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Analyzing Terrain Surfaces to Synthesize and Visualize
Optimal-Coverage Tractor Paths for Conservation Farming

Category: Research

Abstract— There are competing economic goals when plowing a farm field. The rows must be level, to reduce erosion. The rows
should also perfectly abut each other, so that no land is wasted on gaps and no fuel is wasted on overlapping areas. With todays
GPS-guided tractors, it has become worthwhile to try to produce an optimal tractor path, knowing that a tractor can actually be
programmed to follow it. This paper describes the use of visualization methods to analyze a farm field represented by a topologically
organized neural network characterized by a shunting neural equation. A complete coverage tractor path is autonomously generated
from the dynamic activity landscape of the neural network using GPU programming and framebuffer computing. The effectiveness of
the proposed approach is verified through computer simulation.

Index Terms—Farming, GPU, neural networks, terrain surfaces.

1 INTRODUCTION

The field of farming called “Conservation Plowing” seeks to maximize
crop production while minimizing both the energy needed to produce
it and the waste due to soil erosion. This concept is not new – the
Phoenicians originally developed the concept of plowing furrows to
follow the field elevation contours in order to retain water and reduce
erosion [25]. But, from visualization we know that evenly-spaced con-
tour elevation values don’t generally produce geometrically evenly-
spaced contour lines. If successive contour lines are “too far” apart,
gaps in field coverage will occur. If they are “too close” together,
plowed areas of the field will overlap and waste fuel. Also, too much
overlap between passes results in excessive soil compaction, and re-
duces field productivity [1].

For many years, this process has been done by a human tractor
driver eyeballing the terrain. This is easiest if the field is relatively
flat, which makes the overlap issues much more important than the
contour-following issues. But, farmers no longer have the luxury of
only growing crops on flat fields. In the effort to maximize land use,
hilly crop fields are being pressed into service. This increases the im-
portance of following the hill contours too.

Exactly following the hill contours would be difficult to do by hand.
Now, however, GPS-controlled tractors are becoming common. A
tractor GPS unit consists of three GPS receivers on the vehicle and
one on a nearby base station [2]. This setup gives the tractor position
to within an inch of actual. This means that, if an optimal path can
be produced, a tractor can be programmed to follow it. The trick is in
trading off the need to follow contours versus the need to avoid gaps
and overlaps.

2 PREVIOUS WORK

Thus coverage path planning becomes a fundamentally important is-
sue in farming, as it has long been for the greater field of robotics.
Complete coverage path planning (CCPP) of robots is a special type
of path planning in a two-dimensional environment, which requires
the robot path to pass through every area in the workspace.

There are a lot of studies on the path planning for robots using
various approaches. Some of the early models deal with static en-
vironments only, some suffer from undesired local minima. Most
commonly applied to cleaning robots (think Roomba), many other
robotic applications also require complete coverage path planning,
e.g., vacuum robots [28], painter robots [5], autonomous underwater
covering vehicles [12], de-mining robots [9], land mine detectors [5],
lawn mowers [6], automated harvesters [7], agricultural crop harvest-
ing equipment [8], and window cleaners [9]. Autonomous coverage
robots are particularly useful in hazardous environments. There have
been many studies on CCPP using various approaches, e.g., artificial
potential field [22], approximate cellular decomposition, exact cellu-
lar decomposition, template-based model [14], neural networks, and

fuzzy logic.
Approximate cellular decomposition models generally decomposed

the workspace into discrete cells [19] or grids [30], while a recently
proposed model subdivides the workspace into discrete cells and fol-
lowing a spanning tree of a graph induced by the cells [8]. There
are many exact cellular decomposition based approaches to CCPP as
well [6, 3]. The fundamental concept is to decompose the workspace
into a collection of nonoverlapping cells, and then, the robot searches
the connectivity graph that represents the adjacency relation among
cells. Thus the complete coverage can be achieved by back and forth
robot motions.

Neural network approaches introduce backpropagation [24] and
learning [28, 20], but due to their computational complexity, have dif-
ficulty dealing with unstructured environments.

Fuzzy logic based methods [7, 16] can be employed for CCPP, but
due to the difficulty in defining suitable fuzzy rules, the generated
paths are generally not smooth enough at turning and traversing.

Various other approaches were also proposed for CCPP, such as
approaches based on covering salesman problem (CSP) [4], and using
heat trails as short-lived navigational markers [23].

Glasius et al. [10] proposed a neural network model for real-time
trajectory formation with collision free in a nonstationary environ-
ment. However, this model suffers from slow dynamics and cannot
perform properly in a fast changing environment [10]. Inspired by
Hodgkin and Huxleys [13] membrane equation and the later developed
Grossbergs shunting model [11], Meng and Yang [18, 27] proposed a
neural network approach to dynamical trajectory generation with col-
lision free in an arbitrary environment. These models are capable of
planning real-time optimal path in non-stationary situations without
any learning process. In later work Yang and Meng enhanced their
model to take into account the clearance from obstacles [26], which is
demanded in many situations.

Obstacle clearance can be very important in path planning. Many
models for path planning concentrate on minimizing the distance be-
tween the starting position and target (e.g., [17], [10, 18, 27]) In a
static environment, the path planned by models in [10, 18, 27] has
the shortest distance as well, although they do not explicitly minimize
any cost functions. They assume that the shortest path is the “best”
path. The obstacle clearance is not considered during the path plan-
ning. Therefore, the path clips the corners of obstacles and runs down
the edges of obstacles. This is the so called “too close” problem [29].
Such a “too close” problem can be avoided by expanding the obstacles
by an extra size, but some possible solution paths are blocked. This
strategy is not acceptable, particularly when all the possible solution
path are blocked after the expanding. On the other hand, some models
(e.g., [15]) maximize the clearance from obstacles while minimizing
the distance from the starting position to the target. The found path
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passes through the middle of free space [15]. Therefore it may deviate
significantly from the shortest path. This is the so called too far prob-
lem [29]. Several models were proposed to reduce or solve the “too
far” and “too close” problems. For example, Zelinsky [29] proposed
a path transform model for finding a neither too far nor too close path
in a static environment by combining the distance transform and the
obstacle transform.

In this paper, based on our adaptation of the shunting model devel-
oped by Yang and Meng [26], we propose a neural network model for
real-time contour following coverage path generation on an arbitrary
terrain. The dynamics of each neuron is characterized by a shunting
equation derived from Hodgkin and Huxleys [13] membrane model
for a biological neural system. There are only local lateral connec-
tions among neurons. The varying environment is represented by the
dynamic activity landscape of the neural network. The optimal real-
tame path is planned through the dynamical neural activity landscape.
The optimality in the real-time path planning with safety considera-
tion is in the sense of a continuous, smooth path toward the objective
of complete coverage. The model algorithm is computationally sim-
ple. The proposed model is capable of planning real-time complete
coverage paths with obstacle avoidance in an unstructured environ-
ment. The term “real-time” is in the sense that the coverage path plan-
ner responds immediately to the dynamic environment including the
robot, targets (uncovered areas) and obstacles. It is the first time that a
nonlearning based neural network approach is developed for real-time
contour farming.

3 MODEL

The fundamental concept of the proposed model is to develop a neural
network architecture, whose dynamic neural activity landscape repre-
sents a static farm field. Fortunately, the neural shunting model de-
veloped by Yang and Meng, is readily adapted to this purpose. The
real-time collision-free tractor motion is planned based on the dynamic
activity landscape of the neural network and the previous tractor loca-
tion, such that all areas of the field will be covered.

The 2-D Cartesian workspace in the proposed approach is dis-
cretized into squares as in most CCPP models. Unlike other ap-
proaches the diagonal length of each discrete area is not equal to the
robot sweeping radius, as this would incur inefficient overlap in the
tractor coverage.

When the tractor is moved, the direction is determined by a local
sampling of the dynamic activity landscape, the “plow” endpoints are
then found, and the coverage path is “swept” from its previous posi-
tion, all discrete positions encompassed by this motion are then con-
sidered “covered.”

The proposed neural network model is expressed topologically in a
discretized workspace W . The location of the i-th neuron in the state
space S of the neural network, which is denoted by a vector qi ∈ R2,
uniquely represents an area in W .

Each neuron has local lateral connections to its neighboring neurons
that constitute a subset Ri in S. The subset Ri is called the receptive
field of the i-th neuron in neurophysiology. The neuron responds only
to the stimulus within its receptive field. Thus the dynamics of the
i-th neuron in the neural network can be characterized by a shunting
equation as.

dxi

dt
=−Axi +(B− xi)Se

i (t)− (D+ xi)Si
i(t) (1)

Where A represent the passive decay rate of neural activity, which
solely determines the transient response to an input signal. The
steady state-neural activity is nonlinearly dependent on the value of
A. Smaller values of A result in a slower passive decay of neural activ-
ity. When the value of A is too small neural activity saturates and the
model cannot function.

Functions Se
i (t) and Si

i(t) represents the excitatory and inhibitory
inputs to the shunting model (1), respectively, and are defined as:

Se
i (t) =

(
k

∑
j=1

wi j[x j]+ +[Ii]+
)

(2)

Si
i(t) =

(
k

∑
j=1

vi j[x j−σ ]+ +[Ii]−
)

(3)

Parameter σ is the threshold of the inhibitory lateral connection.
The threshold of the excitatory connection is chosen as zero. The value
k represents the number of adjacent neurons, in our case k = 8. The
weight wi j represents the the excitatory connection from the i-th to
the j-th neuron, and similarly vi j represents the inhibitory connection
weight and is dependent on wi j as shown:

wi j = f
(∣∣qi−q j

∣∣) (4)

vi j = βwi j (5)

where β is a positive constant, β ∈ [0,1], and
∣∣qi−q j

∣∣ represents the
Euclidean distance between vectors qi and q j in the state space.

Functions [a]+ and [a]− are linear-above threshold functions.

[a]+ = max{a,0} (6)

[a]− = max{−a,0} (7)

Function f (a) can be any monotonically decreasing function, for in-
stance

f (a) = µ/a (8)

for all adjacent neurons, where the parameter µ determines the con-
nection weight for adjacent neurons. A small value of µ results in
weak lateral connections and can prevent possible saturation in neural
activity. When µ > 1, the propagated neural activity is amplified and
the neural activity can easily saturate. Therefore, to prevent possible
neural activity saturation a smaller µ is necessary; to strengthen the
influence from the target, a larger µ is needed. Usually µ is usual
chosen in the range µ ∈ (0,1].

External Input As mentioned previously the dynamics of the neu-
ral network are controlled though manipulation of the external input Ii,
for example defining the external input as:

Ii =

 −E, if it is in an obstacle area
E, if it is in the target area
0, otherwise

(9)

we generate a neural activity field, by which following steepest gradi-
ent ascent will lead to the target region, which is appropriate for goal
directed path planning, but inappropriate for coverage planning.

Alternately by simply changing the criteria for the target area to
include all uncovered areas as:

Ii =

 −E, if it is in an obstacle area
E, if it is in an uncovered area
0, otherwise

(10)

we can guarantee that the neural activities of the uncovered areas are
going to stay at the peak of the activity landscape while the obstacles
are going to stay of the bottom. Note that parameter E determines the
amplitude of the external inputs from the target and obstacles, thus E
should be chosen as very large over the sum total of input from all
adjoining lateral connections, i.e. E� ∑

k
j=1 wi j.

Finally by adding further refinement to the external input as:

Ii =

 −E, if it is in an obstacle area
h(ui), if it is in the uncovered area
0, otherwise

(11)

we define an activity landscape by which regions of the of the terrain
of similar height, (same contour), attract the tractor most, where ui
corresponds to the field position of the i-th neuron and T represents
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the tractor position. The height function is essentially just a triangu-
lar function modulating the amplitude of the neural activity based on
the absolute difference in elevation from the tractor’s location on the
terrain.

h(ui) = E− |ui.z−T.z|
ρ

(12)

where ρ represents the the size of the vertical range from which to
accept excitatory input, ρ ∈ [0,1].

Fig. 1. Contour based neural activity with ρ = 0.5, all neurons corre-
sponds to regions of the terrain of similar height to that of the tractor’s
current position receive the greatest excitatory input.

The proposed neural network characterized by (1) guarantees that
the positive neural activity can propagate to the whole state space,
while the negative activity is restricted locally, due to the existence
of the threshold σ of the inhibitory lateral connections.

Therefore, the contour region globally influences the whole state
space to attract the tractor, while the obstacles have only local affect
to avoid collision. By adjusting the µin and σ values we can adjust
the local influence from the obstacles and coverage regions to approx-
imate the width of the tractors plow, providing an elegant mechanism
to minimize overlap.

Since the neural activity is bounded in [−D,B], when σ <−D, the
inhibitory lateral connection term ∑

k
j=1 vi j[x j−σ ]+ in (3) is equal to

zero. Note that when β = 0, i.e., vi j ≡ 0, this term becomes zero as
well. Thus no negative neural activity is able to propagate to the other
neurons.

4 STABILITY

In order to prove the stability and convergence of the proposed model
we must satisfy all the three conditions required by Grossberg’s gen-
eral form (1) positivity, (2) symmetry, and (3) monotonicity. So first,
from the definitions of [a]+, [a]− and vi j, we rewrite (1) into Gross-
berg’s general form,

dyi

dt
= ai(yi)

(
bi(yi)−

k

∑
j=1

ci jd j(y j)

)
(13)

by the following substitutions:

ai(xi) =
{

B+ xi, if xi ≥ 0
D− xi, if xi < 0 (14)

bi(xi) =
1

ai(xi)
(
B[Ii]+−D[Ii]−− (A+[Ii]+ +[Ii]−)xi

)
(15)

Di j =−wi j (16)

d j(x j) =

 x j, if xi ≥ 0
β (x j−σ), if xi < σ

0, otherwise
(17)

Since B and D are positive constants, then ai(xi)≥ 0 satisfying the
positivity condition. Since wi j = w ji, then ci j = c jiproving symmetry.
Finally, since d′j(t) = 1 at x j > 0, d′j(t) = β ≥ 0 at yi < σ , and d′j(t) =
0, otherwise, then d′j(t)≥ 0 proving monotonicity.

d′j(t) =

 1, if x j > 0
β if yi < σ

0, otherwise
(18)

Therefore, (1) satisfies all the three conditions required by Gross-
berg’s general form. The rigorous proof of the stability and conver-
gence can be found in [11]. Thus, the proposed neural network system
is stable, and the dynamics of the network are guaranteed to converge
to an equilibrium state of the system [11].

If the excitatory and inhibitory connections in the shunting equation
in (1) are lumped together and the auto gain control terms are removed,
then a simpler form can be obtained from (1)

dxi

dt
=−Axi + Ii +

k

∑
j=1

wi j[x j]+ +
k

∑
j=1

vi j[x j−σ ]+ (19)

This is an additive equation as seen in [10] The nonlinear functions
[a]+, [a]− and the threshold σ together guarantee the positive neural
activity can propagate to the whole workspace while the negative ac-
tivity can propagate locally in a small region only. From the definitions
of [a]+, [a]− and vi j, (19) can be rewritten into a compact form as:

dxi

dt
=−Axi + Ii +

k

∑
j=1

wi jd
(
x j
)

(20)

5 IMPLEMENTATION

The discrete topologically organized map of the proposed neural net-
work architecture is easily mapped to a discrete two dimensional tex-
ture. Lateral connections between neurons become adjacent connec-
tions to neighboring texels. The advantages of this mapping are many,
(1) it allows us a simple way to discretize our field’s terrain, and (2) it
allows us to take advantage of the massive parallelism found in mod-
ern GPU’s to implement the shunting equation efficiently for large net-
works.

Fig. 2. The terrain data arrives as an untriangulated collection of scat-
tered Digital Elevation Map (DEM) points.

5.1 Discretization
The first step is the discretization of our terrain mesh, which we as-
sume to be vertically convex with height defined along the Z-axis. To
accomplish this we set up an orthographic projection of the terrain
bounded by its maximum and minimum X and Y elements. Through
the use of a simple fragment shader, we render the 〈x,y,z〉 coordinates
of the terrain to the 〈r,g,b〉 color channels of a floating point texture
bound to the framebuffer, see figure 3. It is worth noting that it is use-
ful to setup this projection such that an obstacle boundary surrounds
the terrain.
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Fig. 3. A discretized farm field rendered to a texture, the 〈x,y,z〉 coordi-
nates of the terrain are mapped to the 〈r,g,b〉 color channels of a floating
point texture.

5.2 Ping-Ponging for Neural Activity Propagation
A further advantage of the shunting equation is that it is easily im-
plemented in an iterative manner. This allows us to implement the
shunting procedure in a fragment shader, by employing a framebuffer
computing technique known as “ping-ponging.” By binding two tex-
tures to a framebuffer, we alternately render the propagation of neural
activity from one texture (the ping texture) as input to the other (the
pong texture), before swapping the framebuffer’s texture targets and
repeating the process. Each texture is thus a representation of the state
of the neural activity of the network, either at time t or t +1, this tech-
nique allows the allows the discretized neural activity field to progress
in time.

Fig. 4. Ping & Pong represent two textures bound to the framebuffer,
they are alternately the input to and output of the shunting equation,
allowing the neural activity to be iteratively propagated through time.

5.3 Tractor
Unlike previous approaches, we do not employ a point robot to sample
the terrain. As a consequence of this, we do not discretize the tractor’s
direction. Instead, after sampling the direction at the tractors “center,”
we find the corresponding perpendicular directions with respect to the
terrain’s normal, and traverse the terrain in those directions in order to
find the end point of our tractor “plow.” Similarly, we trace forward to
sample additional points ahead of the tractor. These points can then
be sampled in the same manner as the tractor’s center position. After
each iteration of tractor movement the tractor position plow endpoints
are stored, and the newly swept region is rendered into the coverage
texture, see figure 5.

5.4 Coverage
In addition to textures representing the discretized 3-D terrain surface,
and the neural activity of the field, we maintain an additional texture
representing the covered and uncovered regions of the terrain. As we
update the tractor’s position we render each newly swept region into
the coverage texture, thereby accumulating the tractor’s accrued cov-
erage of the farm field, see figure 6 for an example.

5.5 Sampling
At this point we have a texture representing the field, the neural activ-
ity, and the coverage. However, the location of our tractor still resides
on the surface of a 3-D mesh, must devise an approach by which to
accurately, and efficiently receive this texture data. Again, we employ

Fig. 5. Our simplified model of a tractor, the large sphere represents the
the center of the tractor, while the smaller two the left and right represent
the endpoints of the “plow,” the forward sphere indicates direction, and
can be used for sampling of data ahead of the tractor. The red areas
indicate “covered” terrain.

Fig. 6. Sample contour-directed coverage texture, covered areas are in
red, obstacles are in green, and black represents uncovered terrain.

framebuffers, but in this instance the attached texture is merely a sin-
gle pixel, we pass the tractors 3-D position into a fragment shader, in
addition to the maximum and minimum values of the terrain, and the
resolution of the texture. This provides us with enough information
to resolve the tractors position in texture coordinates. By providing
our sampling fragment shader access to the previously defined tex-
tures, we can sample adjacent texels for their information. In contrast
to discrete methods, we employ a Sobel filter in order to determine
the tractors optimal direction, rendering the neural activity and direc-
tion components returned by the Sobel filter into the attached texture.
When the neural activity at the current location is larger than that of its
neighbors the tractor waits for neural propagation to indicate a clear
direction of travel.

5.6 Direction

In the proposed CCPP model, the tractor path is generated from both
the activity landscape and the previous tractor location, see figure 10,
and figure 8 for images of a tractor headed toward its goal. Since we
have described external inputs for goal-directed path, and coverage-
directed paths, it should be noted that the output of the Sobel must
be rotated 90◦ for the contour coverage directed approach approach to
function, in this way, the tractor will run perpendicular to the gradient
of the activity field, see figure 1 for an example.

6 VISUALIZATION

Processing the neural network on the GPU lends itself to efficiently
generating images by which to analyze the neural activity field.

6.1 Vertex Displacement Graph

By creating a grid with vertices corresponding to each neuron of the
activity field, using a Vertex shader we can displace the vertices of
this grid by the neural activity at each position in the texture. In this
manner we dynamically generate a real-time graph of neural activity
for analysis of the network.
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Fig. 7. A graph of the neural activity field created with a vertex displace-
ment shader from the activity texture.

6.2 Contour Lines
By employing a simple fragment shader we can generate smooth anti-
aliased contour lines based on the neural activity stored in the textures,
the height of the farm field, or the height of the activity graph. Line
sharpness is easily controlled via an exponential impulse function. See
figure 8 for an example on a goal directed field, and figure 9 for an
example on a contour coverage based activity field.

Fig. 8. Contour lines on a goal-directed activity field with obstacles.

Fig. 9. Contour lines on a contour coverage based activity field without
obstacles.

6.3 Heat Object Scale
Another useful method by which to visualize neural activity is to dis-
play neural activity using a heated object color model, again this is
easily implemented in shader, and easily applied to field, the activity
texture, and the activity graph. See figure 10 for an example on a goal
directed field, and figure 1 for an example on a contour coverage based
activity field.

7 SIMULATIONS

The proposed neural network model is capable of generating many
tractor trajectories. In this section the proposed model is applied to a

Fig. 10. A goal directed activity field rendered in heated object color
scale, with a tractor travelling towards the goal.

tractor on a sample farm field. Various parameters and external input
models are shown for comparison.

Goal By employing the external input as defined in (9), the pro-
posed shunting model we generate a neural activity field which glob-
ally attracts the tractor towards the target region through steepest gra-
dient ascent, see figure 10.

Coverage By changing the criteria for excitatory input to be gen-
erated in all uncovered areas as in (10), the shunting model generates a
neural activity field which will attract the tractor to all uncovered areas
until a coverage path has been obtained.

Contour Coverage Finally, by varying excitatory input to the
neural activity field by a height function based on the elevation differ-
ence between the tractor’s current location and the terrain elevation,
our model generates an activity field which attracts the tractor to fol-
low contour lines. Once a contour line has been covered by the tractor
it no longer generates neural activity, thereby encouraging the tractor
to seek out new contour elevations and consequently shifting the net-
works excitatory input to match the tractor elevation on the field, see
figure 1 for an example.

8 CONCLUSION

In this paper, a biologically inspired neural network approach is pro-
posed for the dynamic tractor coverage path generation in an arbitrary
terrain surface. Several model variations are presented and the dif-
ferences are compared by descriptive analysis and simulation studies.
The proposed approach is applied to the real-time coverage path plan-
ning for a tractor on a static terrain. The optimal real-time trajectory
is generated through the dynamic neural activity landscape that rep-
resents the farm field environment. The stability and convergence of
the proposed models are guaranteed by a qualitative analysis and a
rigorous Lyapunov stability analysis.

Some points are worth mentioning about the proposed neural net-
work approach to dynamic collision-free coverage path generation.

• This paper presents a new visual approach to analyzing terrain
surfaces, through the use of framebuffer computing and GPU
programming.

• This model is biologically plausible. It is originally derived from
Hodgkin and Huxleys biological membrane model [13]. The
neural activity is a continuous analog signal and has both upper
and lower bounds.

• The model algorithm is computationally efficient. The optimal
tractor coverage path is generated without explicitly searching
over the free workspace or the collision paths, without explicitly
optimizing any global cost functions, without any prior knowl-
edge of the dynamic environment, and without any learning pro-
cedures.
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• The computational complexity linearly depends on the state
space size of the neural network. Each neuron in the neural net-
work has only local lateral connections, which does not depend
on the size of the overall neural network. Utilization of com-
modity graphics hardware has allowed us to maintain real-time
results on far larger networks than previous implementations.

• This model can perform properly in an arbitrarily dynamic envi-
ronment, even with sudden environmental changes, such as sud-
denly adding or removing obstacles or targets. The neural net-
work system is characterized by a continuous shunting model, it
is stable and keeps sensitive to variations in the environment [11]

• The proposed model is capable of generating real-time collision-
free trajectories of an agent with multiple moving targets and the
trajectories of multiple robots in a common workspace.

• By choosing suitable strength of obstacle clearance the proposed
model can plan a path that allows tractor passes to comfort-
ably abut each other. Thus it does not suffer from either the
“too close” (narrow safety margin) or “too far” (waste) problems
[21, 29, 31].
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