take all
this information and produce
the final red, green, blue, and
alpha for that pixel. It also has
the option to completely
discard this pixel. The reason
that the FP is a great place to
write custom code is that the
appearance of that pixel can be
computed based on whatever
mathematics, optics, physics,
or whimsy one wants to
program.

4. INTRODUCING SHADERS TO
STUDENTS
Our experience is that students learn shaders very slowly if they
must go through the full edit-compile-execute sequence for
every feature they want to try. We believe that learning shaders
works best when the students are in a very tight try-it-myself
loop. The glman user interface is shown here, and the glman tool
was developed to give students the chance to have this
experience.

glman is so named because its input looks a lot like the RIB files
of RenderMan. As such, its input files are called GLIB files, for
GL Interface Bytestream. The .glib file that produced Figure 2
(below) is shown here:

Perspective 90
Translate -2 0 0
Vertex dots.vert
Fragment dots.frag
Program dots Diam <0 0.1 1.0> Tol <0. 0. .005> \
 DotColor {1.,1.,1.}
Color [1 0 0]
Sphere 1
Color [1 0.5 0]
Translate 4 0 0
Teapot

The lines:

Vertex dots.vert
Fragment dots.frag
Program dots Diam <0 0.1 1.0> Tol <0. 0. .005> \
 DotColor {1.,1.,1.}

are the most
interesting. The
first line causes the
file dots.vert to be
read and compiled
as a vertex shader.
The second line
does the same for
the fragment shader
file dots.frag. The
third line links the
current vertex and
fragment shaders

into a single shader program, which will then be applied to
subsequent geometry. That line also creates two uniform global
variables Diam and Tol, and puts them in a rollout panel on
sliders for the student to change interactively, as shown here.

The values in the GLIB angle brackets are the minimum value
on the slider, the initial value, and the maximum value. Uniform
variables that
represent colors
are enclosed in
curly brackets.
They are {red
green blue
[alpha]} and will
generate a
button in the UI
that, when
clicked, brings

up a color selector as shown here. The color selector allows the
user to change this color variable on the fly.

Finally, the lines:

Color [1 0 0]
Sphere 1
Color [1 0.5 0]
Translate 4 0 0
Teapot

define the scene model that the shaders act on: in this case, a red
sphere and an orange teapot. These objects are shown in Figure
2 with the shading applied.

The following code shows the dots vertex shader in action -- it
computes diffuse light source shading based on the transformed
surface normal. It sets up the variables Color and
LightIntensity to be interpolated by the rasterizer into each
instance of the fragment shader. It also multiplies this model-
space coordinate by the full Model-View-Projection matrix and
passes it into the rest of the pipeline.

varying vec4 Color;
varying float LightIntensity;

void
main(void)
{
 const vec3 LightPos = vec3(0., 0., 10.);

 vec3 tnorm = normalize(gl_NormalMatrix * gl_Normal);
 vec3 ECposition = vec3(gl_ModelViewMatrix * gl_Vertex);
 LightIntensity = dot(normalize(LightPos - ECposition), tnorm);
 LightIntensity = abs(LightIntensity);

 Color = gl_Color;
 gl_TexCoord[0] = gl_MultiTexCoord0;
 gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex;
}

The following code shows the corresponding fragment shader,
using the global variable values from the sliders. The fragment
shader uses the varying and uniform variables to decide if this
fragment is in a dot or not. It uses the GLSL-provided
smoothstep function to create a blurred transition from the
object’s real color to the dot color so that the edges of the dot are
blended rather than being blatantly aliased. It then passes this
procedurally-determined color into the rest of the pipeline.

varying vec4 Color;
varying float LightIntensity;

uniform float Diam;
uniform float Tol;
uniform vec4 DotColor;

void
main(void)
{
 float sp = 2. * gl_TexCoord[0].s;
 float tp = gl_TexCoord[0].t;
 float numins = int(sp / Diam);
 float numint = int(tp / Diam);

 gl_FragColor = Color;
 if(mod(numins+numint, 2.) == 0.)
 {
 sp = sp - numins*Diam;
 tp = tp - numint*Diam;

 float radius = Diam/2.;
 vec3 sptp = vec3(sp, tp, 0.);
 vec3 cntr = vec3(radius, radius, 0.);
 float d = distance(sptp, cntr);
 float t = smoothstep(radius-Tol, radius+Tol, d);
 gl_FragColor = mix(DotColor, Color, t);
 }

 gl_FragColor.rgb *= LightIntensity;
}

Figure 2 shows what this shader combination produced:

Figure 2: Procedural Dots Computed in Model Coordinates

Figure 3 shows the effect of blurring the dot transition with the
Tol slider.

Figure 3: Procedural Color Blurring

(left:Tol=0., right: Tol = .005)

Multiple vertex-fragment-program combinations are allowed in
the same GLIB file. If there is more than one combination, they
will appear as separate rollout panels in the user interface. In this
way, glman allows a student to create a scene, vertex shaders
and fragment shaders, and interactively test the effects of many
different parameter combinations in seconds, rather than minutes
or hours.

5. ASSIGNMENTS AND EXAMPLES
The following figures show some of the assignments and
examples used in the class. Figure 4 uses a sine-sine function to
displace the vertices of a sphere. Figure 5 uses a noise function
to decimate geometry. The fragment shader uses the discard
keyword to force certain pixels to not be displayed. Figure 6
shows “Toon Rendering”, a fragment program which combines
color quantization with an edge detection (programmed by
performing a Sobel convolution with neighboring pixels in the
image). Figure 7 shows a Line Integral Convolution
programmed in the fragment shader very much like the edge
detection, but by examining and blending pixel colors along
flow lines. Figure 8 uses the vertex shader to displace the
vertices of a 3D object in such a way that they follow a flow
streamline and perform a time-based peristaltic motion to show
flow speed. Figure 9 shows bump-mapping performed in the

fragment shader to give the appearance of 3D terrain surfaces.
Figure 10 shows the use of the fragment shader to composite 3D
volume slices to give a visualization volume rendering.

Figure 4: Surface displacement in the vertex shader and

gridline assignment in the fragment shader

Figure 5: Noise-based erosion shader, using texture-space

coordinates in the fragment shader

Figure 6: Interactive “Toon Rendering”

Figure 7: Interactive Line Integral Convolution

Figure 8: Flow visualization peristaltic object extrusion

Figure 9: Terrain visualization bump-mapping

Figure 10: Volume visualization in the fragment shader

6. FUTURE TOPICS:
GEOMETRY SHADERS AND GPGPU
When the class is offered next year, we will incorporate two new
topics: Geometry Shaders and General-Purpose GPU (GPGPU).
The newly-announced Geometry Shader capability adds a user-
programmable geometry-creation step into the graphics pipeline
after the Vertex Shader. This allows a user to automatically
tessellate complex geometry, or perform various geometry-
dependent graphics operations such as silhouettes, sprites, and
shadows.

In GPGPU ([GPGPU06]), the GPU is used for general equation-
solving, taking advantage of its considerable parallel
programming capability.1 By treating a 2D array of data as a 2D
image of pixels, equations can be solved by generating a large
number of fragments, typically by drawing a single large
quadrilateral. An example of this is using the GPU to solve John
Conway’s equations for the Game of Life [CONW70]. An
output from this application is shown below. The speed of the
GPU is apparent in that this application is able to solve these
equations at a rate of 300 million computed-pixels per second,
almost too fast to see.

7. CONCLUSIONS
glman has been used in our university class to teach GPU
programming. We have found it to be an excellent tool to
explain how certain shader parameters work and to let students
quickly explore on their own. It also nicely supports our in-class
hands-on examples and Team Challenges. Because students
don’t need to write full programs, and because glman creates a
user interface from user directives, it is fast and easy to get
started, and encourages individual exploration. Because the
uniform variables can be so readily manipulated, it is easy to
create sophisticated shaders and determine what variables
should be used and how they should be set.

The class syllabus is located at:

http://eecs.oregonstate.edu/~mjb/cs519

The glman program and documentation can be obtained at:

http://eecs.oregonstate.edu/~mjb/glman

1 For example, the new NVIDIA 8800 has up to 128 parallel
vertex/fragment processors.

Figure 11: A Game-of-Life Parallel Fragment Program

8. ACKNOWLEDGEMENTS
The base funding for the Computer Graphics Education Lab, in
which this course is taught, came from Oregon State
University’s internal Technology Resource Fee fund. Our thanks
to NVIDIA for their help with providing high-end graphics for
this lab.

9. REFERENCES
[AG99] Tony Apodaca and Larry Gritz, Advanced RenderMan:

Creating CGI for Motion Pictures, Morgan Kaufmann,
1999.

[CONW70] John Conway, in "Mathematical Games", Scientific
American, October 1970.

[FER04] Randima Fernando, GPU Gems, NVIDIA, 2004.
[GPGPU06] http://www.gpgpu.org
[PER85] Perlin, K., An Image Synthesizer, Proc. ACM

SIGGRAPH '85, Vol. 19, No.3, July, 1985, pp. 287-296.
[PER02] Perlin, K., Improving Noise, Proc. ACM SIGGRAPH

'02, Vol. 21, No.3, July, 2002, pp. 681-682.
[PF05] Matt Pharr and Randima Fernando, GPU Gems 2,

NVIDIA, 2005.
[ROS06] Randi Rost, OpenGL Shading Language, Addison-

Wesley, 2006.
[UPS90] Steve Upstill, The RenderMan Companion, Addison-

Wesley, 1990.

