
 1

Using Photorealistic RenderMan™ for
High-Quality Direct Volume Rendering

 Cyrus Jam Mike Bailey
 cjam@sdsc.edu mjb@sdsc.edu

San Diego Supercomputer Center

University of California San Diego

Abstract

With the success of Pixar’s recent feature films, everyone knows RenderMan
to be the leading photorealistic renderer for animation and entertainment.
What most people don’t know is that it can also be used quite effectively as a
direct volume renderer. Many of the same qualities that make it excellent for
entertainment rendering also make it excellent for displaying and animating
volumes. The fact that it is a commercial package that is well-supported and
well-documented is an added bonus. This paper shows how to use
RenderMan in this way and shows several example images.

Keywords: Computer Graphics, Scientific
Visualization, Volume Rendering, Volumetric
Imaging, Rendering Algorithms

Introduction

Direct volume rendering us a core tool in a
visualizer’s toolkit. By rendering the entire
volume directly, the user can manipulate the
transfer function to reveal key details in the
volume dataset. Direct volume rendering has
included image-based approaches such as ray
tracing [1], and object-based approaches such as
splatting [2]. The direct volume rendering
methods have all approached the problem with
the idea that a quality rendering is more
important than reducing the time necessary to get
it.

These methods, and others, are well-developed,
but generally exist only in specialized research
environments where they must be internally
developed, maintained, and documented.
Commercial direct volume rendering solutions
are rare, and, where they exist, are quite costly.

This project investigated the use of the
RenderMan photorealistic rendering system as a

direct volume renderer. RenderMan is
maintained and documented by Pixar [3,4]. It is
stable. It has considerable functionality and
flexibility. It is less expensive than commercial
volume rendering packages. There is even a no-
cost version available in the form of BMRT, the
Blue Moon Rendering Tools [5].

Importing the Volume

The first step in importing the volume dataset was
to extract slices from the voxel data and map them
into TIFF images. Slice sets were taken
throughout the entire dataset. Three sets of slices
were taken, each parallel to a principle axis, x, y,
and z. These TIFF images conserve the
fundamental proprieties of the volume,
specifically, color (R, G, B) and opacity (A).
Because Prman (Pixar’s RenderMan) requires that,
“all textures be in a special, proprietary texture
format” [4], it is then necessary to convert every
TIFF file to a format that Prman can understand,
which can be accomplished by using the API call
MakeTexture.

Once the slices were pre-processed, they were
mapped onto polygons. This was done with a
RenderMan shader that maps the RGBA of the
images and discards any properties of the polygon.
Next, by positioning all of the slices of the volume

 2

in the correct relation to each other, the actual
dimensions of the original dataset were recreated.
This was easily done by confining the slices to a
depth (first slice to last) equal to the depth value of
the volume dataset. However, if this was not done
properly, a considerable amount of image warping
occured. This warping happened most when
viewing the volume at angles approaching a
parallel alignment with the slice planes. The
images were compressed or widened. Therefore, it
were important to use high precision when
calculating the slice offsets. This composition of
slices works as one object within the scene. The
notion of slices then became completely
transparent to the user.

Once the data was imported, a unique problem
arose. When the viewing position became parallel
with the slicing planes, the volume could no longer
be seen, not looking through a group of composite
slices but looking directly between the slices. To
solve this problem we needed to track exactly
where the viewer was located in relation to the
volume and to decide which slicing plane is best
suited for this location. The Threshold area, as
shown in Figure 1., occurs at angles where the
appropriate slicing plane to composite is
disputable.

Figure 1: Threshold Viewing Direction

When the volume dataset was imported into a
RenderMan scene, it then became possible to
apply any of RenderMan’s countless features to
the volume. This was one of the major reasons to
undertake this project. In this paper we have listed
a few of these key features to produce real working
examples.

Application: Arbitrary Viewing Angle,
With or Without Perspective

Using the threshold viewing direction method
shown above, the volume can be rendered from
any location with no loss in quality. Also, because
the volume is mapped onto RenderMan geometry,
it can be displayed in either orthographic or

perspective projections. The ability to display a
direct-rendered volume in perspective is not easy
for many volume rendering packages. But,
because RenderMan pre-fractures the scene into
the appropriate number of microfacets for the
given viewing volume, here it comes
automatically. Figures 2a-2d show a human
head dataset viewed in perspective from 0°, 15°,
30°, and 45°.

Application: Arbitrary Resolution

RenderMan renders its scene at an arbitrary
resolution specified by the user. When that scene
includes texture maps, such as in this case, most
display systems resort to bilinear interpolation to
produce color values between the texels.
RenderMan, instead, uses a bicubic interpolation.
The result is a very consistent image, regardless of
the resolution. Figures 3a-3c show the same
human head dataset rendered at 5002, 10002, and
20002 pixels. While the quality clearly increases,
the smoothness of the 5002 image is more than
adequate.

Incidentally, the arbitrary resolution-ness of
RenderMan extends to the size of the texture maps
as well. This means that volume datasets of
arbitrary size can be rendered with no change in
the method, albeit with a cost in time.

Application: Shadows

“Shadows provide very important
visual cues in the images we see. They
clearly show the physical relationship
and proximity of different objects.
Rendering a 3D scene with shadows
can provide almost as much information
as a pair of stereo images” [6]

In general, direct volume rendering tends to leave
out shadows because of the immense complexity
of this task, even though shadows provide many
useful applications in scientific visualization.

Creating shadows from volumes using RenderMan
requires the help of both Prman and BMRT. The
Blue Moon Rendering Tools, or BMRT for short
[5], is a RenderMan-compatible renderer that
provides extra features such as ray tracing and
radiosity. Ray traced shadows from BMRT

 3

enable the volume to produce correct shadows by
taking into account the opacity values throughout
the volume slices. Prman primary handles
shadows using Shadow Maps. Though this
approach is much faster than that of BMRT, this
technique can only take into account the geometry
of the object. Therefore this would produce
shadows of only the polygon slices.

By setting the shadow attributes to “on” in a
BMRT attribute call, the user can automatically
cast shadows in the final rendered scene.
However, as stated above, this process alone can
be very time consuming. A better approach is to
use Prman for the bulk of the scene computations
and BMRT for the ray tracing. This can be
conveniently done using what is called a “ray
server”. Prman can send queries that need to be
executed to the “ray server”(BMRT) through stdin.
The “ray server” will then compute the result and
return back to Prman through stdout. With this,
the best features of both renderers are used to
efficiently produce accurate shadows of volumes.
Figure 4 shows an example of a volume dataset
that has a spotlight placed in front and casting a
shadow onto the back wall.

Application: Motion Blur

Motion blur can be easily applied to any volume
using RenderMan. This effect introduces another
aspect of realism, which is traditionally not applied
to volume datasets. Using RenderMan’s unique
set of API calls, it is simple for the user to create
an animated sequence of a volume using the same
properties as a live-action camera. Using an
arbitrary time scale (user defined), specify when
the camera should open and close its shutter.
Depending on the transformations applied during
these shutter intervals RenderMan will
automatically produce the correct, realistic effect.
Figure 5 shows an example of motion blur applied
to a volume dataset.

At first glance this looks like a gratuitous use of
fun graphics, but in fact it is actually useful.
Motion blur is basically a smeared interpolation
from one dataset and transformation to another
dataset and transformation. Thus, when working
with a time-based set of volumes, this would be a
way to show the transition across volume
sequences in a single output image, or a way to
smoothly transition in an animation.

Application: Depth of Field

Similar to motion blur, depth of field is another
feature of RenderMan which can be applied to a
volume dataset to achieve images that traditionally
could not be easy created. By using the API call
DepthfField, one can simulate the features of a
live-action camera: length of the lens, the distance
at which the camera is focused, and the diameter
of the aperture (f-stop). Figure 7a-d shows a series
of images with depth of field applied at various
distances.

Application: Procedural Shading of Volumes

Another feature we gain by importing volumes
into RenderMan comes out of one of RenderMan’s
most important features, the shader. A shader is
written in the RenderMan Shading Language and
is a way to procedurally define the interactions of
lights and surfaces.

There are five basic types of shaders. These are:
surface, displacement, light, volume, and imager
shaders. The general way a shader works is as
follows. First there is an assortment of global
values that are passed into the main shader routine.
These values specify attributes such as point
surface color and surface opacity. In our case the
only values that we immediately find important are
the texture maps color and opacity values. Then
within the shader we are able to manipulate these
values in any way. The final goal of each pass of
the shader is to assign this input color and opacity
to an output color and opacity.

In the most basic case this occurs when a texture is
placed onto a surface with no alterations. The
input color and opacity for each point of the
texture is procedurally placed onto the polygons
surface with the shader.

A more creative approach would be to apply
transformations to the input color and opacity to
produce interesting images. For example, you
could write an unlimited number of shaders, from
glass to wood surfaces, etc.

Speed

One problem that exists for volume rendering, and
rendering in general, is the amount of time it might
take to compute one single image. It would be
very useful to have a method of approximating

 4

images initially to preview what the final frame
will look like. With RenderMan this functionality
is built in and can be easily used.

There are four options in particular that are useful
for our purposes; pixel filter, shading rate, number
of samples and final image resolution. The pixel
filter takes the rendered image and smoothes out
the 2D frame. The larger the pixel filter the softer
the result becomes. Shading rate can be described
as the “number of shading calculations per
primitive.“ [3] Because imported volume data has
such a large reliance on shading, increasing the
shading rate significantly speeds up the time it
takes to render a frame, although, a noticeable
increase of texture artifacts can be noticed. The
number of samples is the “effective sampling rate
in the horizontal and vertical directions.” [3]
RenderMan will take slightly jittered pixel samples
and average there values together. Using a call to
Format one can control the output image
resolution. The time to render an entire image is
closely related to the number of pixels in the
scene. “Rendering a 256x256 image will take
approximately one quarter the time required to
compute a 512x512 equivalent.” [7]

For low-quality images suitable for previewing a
scene’s geometry, we found that a pixel filter
width (1, 1) a shading rate of 16 and sampling rate
of (1, 1) are sufficient enough to achieve a relative
fast output. For high-quality renderings we used
approximately a pixel filter of (6, 6) a shading rate
of 1 and a sample rate of (10, 10).

Conclusion

In this paper we have presented the general
strategy of importing volume datasets into
RenderMan and a description of some of the most
useful tools this empowers us with. The
advantages in this are:

• Arbitrary input voxel resolution

• Arbitrary pixel image resolution

• Arbitrary viewing parameters, including

perspective projection

• Able to combine a volume and hard geometry

in the same scene

• Shadows

• Motion blur

• Depth of field

By harnessing the features and stability of
RenderMan, we have been able to achieve high-
quality images of volume datasets without the
need for custom software. On top of this, we have
also gamed the ability to produce images with
features that were not generally available for
volume graphics such as shadows and motion blur.

References

[1] J. Genetti and D. Gordon and G. Williams,
“Adaptive Supersampling in Object Space Using
Pyramidal Rays”, Computer Graphics Forum,
Vol 17, Number 1, pp. 29-54, 1998.

[2] Lee Westover, “Footprint Evaluation for
Volume Rendering”, Computer Graphics
(Proceedings of SIGGRAPH 90), Volume 24,
Number 4, pp. 367-376.

[3] Steve Upstill, The RenderMan Companion, A
Programmer’s Guide to Realistic Computer
Graphics, Addison-Wesley, 1990

[4] Anthony Apodaca and Larry Gritz, Advanced
RenderMan: Creating CGI for Motion Pictures,
Morgan Kaufmann, 2000

[5] Larry Gritz. Blue Moon Rendering Tools, User
Manual, Release 2.6, 2000. Web site:

http://www.exluna.com/bmrt/bmrtdoc/2.6/index.ht
ml

[6] P. Haeberli. Grafica Obscura, Collected
Computer Graphics Hacks: A Note on Shadows,
2000. Web Site:
http://www.sgi.com/grafica/shadows/index.html

[7] Pixar. Photorealistic RenderMan 3.8 Users
Manual, 2000. Web Site:
http://www.pixar.com/products/RenderMandocs/to
olkit/Toolkit/user.html

Note to reviewers: We are currently
working on an animation using these methods. It
is looking very promising! If this paper is
accepted, we will show the videotape in the
presentation at the conference.

 5

Figures 2a-d: Volume Dataset Viewed from 0°, 15°, 30°, and 45°

Figures 3a-c: Detail of Head Rendering at 5002, 10002, and 20002 Pixel Resolution

 Figure 4: Figure 5: Figure 6:
 Volume Shadows Volume Motion Blur 3D LIC Volume

Figures 7a-d: Combining Volume with Hard Geometry and Displaying with Depth-of-Field

