I Apologize in Advance
for What You Might Hear in the Background 😊
Blender Shortcuts You Will Use a Lot

<table>
<thead>
<tr>
<th>Shortcut</th>
<th>What it Does</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMB</td>
<td>Select something</td>
</tr>
<tr>
<td>Shift-LMB</td>
<td>Add something else to the selection</td>
</tr>
<tr>
<td>MMB</td>
<td>Rotate the scene</td>
</tr>
<tr>
<td>Shift-MMB</td>
<td>Pan the scene</td>
</tr>
<tr>
<td>Scroll Wheel</td>
<td>Zoom in and out</td>
</tr>
<tr>
<td>Tab</td>
<td>Toggle between Object Mode and Edit Mode</td>
</tr>
<tr>
<td>Control-Tab</td>
<td>Bring up Mode pie menu</td>
</tr>
<tr>
<td>` (back quote)</td>
<td>Bring up View pie menu</td>
</tr>
<tr>
<td>a</td>
<td>Select all</td>
</tr>
<tr>
<td>Click in empty space</td>
<td>Unselect all</td>
</tr>
<tr>
<td>Alt-a</td>
<td>Unselect all</td>
</tr>
<tr>
<td>Escape</td>
<td>Get you out of almost anything (including stopping a render or an animation)</td>
</tr>
<tr>
<td>b, c</td>
<td>Box or circle select</td>
</tr>
<tr>
<td>Shift-d</td>
<td>Duplicate</td>
</tr>
<tr>
<td>e</td>
<td>Extrude (in edit mode)</td>
</tr>
<tr>
<td>F3</td>
<td>Search</td>
</tr>
<tr>
<td>g</td>
<td>Grab (translate) an object</td>
</tr>
</tbody>
</table>
Blender Shortcuts You Will Use a Lot

<table>
<thead>
<tr>
<th>Shortcut</th>
<th>What it Does</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shift-g</td>
<td>Group</td>
</tr>
<tr>
<td>i</td>
<td>Insert a keyframe</td>
</tr>
<tr>
<td>Control-j</td>
<td>Join 2 or more objects</td>
</tr>
<tr>
<td>m</td>
<td>Send object to a collection (layer)</td>
</tr>
<tr>
<td>n</td>
<td>Toggle the Sidebar menu</td>
</tr>
<tr>
<td>Shift-n</td>
<td>Recalculate normals</td>
</tr>
<tr>
<td>p</td>
<td>Partition (only in edit mode)</td>
</tr>
<tr>
<td>Control-p</td>
<td>Establish a parent-child relationship (last object selected will be the parent)</td>
</tr>
<tr>
<td>Alt-p</td>
<td>Destroy a parent-child relationship</td>
</tr>
<tr>
<td>Control-Alt-q</td>
<td>Toggle quad viewing</td>
</tr>
<tr>
<td>r</td>
<td>Rotate an object</td>
</tr>
<tr>
<td>s</td>
<td>Scale an object</td>
</tr>
<tr>
<td>Shift-s</td>
<td>Pie menu for using the 3D Cursor</td>
</tr>
<tr>
<td>Spacebar</td>
<td>Start / Pause an animation</td>
</tr>
<tr>
<td>t</td>
<td>Toggle the Object Tools menu</td>
</tr>
<tr>
<td>x</td>
<td>Delete whatever is selected</td>
</tr>
<tr>
<td>z</td>
<td>Bring up a display mode pie menu</td>
</tr>
<tr>
<td>Control-z</td>
<td>Undo</td>
</tr>
<tr>
<td>Alt-z</td>
<td>Toggle x-ray mode</td>
</tr>
<tr>
<td>Control-Shift-z</td>
<td>Redo</td>
</tr>
<tr>
<td>F12</td>
<td>Render a scene image</td>
</tr>
<tr>
<td>F11</td>
<td>Return to the interactive scene</td>
</tr>
</tbody>
</table>
What is Blender?

Blender is a free program that lets you do professional-looking 3D modeling, rendering, and animation. This, not this. 😊

Note: The version number changes often. These notes have been written against Blender version 2.9.3.

I’ve been told that the next version will be 3.0, due out in October 2021.

You can get Blender for yourself by going to: http://www.blender.org
Next Gen – a Blender-Animated Movie

See the trailer at:
https://www.netflix.com/title/80988892
Why Do We Have These Notes?

Blender has thousands of buttons you can press. It is difficult to understand them all. These notes are here to show you what certain combinations of buttons do in order to learn them, and to remind you later when you’ve forgotten.

http://xkcd.com
In these notes, what do these icons mean?

They tell you that if you go to our notes web site:

http://cs.oregonstate.edu/~mjb/blender

you will find Blender input files (*.blend), texture map files (*.bmp), and animation movie files (*.mp4).

You can read a .blend file right into Blender (File → Open) so that you can experiment with these examples without having to first create them yourself.

You can play an .mp4 movie file right from your browser so that you can see how these examples look without having to run Blender at all.
A warning about me and the Notes

What Blender does

What I know

What the notes cover
What We Will Cover in these Notes

1. Navigating the screen layout
2. Viewing in 3D
3. Moving things around in 3D
4. Modeling, I
5. Appearance, I
6. Modeling, II
7. Rendering
8. Particle Systems
9. Physics Animation
10. Appearance, II
11. Vertex Sculpting
12. Vertex Painting
13. Keyframe Animation
14. 3D Printing
15. Stereographics
16. References
1. Navigating the Screen Layout
Full Screen Layout

- Object Tools ('t')
- Main Menu
- Property-specific Options
- Object Properties ('n')
- Outliner

Computer Graphics

Animation Controls
The Object Tools Menu

- Select
- Cursor
- Transform
- Move
- Rotate
- Scale
- Annotate
- Measure

Toggled on and off with the ‘t’ key
The Add Menu

This is the Add tab – you will spend a lot of time here!

Create geometry

Create lights

Create other cool stuff
The Add→Mesh Menu

You will especially spend a lot of time here!
The Sidebar Panels

Toggled on and off with the ‘n’ key
The Blender Interface Widgets

If Blender shows you something that looks like this …

… you are expected to click a button to put yourself in a particular mode.
If Blender shows you something that looks like this …

… you are expected to click in the box to bring up something else, like this
The Blender Interface Widgets

If Blender shows you something that looks like this …

... you are expected to turn features on and off by clicking in all or none of the checkboxes

If Blender shows you something that looks like this …

... you are expected to make a choice of just one of these options
The Blender Interface Widgets

If Blender shows you something that looks like this …

… you are expected to either left-click in the box and (keeping the left button down) drag the mouse left-right like a slider, or single-click in the box and type in a new value.

If Blender shows you something that looks like this …

… you are expected to click in the box and then select from the resulting list.
The Blender Interface Widgets

If Blender shows you an “Apply” button …

… it means that you can click this button to get rid of your original model and replace it with a model that has the edits you have just made.

If Blender shows you this icon (with or without the word “Open” …

… it means that you can click this button to open a file.
The Blender Interface Widgets

If Blender shows you something that looks like this …

… you are expected to click in the box and select from a list of other objects in the scene.

If Blender shows you something that looks like this …

… the red color is telling you that you haven’t yet entered enough information in this panel.
The Blender Interface Widgets

If Blender shows you something that looks like this …

… it allows you to hide and unhide something (the Outliner is where you use this most often). Hiding an object is useful for decluttering your scene.

Hint #1: If you no longer want an object in the scene, hiding it for a while before deleting it is usually a good thing. It is surprising how often you need something not long after you deleted it. 😊

Hint #2: If you hide something, don’t forget that you have hidden it. It is pretty freaky to be certain that you once created something, but now you can’t find it anywhere in the scene. 😬
The File Menu

- **New**: Start a new Blender scene (thus closing the scene you currently have open).
- **Open...**: Open a previously-created Blender scene (thus closing the scene you currently have open).
- **Save**: Save the current scene in a file.
- **Link...** and **Append...**: Bring elements from another Blender file into this scene.
- **Import**: Bring an image or object in from somewhere else.
- **Export**: Send an image or object to somewhere else.
The Difference Between New, Open, Link, and Append

New closes the scene you currently have, then initiates a new Blender scene.

Open closes the scene you currently have, then reads in a previously-stored Blender scene.

Append leaves the scene you currently have open, and adds elements of a previously-created scene into it.

Link is like Append, but every time you open the scene again, it will look at the file you are Linking from to see if changes have been made, and if so, will bring those into the scene instead of the first ones.
The Edit Menu

Control-Z or Edit→Undo are two of your best friends!

You can also select Undo History and go back in time to several commands ago.
The Render Menu

- Render Image (F12)
- Render Animation (Ctrl F12)
- Render Audio...
- View Render (F11)
- View Animation (Ctrl F11)
- Lock Interface
The Help Menu

![Image of Help Menu]

- Manual
- Tutorials
- Support
- User Communities
- Developer Community
- Python API Reference
- Report a Bug
- Save System Info
2. Viewing in 3D
3D Coordinate Systems

Left-handed

Right-handed

Blender uses this convention
The Coordinate and Viewing System

• Right-handed coordinate system
• X = Red
• Y = Green
• Z = Blue
• Middle mouse button (MMB) – orbit (rotate)
• Shift MMB – pan
• Scroll wheel – zoom
• View → Left, Right, …
• View → Toggle Quad View
• View → View Persp/Ortho
The View Menu gives you access to lots of ways to change how you are viewing the scene.
Toggling Between Perspective and Orthographic Views
In orthographic, lines that are parallel in 3D remain parallel on the screen. Objects appear to be the same size as they get farther away.

In perspective, lines that are parallel in the 3D depth direction appear to converge on the screen. Objects appear to get smaller as they get farther away.

Use perspective when you want a more realistic view (which is most of the time).

Use orthographic to see if things separated in depth are the same size.
Toggling Between Perspective and Orthographic Views

Use perspective when you want a more realistic view (which is most of the time):

Use orthographic to see if things separated in depth are the same size:
Single View vs. Quad View

Or hit **Control-Alt-q**
Setting the initial Rendering Mode

On the vertical strip of icons on the right, click this one:

And then be sure the Render Engine is set to **Eevee**.
Setting the initial Display Mode

Use **Viewport Shading** to start. It gives good generic lighting.

Later, when we cover Rendering, we will use Rendered lighting, but not now.
3. Moving Things Around in 3D
We will get into this in more detail later, but just so that you have something on the screen, here is the Add Menu.

These are all the different geometry things you can add into the scene. We will cover many of them, but not all.

This group is the **meshes**.

This group is the **curves**.
The Add→Mesh Menu

The UV Sphere, Torus, and Monkey are my favorites
Summary of the Mesh Objects
Coordinate System Conventions

• Right-handed coordinates
• Right-handed rotation rule
• Angles are in degrees
Right-handed Rotation Rule
Selecting an Object to Work On

LMB-click on the object you want to select. It will then be highlighted with an orange outline.
Selecting Multiple Objects to Work On: Two Ways to Do This

1. Hold down the Shift key while RMB-clicking

2. LMB a rectangular region around objects
Moving Things By Clicking and Dragging

Translate ("grab")

Rotate

Scale

Use Global or Local Coordinate System
Global and Local Coordinates

Global

Global Coordinates align with the screen

Local

Local Coordinates align with the object
Saying How to Move Things by Using the Keyboard

- LMB click to select an object
- Grab ‘g’
- Rotate ‘r’
- Scale ‘s’
- Grab using global axis ‘g’ → ‘x’, etc.
- Grab using local axis: ‘g’ → ‘x’ → ‘x’
- Pick all but a particular axis ‘g’ → ‘X’, ‘g’ → ‘X’ → ‘X’, etc.
- Grab a specific distance ‘g’ → ‘x’ → 12.25 <return>
- Rotate a specific angle ‘r’ → ‘x’ → 45 <return>
- Scale a specific factor ‘s’ → 2.0 <return>
- Scale a specific factor ‘s’ → ‘x’ → 2.0 <return>

This is important – you will use this a lot!
You Can Also Use the Sidebar Panel

Hit the ‘n’ key to toggle this panel
Applying the Transformation

When you transform an object, Blender *doesn’t change the object’s coordinates*. It keeps the object’s original coordinates plus a record of the transformation. So, for example, if you scale an object by 2.0, Blender remembers it like this:
Applying the Transformation

If you want to actually *alter* the object's coordinates, choose **Object → Apply**

You can pick a specific transformation to apply, but most of the time it is easiest to select **All Transforms**
Applying the Transformation

Once you apply the transformation, the Object Properties Box looks like this:

Before

<table>
<thead>
<tr>
<th>Location</th>
<th>X</th>
<th>0 m</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Y</td>
<td>0 m</td>
</tr>
<tr>
<td></td>
<td>Z</td>
<td>0 m</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rotation</th>
<th>X</th>
<th>0°</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Y</td>
<td>0°</td>
</tr>
<tr>
<td></td>
<td>Z</td>
<td>0°</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>XYZ Euler</th>
<th>X</th>
<th>2.000</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Y</td>
<td>2.000</td>
</tr>
<tr>
<td></td>
<td>Z</td>
<td>2.000</td>
</tr>
</tbody>
</table>

Dimensions	X	5.31 m
	Y	3.2 m
	Z	3.82 m

After

<table>
<thead>
<tr>
<th>Location</th>
<th>X</th>
<th>0 m</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Y</td>
<td>0 m</td>
</tr>
<tr>
<td></td>
<td>Z</td>
<td>0 m</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rotation</th>
<th>X</th>
<th>0°</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Y</td>
<td>0°</td>
</tr>
<tr>
<td></td>
<td>Z</td>
<td>0°</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>XYZ Euler</th>
<th>X</th>
<th>1.000</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Y</td>
<td>1.000</td>
</tr>
<tr>
<td></td>
<td>Z</td>
<td>1.000</td>
</tr>
</tbody>
</table>

Dimensions	X	5.31 m
	Y	3.2 m
	Z	3.82 m
The Outliner

In the upper-right portion of the screen is the Outliner. Like the name implies, it shows an outline of your scene.

It is sometimes nice to have a summary of the scene so you can remind yourself of what all is in it.

Also, if your scene is cluttered, you can select on object by clicking on its name in the outliner as opposed to selecting it in the scene.

Double-clicking on a name will allow you to rename that object to something more sensible than, say, “sphere.”

Also, you can use the outliner to hide certain objects. Just click on the eye icon to hide/unhide.

Hint: If you hide something, don’t forget that you have hidden it. It is pretty freaky to be certain that you once created something, but now can’t find it anywhere in the scene. 😐
You have probably noticed that when you start up Blender, there is a mysterious cursor positioned at the origin.

This is Blender’s **3D View Editor Cursor**.

- With this, you can point *anywhere* in space.
One way to position the 3D View Editor Cursor is to click on the **Cursor icon** and start left-clicking around the scene.

When you are done, be sure to let go of the 3D Cursor by clicking here.
But, it is hard to get the 3D Cursor exactly where you want it to be. For example, if you want to position the 3D Cursor at the corner of the cube indicated by the yellow dot, LMB click on it. But, upon rotating, you realize that it is at the wrong depth. So, get a view roughly 90° from the last view, and click again. You might have to do this a couple more times.
The 3D Cursor

You can also automatically position the 3D Cursor using the **Object → Snap** menu.

For example, choosing **Cursor to Selected** will move the 3D Cursor to the median point of the object you have most recently selected. Choosing **Selected to Cursor** will move the selected object’s median point to where the 3D Cursor is.
Suppose you then wanted to rotate the cube about the yellow corner point. After positioning the 3D Cursor there, you would then go to the **Pivot Center menu** and select **3D Cursor**. Rotations and Scaling will now take place around the yellow corner.

Later, you probably want to change the pivot point back to **Median Point**.
Another Way to Set the Arbitrary Pivot Point

Select the object, tab to **Edit Mode**, select all vertices (‘a’) and translate them (‘g’).

In Edit mode, the pivot point stays put while the vertices move.

Tab back to Object mode, and rotate the object to confirm that the pivot point has changed.

In contrast, in Object Mode, the pivot point moves with the vertices.

The little orange dot is the pivot point.
4. Modeling, I
These are all the different geometry things you can add into the scene. We will cover many of them, but not all.

This group is the **meshes**.

This group is the **curves**.
The Add→Mesh Menu

The UV Sphere, Torus, and Monkey are my favorites
When you Add a Mesh, a Small Menu Appears in the LL Corner

UV Sphere

Add UV Sphere
When you Add a Mesh, a Small Menu Appears in the LL Corner

Try clicking on it.

The small menu lets you modify how the last thing you did works. In this case, the most important thing it is doing is letting you change the polygon resolution of the sphere. But, this menu only exists until you do something else. After that, the ability to change these values is gone.

Personally, I like changing these two values to 64 and 32, respectively.
Summary of the Mesh Objects
Blender is able to play a graphics trick to make your curved geometry look better. Select the object (LMB) then click the RMB and select **Shade Smooth**.

This doesn’t actually change any geometry – it’s just a really good computer graphics display trick. There are other ways to truly create smoother geometry.
How to Find Out How Detailed a Mesh Object Is

In the overlay menu, turn on **Statistics**

The number of Vertices, Edges, Faces, and Triangles show on the left side of the screen.
Duplicating an Object from the Tools Menu

Select the object (LMB) then click the RMB and select **Duplicate Objects**. This leaves the new object right on top of the old object and leaves you in **Grab mode**. Just move the mouse to separate the two objects.
Mirroring an Object

Oftentimes you want to create an object that is identical to itself, but is symmetric about an axis. This type of operation is called **mirroring**.

Create an object, in this case, Suzanne the Monkey.

Let’s say that we want to mirror this object left-right (y). Select the monkey, right click, then select **Mirror**, and then select **Y Global**.
Click here, or hit the Tab key, to get into Edit Mode

Select and edit:
- A vertex
- An edge
- A face

Using the Tab key is so common, that “tab” has become a verb in the Blender community. As we like to say, “Just tab over into edit mode.”
Editing a Vertex

Be sure you are in vertex-editing mode

Left click on a vertex

Hit ‘g’ (grab) and move the mouse

You can also hit ‘x’, ‘y’, or ‘z’ to restrict motion
Editing a Vertex with Proportional Editing

Be sure you have Proportional Editing enabled

LMB click on a vertex

Hit ‘g’ (grab) and move the mouse

You can also hit ‘x’, ‘y’, or ‘z’ to restrict motion

The mouse Scroll Wheel changes the size of the Circle of Influence

You can also LMB select an edge or a face for editing or proportional editing.
Subdividing and Smoothing Really Show the Difference Between Localized and Proportional Editing
An Unexpected Use for Proportional Editing

Create a **Plane**, then go to **Edit Mode**, then box select all the edges, then click on **Edge → Subdivide** and subdivide it several times.
An Unexpected Use for Proportional Editing

Enable **Proportional Editing**, then go one widget to the right and change the kind of Proportional Editing from **Smooth** to **Random**.
An Unexpected Use for Proportional Editing

Go to **Edit Mode**, select a vertex, and lift it along with those around it.
In **Edit Mode**, you can delete things. For example, here four faces have been selected. **Right-click** and select **Delete Faces** from the pop-up menu.

Here’s what you get:
You can also **right-click** and select **Dissolve Faces** from the pop-up menu.

In which case, you get this:
5. Appearance, I
The Button Properties Menues

Tells you that we are in the Button Properties Menu

- Render Properties
- Output Properties
- View Layer Properties
- Scene Properties
- World Properties
- Collection Properties
- Object Properties
- Modifier Properties
- Particle Properties
- Physics Properties
- Object Constraint Properties
- Object Data Properties
- Material Properties (colors)
- Texture Properties

Clicking one of these brings up a much more detailed menu of options
Using the Material Properties Menu

Click on this … to get this

Then, click on **New**
Using the Material Properties Menu

To make our lives simpler for now, click here to turn off Use Nodes mode
Using the Material Properties Menu

Use Nodes mode has been turned off

Clicking in here brings up a color wheel
Controlling Shininess

Most matte

Turn Use Nodes off

Set the Base Color

Most glossy

University

Computer Graphics
The Color Wheel

Click in here to change the **Hue** and **Saturation**

Hue is angle around the wheel

Saturation is the radius

Click in here to change the **Value**

Value is a color’s brightness

These are the possible ways the color will be defined

If you know the color definition numbers you want, you can type or slider them here
The Color Wheel in Action
Color Scales

Red-Green-Blue

Hue-Saturation-Value

Hexadecimal

Eyedropper
(let's you select a color you see somewhere else on the screen)
RGB Additive Color Scale

Blender’s RGB scale lets you give the red, green, and blue components in the range 0. – 1.

Blender’s hexadecimal scale lets you give the red, green, and blue components in the range 00 00 00 – FF FF FF
Blender’s HSV scale lets you give the hue, saturation, and value components in the range 0. – 1.
Subtractive Colors (CMYK)

- R = Red
- G = Green
- B = Blue
- W = White
- C = Cyan
- M = Magenta
- Y = Yellow
- K = Black
Subtractive Color (CMYK)

R = Red
G = Green
B = Blue
W = White
C = Cyan
M = Magenta
Y = Yellow
K = Black
Color Printing

- Uses subtractive colors
- Uses 3 (CMY) or 4 (CMYK) passes
- CMYK printers have a better-looking black

R = Red
G = Green
B = Blue
W = White
C = Cyan
M = Magenta
Y = Yellow
K = Black
You See Lots of Color Printing Tests Like This!
So Far We Have Been Using Viewport Shading

We have gotten pretty good views of our objects without having to position light sources, cameras, etc.
We Could Switch to Rendered Shading

But, that *would* require us to position light sources, cameras, etc. We’re not ready for that yet.
But, here comes *MatCap*, a More Creative Use of Viewport Shading

Click on Viewport Shading and then click on the down-facing arrow

Studio Lighting is what you have been using. Instead, select **MatCap**, which stands for “Material Capture”.

Then, click on the sphere.

MatCap

- Studio
- Flat
Up Pops a Lot of Material Options!

Try them, especially the shiny ones!
6. Modeling, II
Adding 3D Text

Select Add → Text

It ends up giving you the fairly-useless line “Text”

To change the text string, tab into Edit mode. The white rectangle acts as a text cursor. Backspace over “Text” and type your new text. The return key will let you enter multiple lines.
Changing the Style of 3D Text

So far, not very 3D, huh?
Tab back to **Object Mode**, click on your text, then click on this **Font button**

Go to the **Geometry** sub-menu

Extrude: give the letters height
Depth: bevel the top and bottom
Resolution: round the bevel
Changing the Look of 3D Text

From here on, your 3D text acts like any other 3D object. It can be grabbed (translated), rotated, and scaled.

It can be colored, too.
The Edit Mode subdivision feature adds more vertices, but doesn’t do any sort of smoothing (like the Subdivision Surface Modifier does). So, when you are done, you will have more vertices to sculpt with, but, in Object Mode, your object will look exactly the same as it did before.

1. Object Mode

2. Tab into Edit Mode

3. Get Ready to Edit Faces
4. Right-click Subdivide
5. You now have more vertices
6. Tab back into Object Mode
A Multi-Vertex Picking Hint

First, make this model:
1. Object Mode → Add → Mesh → Cylinder
2. Tab to Edit Mode → RMB → Subdivide

Edit a vertex
Now, **LMB-sweep** over these vertices. (I call them the “equator” or the “belt”.)

But, if you do that, you will only end up selecting the front vertices, that is, *the ones you can see*.

The trick is to go into **X-ray Mode**, by clicking here.

This will now let you select *all* the points in the belt.
A Multi-Vertex Picking Hint

Why do that? Well, if you have those vertices selected and you hit the \textit{s} key (for \textit{scale}) and move the mouse, then you can get this:

Or, this:
A Multi-Face Picking Hint

To create this model:
1. Add → Cube
2. Tab to Edit Mode → RMB → Subdivide → Subdivide

Suppose you want to select an entire row of faces in order to “fatten the belt”. You could select all the faces individually (LMB → Shift-LMB). But, here’s a better trick

1. Click on one face in the row
2. Alt-LMB on another face down the row

Face Select Mode
A Multi-Face Picking Hint

Scaling (‘s’)
A Face Picking Hint

Similarly, if you put yourself into face-picking mode:

And click on the top face of the cylinder (don’t need the belt and don’t need to be in X-ray Mode for this):

And hit the r and z keys (for rotate about the z axis) and move the mouse, then you get this:
Intentionally Joining Two Objects

Let’s say that you have two objects and want to join them together so that you can act on them as one object.
Intentionally Joining Two Objects

Easy! **LMB** on one, then **Shift-LMB** on the other, then hit **Control-’j’** (“join”) on the keyboard. The orange “selection outline” now goes around both objects and the outliner shows just one object.
Separating Objects By Loose Parts

Select the Joined object. Tab over to Edit Mode. Then hit the ‘p’ key (“Partition”). You will then have three options on how to partition the joined object. If you select By Loose Parts, then the Joined object will be partitioned based on the original primitives that made it up.
Inset Faces (aka, Offset Curves)

Often you want to create a “face-within-a-face”. In Blender, this is called an Inset Face. (CAD systems often call this sort of thing an Offset Curve.)

In Edit Mode, select the top face.

Then, either RMB → Inset Faces, or click on this icon on the left side:
Inset Faces (aka, Offset Curves)

With the LMB, push the little handle down until the Inset Face is the size you want.

At this point, you can select the inner face and hit \textbf{g} and \textbf{z} (\textit{grab} in the \textbf{z} direction) to do this, or this.

Try rotating or scaling the inner face.

You can also create a new inset face inside the inset face you just created.
Start with a cube.

Tab into **Edit Mode**.

Select **X-ray mode** and select **all vertices**.

Tab into Edit Mode. Click on the **Extrude Tool**.
Extrude Tool

I like **XYZ mode** so that you can extrude in any direction.

Grab one of the `+`'s and pull.

You can even keep doing it.

When you get back to Object Mode, you will find that all of these are part of the same object.
Spin Tool

Start with a cube translated along the x axis (g_x)

Tab into Edit Mode. Click on the Spin Tool

Tab into Edit Mode. Click on the Spin Tool
Spin Tool

Pick the number of duplicates to make

Pick the axis/axes about which to spin

Be sure all of the object’s vertices are selected.

Grab one of the blue +’s and rotate
Vertex Groups

Using a group of vertices together is very useful. It is used for editing (like we are doing here), but also to pin certain vertices for cloth animation, to grow hair for hair simulation, and to rig objects for animation.

For that reason, Blender allows you to select the group and give them a name for later. This is called a **Vertex Group**.

1. Select the vertices in Edit Mode (Shift-LMB)

2. Select the **Object Data Properties** button

3. Click the + to add this as a new Vertex Group
4. Double-click on whatever the default name is (“Group” in this case) and type in a descriptive name for this Vertex Group.

5. Click Assign.

From now on, this group of vertices can be selected just by selecting the name from the list of Vertex Groups and clicking **Select**.
Extruding Faces – three ways

Extrude Individual Faces (cracks in between skyscrapers)

Extrude Faces Along Normals (push each face perpendicular to the surface)

Extrude Faces (push each face along the group average perpendicular to the surface)

Face Select Mode
Shrink/Fatten and Push/Pull are very much like extruding faces. Here are the differences:

Extruding lifts the selected faces along their normals. It leaves behind a “cliff” that connects them to the surrounding faces.

Shrink/Fatten lifts the selected faces along their normals, but leaves behind a “ramp” connecting those faces to the surrounding ones.

Push/Pull essentially scales the selected faces around their centroid.

For example, suppose we start with this object and these selected faces:

Every one of the edit-icons that has a little arrow in the lower-right corner expands in this same way. Check ‘em out!
Extrude, Shrink/Fatten, and Push/Pull

<table>
<thead>
<tr>
<th></th>
<th>Extrude</th>
<th>Shrink/Fatten</th>
<th>Push/Pull</th>
</tr>
</thead>
<tbody>
<tr>
<td>Out</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>In</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The Button Properties Menus, Again

Tells you that we are in the Button Properties Menu

- Render Properties
- Output Properties
- View Layer Properties
- Scene Properties
- World Properties
- Object Properties
- Modifier Properties
- Particle Properties
- Physics Properties
- Object Constraint Properties
- Object Data Properties
- Material Properties (colors)
- Texture Properties

Clicking one of these brings up a much more detailed menu of options.
Modifiers don’t actually change the object’s *permanent geometry* – just the object’s *appearance* on the screen. The geometry gets permanently changed only if you click the **Apply** button.
Modifiers don’t actually change the object’s *permanent geometry* – just the object’s *appearance* on the screen.

1. **You Create an Original Object**
2. **You Apply a Blender Modifier**
3. **You See a Modified Object on the Screen**

Cube with Bevel Modifier in Edit Mode
The Modifiers Menu

Modifiers don’t actually change the object’s *permanent geometry* – just the object’s *appearance* on the screen.

Example: Here a cube has been beveled (one of the Modifiers). In Edit Mode you can see both the beveled cube and the original cube. You can edit the vertices and the new shape will get beveled as you edit.
My Favorite Modifier -- Subdivision Surface

This modifier increases the number of polygons in your object. At the same time, it smooths your object out. Be careful! It very quickly increases your polygon count.

This controls how much to subdivide. Here we’ve changed this value from 1 to 2.

Fun: try it on a cube!
Deleting and Moving Modifiers

Oftentimes you have a list of several Modifiers that are used with a single object. The Modifiers take effect in the order that they are in the list. To change this, you can:

• Delete a Modifier
• Move a Modifier elsewhere in the list and thus change how it modifies the object
Making Your Modifier Effect Permanent

Despite the name, Modifiers do not actually modify the object’s underlying coordinates. They create an “alternate representation” that you can see. Most of the time, this is good. It lets you edit the underlying coordinates and have the Modifier then use them. If you want the Modifier to change the object’s underlying coordinates permanently, bring up this sub-menu and click on **Apply**.

![Modifier Effect Permanent](image)

Click here to bring up this menu. Then click on **Apply**.
Bevel Modifier

Beveling causes edges to be rounded instead of sharp

How much to bevel

Smooth shading makes bevels look much better!

No beveling
Segments = 1
Segments = 2
Segments = 3

Computer Graphics
Remember Venn Diagrams (Boolean Operators)?

- Two Overlapping Shapes
- Union
- Intersection
- Difference
Booleans (also known as Constructive Solid Geometry) 134

Think of them as Venn diagrams in 3D!

Two Overlapping Solids

Union

Intersection

Difference
1. Select the cube
2. Click on **Modifiers**
3. Select the Modifier called **Boolean**
4. Specify the **Difference** Operator
5. Specify the **Cylinder** as what to the difference with
6. Click **Apply**
Select the cylinder, hit it g (grab) and slide the cylinder away
The Resolution of the Second Object Determines the Resolution of the Resulting Surface
The Mirror Modifier

Let’s say that you want to create a mirror image of the monkey, but by using a Modifier, the mirror monkey will be linked to the original monkey so that any edits you do to the original will automatically end up in the mirror object.

But, that mirrored object will reflect about the object origin, this little dot right here. Which means that you will end up with something like this, which is probably not what you wanted.
The Mirror Modifier

So, the first thing we need to do is to move the object away from the little dot. You do this by Tabbing into **Edit Mode** and grabbing all the vertices and sliding them (**gy**). In Edit Mode, the dot doesn’t move when you do this:

Now, Tab back to **Object Mode**, add the **Mirror Modifier**, and select **Y**.
So, now if you sculpt the original object, the mirrored object will get the same edits.

This is often good for creating a full object by only creating one half of it (e.g., a car) and mirroring it.
The Array Modifier is used to duplicate an object according to a particular pattern. Suppose we want to turn a block into a staircase. We start with the block and add an Array modifier.

- **Apply button** (if we want to make this permanent)
- **The duplication count**
- **How much to offset each duplication.**
 - It can be Constant, that is, based on a number of units.
 - Or it can be Relative, that is, based on a number of size-of-this-object.
Array Modifier to Make Stairs

Move each block in Y and Z to make the next stair step

How many total steps to make

How many total steps to make
Screw Modifier

Before

After
Wireframe Modifier

Turns each polygon into thick lines outlining each polygon

How thick to make the thick lines

But, these lines have thickness, keeping this as a Mesh.
Modifier Order Matters!

Subdivision Surface, then Wireframe

Wireframe, then Subdivision Surface
The Lattice Modifier

Add a **UV Sphere**
The Lattice Modifier

In **Edit Mode**, select a group of sphere vertices and assign them as a **Vertex Group**

Hints:
1. Select the vertices in **Orthographic** and **X-ray** display modes
2. Double-click on the default name of the Vertex Group to give it a better name
Add a Lattice to the scene.

Click the **Lattice button** and (perhaps) add more lattice detail.
Add a **Lattice Modifier** to the sphere.
Tell it the name of the lattice and the name of the Vertex Group to use.
In Edit Mode, grab vertices and slide them:
The Shrinkwrap Modifier

Turn on both X-ray Mode and Wireframe Mode

Add a UV Sphere and a Cone. Either scale the sphere up or scale the cone down so the cone is inside the sphere.
The Shrinkwrap Modifier

Click on the sphere and select the Shrinkwrap Modifier

Select the cone as the Target

Adjust the Offset value. Positive values make most sense, but negative values are fun too!
The Shrinkwrap Modifier

- Offset = 2
- Offset = 1
- Offset = 0
- Offset = -1
- Offset = -2
I suspect this is more applicable to engineering-ish objects, but it fun no matter what. Let’s use our old friend Suzanne the monkey.

Go to **Modifiers → Select Modifier → Build**
You get the following Modifier box. All the values are good defaults:

At this point, Suzanne has disappeared. What!? To bring her back, grab the blue animation time slider and slowly move it to the right:
The Build Modifier
The Displace Modifier

This Modifier pushes vertices out perpendicular to the surface. I would describe it as “puffing out the object”.

Go to Modifiers → Select Modifier → Displace
You get the following Modifier box. If your object suddenly looks weird, don’t worry! Set this value to 0:

Now, slowly increase to Strength to be greater than 0. What happens? Is it possible to set it to a value less than 0? What happens?
The Displace Modifier

Strength = 0.0

Strength = 0.3

Strength = -0.3
Texture Pattern Displacements

Click on the **Texture Property button**

Remember the texture “name” (**Texture.002**) – you will need it later.

Select which texture you want for the displacement pattern. I like **Voronoi** because of the cells.
Texture Pattern Displacements

Create an object, add a couple of levels of **Subdivision Surface Modifier**, then add a **Displace Modifier**.
Texture Pattern Displacements

Click here and select the texture name from before.

Select **Normal** (in computer graphics, *normal* means “perpendicular to the surface”).

Experiment with different values of Strength.
 Aren’t you glad you didn’t have to sculpt this yourself? 😊
Metaball Objects

Metaball Objects are another way to 3D model:
Metaball Objects

The cool thing is that, if you move (g) them close enough, they will “glom” into a single object.
Metaball Objects

There is a special Metaball properties menu to control their characteristics:
Metaball Objects

But, Metaball Objects are not meshes, so you cannot do a lot of the cool editing that you can with meshes. But, you can turn such an object into a mesh by selecting **Object → Convert To → Mesh from Curve/Meta/Surf/Text**

After tabbing into Edit Mode
Many times, one object is connected to another object. In modeling, this is called a Parent-Child relationship. (It is also sometimes called a Hierarchical Relationship.)

When the Parent moves, the Child moves with them.

When the Child moves, the Parent is unaffected.

This is really useful!

You can create as many levels of Parent-Child relationships as you want: As the song goes:

“The foot bone’s connected to the ankle bone, the ankle bone’s connected to the leg bone, the leg bone’s connected to the thigh bone, …”

To do this in Blender:

1. Move the Child’s pivot-point to where you want it connected to the Parent
2. Select the Child piece
3. Shift-select the Parent piece
4. Hit Control-’p’ on the keyboard
Parent-Child Relationships in Modeling

If you rotate the blue (child) piece, then just it will move.

If you rotate the yellow (parent) piece, then both it and the child piece will move.
Importing Objects from Other Places

Select **File → Import**

Collada = export format from game modeling systems

Stl = 3D printer format

3ds = format from Autodesk 3D Studio

Obj = Probably world’s most common export format There are a *ton* of .obj models for free on the Internet! Google the phrase: *free obj files*

.obj files are also pretty straightforward to create. So, if you have a shape in mind and can write a computer program to generate it, you can write your own .obj file and Import it into Blender.
Importing Objects from Other Places

File = `dino.obj`

You can get this file from the web page:
http://cs.oregonstate.edu/~mjb/blender

As-is, flat shaded

Subdivision surfaced

+ Smooth shaded
Importing Objects from Other Places
Blender has a number of file formats it knows how to export to. If you are looking for a nice, general one to experiment with, try the .obj format.

Just be sure to use the RMB menu to select Shade Smooth first

Select File → Export → Wavefront (.obj)
Exporting to an OBJ File

This is the Blender file-output selection dialog box:

Obj-specific settings (see next slide)
In the export dialog, be sure to click on

- **Write Normals**
- **Include UVs**
- **Triangulate Faces**
7. Rendering
We have been using this one. This one gave you good generic lighting so you could model without worrying about light sources.

Now switch to this one. This one will give you a pretty-good preview of what happens when you actually render the scene. But, we now have to deal with Rendering specifics.
"Rendering" is Blender’s process for creating really high-quality images. Click on Render → Render Image or hit the F12 key (you might have to hit the fn key at the same time). The rendering operation can often take some time, depending on how complex your scene is.
Clicking on the **Rendering Properties** button will allow you to set various rendering parameters. The one you care about the most is Sampling resolution.

You want at least some **Anti-Aliasing**, which is done by making more than one sample per pixel. 64 and 16 are good values.

The rest of these are interesting, but not needed right now.
Clicking on the **Output Properties** button will allow you to set various rendering parameters. The one you care about the most is pixel resolution.

These are OK values, but you can improve your rendering speed by making them smaller. Don’t make them smaller by changing the 1920x1080, make them smaller by changing the **100%**.

Notice that the image aspect ratio being used here is 16:9 (=1920:1080). This is the most common aspect ratio today for TVs and computer monitors.

The rest of these are interesting, but not needed right now.
What is Anti-aliasing?

Anti-aliasing is a good-news bad-news joke.
Good news: the scene looks much smoother
Bad news: the scene takes longer to generate
Good news: you probably want to do it anyway
Anti-aliasing is Implemented by Oversampling within Each Pixel

4x

16x

NVIDIA
Let's say that you are in **Solid Shading Mode** and your scene situation looks like this.

You now change to **Render Mode** and get this:

Blech! Why is the bottom part of my scene so dark?
The answer is that **Solid Shading Mode** doesn’t require your scene to be lit but **Render Mode** does.
By default, your scene has a single light in it. It looks like this.

If you can’t find it, try zooming out.

If you still can’t find it, select it in the **Outliner**.

This is like any other object.
A light is like any other object. It can be LMB clicked on (or selected in the **Outliner**). It can be grabbed (**g**) and moved around. Moving it around will change how the lighting looks.
But, to make this work better, you probably want to add more lights.
There are four types of **Lights** that you can **Add**

1. **A Point** Lamp shines light in all directions. The light is local to the scene. This is usually the best type of light to start out with.

2. **A Sun** Lamp appears to come from a single direction and its rays are parallel. This acts as if the light is very far away.

3. **A Spot** Lamp is like a Point Lamp, but only shines in one particular direction.

4. **An Area** Lamp is light coming from a finite surface, like most lights really are.
Lighting – try this

1. Add another Point Light

2. Position the Light (‘g’).

3. The Point Light has no obvious local coordinate system, so it just uses the global coordinate system.

4. As you move the Light, you will see the lighting of the scene change

5. You will probably have to rotate the scene (MMB) to get the light position where you think it should be. Or, you can also toggle the **Quad View** mode (Control-Alt-q).
Lighting – Quad View

- Toggle Quad View
- Horizontal Split
- Vertical Split
- Duplicate Area into New Window
- Toggle Maximize Area
- Toggle Fullscreen Area
Lighting – Quad View
Lighting – Properties

This preview shows how the Light spreads out.

What color to make the Light.

How bright to make the Light shine.

Be sure this is clicked on in order to get this light to cast shadows.
Lighting – What does it Mean to Have a Colored Light?

What the light can produce:
- \(L_R \)
- \(L_G \)
- \(L_B \)

What the material can reflect:
- \(M_R \)
- \(M_G \)
- \(M_B \)

What the eye sees:
- \(E_R \)
- \(E_G \)
- \(E_B \)

Equations:
- \(E_R = L_R \times M_R \)
- \(E_G = L_G \times M_G \)
- \(E_B = L_B \times M_B \)
In modeling, rendering, and animation, there are two major roles that lights play:

1. Key
2. Fill

Let’s say we want to put a spotlight on the Monkey (and who doesn’t?). We add a Spot Light. We position it over the Monkey and angle it down, like this. This is our “Key Light”. It does what we most want to do.

We render and get this.

The Key Light is working really well, but the rest of the scene is too dark. We now need to use one or more Fill Lights.
We add a point light and position it over the scene. Because we are in render mode, we can interactively see when we have it positioned well.

The scene looks much better. But, there are still two problems.

1. The rest of the scene is now bright enough that our “star” is no longer highlighted.
2. The fill light is casting another shadow which is distracting.
So, we make two adjustments to our Fill Light:

- We lower its brightness.
- We un-click here to force it to not cast shadows.
The view that is rendered is not the same orientation that you see on the screen. It is from the **Camera position**, which needs to be set separately.

If you the Camera icon, LMB click on it. If you don’t see it, zoom out some. If you still don’t see it, click on the Camera in the Outliner.
The Camera

Where the eye is looking towards

The “up vector”

The eye’s position
The Camera

The camera is just like any other object in the scene.
1. It can be selected with a LMB click
2. It has its own local coordinate system attached to it.

Note the local coordinate system for the camera:

- X is to the right of where the eye is looking
- Y is the up-vector
- Z is opposite of where the eye is looking

This is useful to know. For example, to dolly the camera in or out, select it and then move it in its local coordinates:

‘g’ → ‘z’ → ‘z’
Aligning The Camera to Your Current Screen View

But, if you like your current screen view and want to move the camera there, just do this:

View → Align View → Align Active Camera to View
Setting a Background Color

Click on the **World Properties button**

Click on **Color** and dial in the background color
Setting a Background Color

This only takes effect when rendering! So, you must either be in **Render Preview mode**, or you must have done a **Render**.
Screen Space Ambient Occlusion

Ambient Occlusion is a great computer graphics trick in which crevices are artificially darkened, heightening the sense of 3D-ness. You must be using the Eevee renderer to make this happen.
Bloom

Bloom is a rendering technique that emphasizes lighting “flares”. You must be using the **Eevee renderer** to make this happen.
Screen Space Reflections

Screen Space Reflections are a quick way to generate the appearance of internal reflections in your object. You must be using the **Eevee renderer** to make this happen.
Superimposed Wireframes

I don’t know why I find this so pleasing to look at. I just do.
Triggering a Rendering

What you see on your screen

What you see on the separate render window
What You See in the Separate Render Window
Saving a Rendered Image to a File
Saving a Rendered Image to a File

Amount of compression

Image file type

File Format: PNG
Color: RGB
Color Depth: 8 bits
Compression: 15%

Computer Graphics
Saving a Rendered Image to a File

Different image file types
(PNG is good if you don’t have any preference)
Saving a Rendered Image to a File

If this is called **Compression**, then smaller numbers will give you a larger image file with greater image quality.

If this is called **Quality**, then larger numbers will give you a larger image file with greater image quality.
Saving a Rendered Image to a File

There is an important trade-off between image file size and the image Quality you set. There is also a trade-off between image size and web page download time.
Importing an Image into PowerPoint

Importing an Image into HTML

Add this line to your HTML file:

```html
<img src="ball.png">
```
8. Particle Systems
Particle System Examples

(Particles don’t have to actually be particles.)
Particles Bouncing Off Other Objects

particles.blend
Select the object to emit the particles from, then click this property button.

Click the + sign to start a new particle system.

Number of particles

Set the particles’ initial velocities – see the next slide.

Set the rendering properties -- see two slides from here.
Particles – Expand the *Velocity* Dialog Box

The velocity perpendicular to the surface

The velocity parallel to the surface
Particles – Expand the *Render* and *Viewport* Dialog Boxes

What material definition to color the particles with

What particles to draw (this is fun to change!)

If you like physics, change this to velocity

Start with a small size, like this, but then experiment
Click here to start the particle animation

Hit the **ESC** key when you want it to stop
Particles Bouncing Off Other Objects

1. Draw a plane to bounce particles from
2. Click the **Physics Property Button**
3. Click on the **Collision** option
4. Turn on the animation

Computer Graphics
Particles Bouncing Off Other Objects

Physics properties of the surface being bounced off of

Bouncing particles
Something fun – Tip the Plane
Something fun – Put something else in the way
Blowing the Particles -- Force Fields

One really good use for Force Fields is to blow particles around.

This gets you to **Physics** functions – one of which is the **Force Field**.
Ironically, one of the most useful objects is the one you can’t see. Blender calls this an Empty.

It’s invisible on the screen, but you can treat it like a real object, and can attach forces to it. These forces will influence the behavior of other objects.

Find the Empty under the Add tab at the top of the screen. When you click on it, this sub-menu pops up.
But, What to Put the Force Field On – The Empty Object

Surprise! Even though it is invisible, an **Empty** has a shape!

For this exercise, pick the **Single Arrow**

On the screen, it will look like this:
But, What to Put the Force Field On – The Empty Object

Using the usual object-rotate commands, orient the Empty so that it is pointing at the particles.

Hint: it is easiest to position it in Global Coordinates (‘g’ → ‘x’) and easiest to rotate it in Local Coordinates (‘r’ → ‘x’ → ‘x’).

Now, with the Empty selected, click on: Physics, Click Force Field, And, under Type, select Wind

You will use this to change the Strength of the wind

It will look like this on the screen:
Blowing the Particles

Turn on the animation (Control-‘a’). You can adjust the orientation and the **Strength** of the Wind while the animation is playing to get just the effect you want.
Select the object to emit the hair from, then click this property button.

Click the + sign to start a new particle system.

Select Hair

Set the number of strands

Set the hair length

Apply physics to the hairs

Set the rendering properties
It Will Start Out Looking *Terrible*

Try setting the hair length to something small-ish like 0.5
Making the Hair Droop

Turn on and expand Hair Dynamics

Start animating
Making the Droop Permanent

Get the droop the way you want it

Select **Modifiers** – a ParticleSystem modifier will already magically be there

Click on **Convert**. This will turn the hair into a mesh object.
Making the Droop Permanent

Before clicking **Convert**

After clicking **Convert**

But, this new mesh is *independent* of the object that particle’d it. To make them one object, select both and hit **Control-j** (“join”)
Making the Droop Permanent
Boids Particle Systems

Boids are a special particle system technique to simulate living things that naturally want to group together such as flocks of birds, schools of fish, etc.

As before, create an object and attach a particle system to it. Select **Emitter** for the type. Under the **Physics** tab, change Newtonian to **Boids**.
Boids are a special particle system technique to simulate living things that naturally want to group together such as flocks of birds, schools of fish, etc.

As before, create an object and attach a particle system to it. Select **Emitter** for the type. Under the **Physics** tab, change Newtonian to **Boids**.
Select the **Boid Brain** tab.

Click the **plus sign (+)**, Select **Follow Leader** from the menu, and use the **arrow keys** to move it to the top of the list.
Create a new object and animate it (keyframe or physics). This will become the “leader” that the boids will follow. If you want to see it, leave it visible. Otherwise, turn its eyeballs off in the **Outliner**.

Now select the object that the boids were created from. In the boids menu area, click in the **Object** area and select the name of the object you animated.

Now, turn on animation and watch the boids follow that object.
The boids now follow the leader
If you just want to see the boids and not the emitter object, go to the **Viewport Display** tab and click the **Show Emitter** checkbox off.
9. Physics Animation
Quick Physics Cheats

Original Scene
Quick Physics Cheats

Quick Fur
Quick Explode
Quick Smoke
Quick Liquid
There are Eight Types of Physics Simulations

- Force Field
- Collision
- Cloth
- Dynamic Paint
- Soft Body
- Fluid
- Rigid Body
- Rigid Body Constraint
Rigid Body Collision Example

Set this up using what you know about modeling.

Slightly rotate the left-most domino to the right so that it will tip and start the sequence.
Let Blender Know You Want to do Rigid Body Physics

Click on the **Scene Properties** Button

Set Gravity (this value indicates gravity points downward and has a value of \(-9.81 \text{ meters/second}^2\))

Be sure this is turned on
Tell the Physics which Objects will be Involved

For each object that will be pulled by gravity (the dominos and the ball), select the object, click on the **Physics Property Button**, click on **Rigid Body**, and set the Type to **Active**.
Tell the Physics which Objects will be Involved

For each object that will *not* be pulled by gravity but will still be involved in the collisions (the floor), select it and set the Type to **Passive**.
Turn the Animation On

Hit the Escape key to stop the animation
Setting Gravity

In order to do physics animations, Blender needs to have an idea of what Gravity is. The acceleration due to gravity near the surface of the earth is 9.81 meters/sec\(^2\) (pointing down), which also equals 32.2 feet/sec\(^2\).

You can set this by clicking on the **Scene Properties Button** and then scrolling down to the **Gravity** dialog area.

This is the default, but you can set Gravity to anything you want, including turning it off completely, or making it point upwards, or making it point sideways.
Gravity on Other Worlds

The acceleration due to gravity is not the same on all worlds. It depends on the mass of the body and its radius.

For fun, try setting gravity to what other bodies have in our solar system:

<table>
<thead>
<tr>
<th>Body</th>
<th>Gravity Acceleration (m/sec²)</th>
<th>g’s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mercury</td>
<td>3.70</td>
<td>0.38</td>
</tr>
<tr>
<td>Venus</td>
<td>8.87</td>
<td>0.90</td>
</tr>
<tr>
<td>Earth</td>
<td>9.81</td>
<td>1.00</td>
</tr>
<tr>
<td>Moon</td>
<td>1.62</td>
<td>0.17</td>
</tr>
<tr>
<td>Mars</td>
<td>3.71</td>
<td>0.38</td>
</tr>
<tr>
<td>Jupiter</td>
<td>24.79</td>
<td>2.53</td>
</tr>
<tr>
<td>Saturn</td>
<td>10.44</td>
<td>1.06</td>
</tr>
<tr>
<td>Uranus</td>
<td>8.69</td>
<td>0.89</td>
</tr>
<tr>
<td>Neptune</td>
<td>11.15</td>
<td>1.14</td>
</tr>
</tbody>
</table>

https://www.universetoday.com/35565/gravity-on-other-planets/
Or, invent your own planet! Pick a different “m/sec^2”.
Another Cool Thing: Modeling Cloth
There is a difference in what different Mesh types will do. This needs to be a **Grid** – not a Plane!
Select the cube. Then go to the **Physics Property Button**. Then click on **Collision**.

You don’t need to set any other parameters (unless you want to)
Modeling Cloth – Subdivide the Grid into More Pieces

If you select the grid and tab over to Edit Mode, you will see that it is already subdivided somewhat. To act as a cloth, we’d like it subdivided some more.

Back in Object Mode, select the grid, then select Modifiers.

Then click Add Modifier and select Subdivision Surface.

Change the Viewport parameter from 1 to 2.

Click the Apply button.
Modeling Cloth – Tell the Grid that it is Really a Piece of Cloth

Select the grid. Then go to the **Physics Property Button**. Then click on **Cloth**.

You can get away without changing any of these parameters, but, at some point, you will want to experiment with different values of **Stiffness** and **Damping**.
Modeling Cloth – Run the Animation

Select the grid, RMB, then select Shade Smooth. Then start the animation.
Baking the Cloth Animation

Why does the animation run so slowly? That is because it is computing the simulation while it is animating.

Instead, tell it to precompute the animation. You do this by selecting the Bake button (and waiting and waiting).

Now try animating.
Cloth Animation with Color, Texture, and Lighting

cloth.mp4
What if You Want the Cloth to Retain its Animated Shape Forever?

That is, supposing you have used a cloth animation to drape a tablecloth over a table and now want to leave it that way.

You start with this:

Then, with the cloth selected, go to the Modifier menu. You will see the Cloth modifier already magically there. Select the down arrow and click on Apply.
Cloth Animation: Pinning Vertices

One of the many fun parts of cloth animation is pinning some of the vertices. There are lots of reasons to do this, such as to pin the edge of a flag to its flagpole, or to pin a cloth to a clothesline.

To do this, Tab into **Edit Mode**, **Shift-LMB** the vertices to be pinned, and create a **Vertex Group** from them. (This was described in more detail in the Modeling section of these notes).
Cloth Animation: Pinning Vertices

In the Cloth section of the grid’s Physics menu, select the name of the Vertex Group to be pinned.

When you re-animate, those vertices will be stationary.
Rendering an Animation

Render Animation kicks off the rendering of all your animation frames in order.

View Animation brings up a separate window and plays back your animation.

Hint: if this is just a test render, and you have lots of time-consuming visual effects going on, you might cut down the resolution and/or the number of rendered frames to speed things up.
Setting up a Fluids Simulation – Create the Domain Object

Step #1: Create the **Domain**, the volume in which the fluid will be simulated. Here, I scaled the default cube by 3 in X, 3 in Y, and 5 in Z.

Step #2: With the cube selected, go to the **Physics** menu, click on **Fluid**, select **Domain**, and select **Liquid**.

[Image of the domain object and settings panel]

fluidmonkeycone.blend
Setting up a Fluids Simulation – Create the Domain Object

Step #3: Scroll down in the **Physics-Fluid** menu until you find the **Mesh** tab. Turn it on.

Setting up a Fluids Simulation – Create the Flow Object

Step #4: Create a mesh object that will be the original location and shape of the fluid. A UV-Sphere works well. A monkey works even better! 😊 This object must lie totally within the Domain. You should probably toggle into **wireframe** mode so you can see inside the Domain.

Position this object near the *top of the Domain*.
Setting up a Fluids Simulation – Create the Flow Object

Step #5: With this object selected, go to the **Physics** menu, click on **Fluid**, select **Flow**, and select **Liquid**.
Setting up a Fluids Simulation – Miscellaneous

Step #6: Miscellaneous Things:

- Change the color of the Domain object (cube) to the color you want the fluid to be. Feel free to change the **Metallic** and **Roughness** parameters as well.

- Change the shading type of the Domain object to **Shade Smooth**

- Hide the Flow object (monkey?) by clicking off its eyeballs in the Outliner

- Select the Domain object, go to the **Physics** menu, scroll down until you see this: Be sure **Liquid** is turned on. Now, go here and select the **other option**. It doesn’t make a huge difference which one you pick, but changing the option resets the fluid simulation.
Running the Fluids Simulation

Step #7: Run the animation! Go to **Viewport Shading mode** and hit **Play**. The first time through will seem slow because it is computing the frames and storing them. After that, the animation will be much smoother because Blender is playing back your frames.
Step #8: Add some shape (a cone perhaps) into the middle of the Domain. Give it a color and the proper shading type. Then, go to the **Physics** menu, click on **Fluid**, and select **Effector**.
Step 9: Select the Domain object, go to the **Physics** menu, scroll down until you see this again: **Go here and select the other option.** It doesn’t make a huge difference which one you pick, but changing the option resets the fluid simulation.

![Fluid Simulation Options](image)

Step 10: Hit Play!
10. Appearance, II
Procedural Texturing
1. Leave **Use Nodes** turned on.

2. Select **Principled BSDF** (probably already selected)

3. Here, where you would normally select a color, click on this little circle

4. From that pop-up menu, select **Voronoi Texture** (or one of the others)
4. From that pop-up menu, select **Voronoi Texture** (or one of the others)

5. Change the **Scale** to change the size of the Voronoi cells

6. Try changing the **Randomness** as well!

7. As before, changing **Metallic** and **Roughness** affects the shininess.
Blender has these Built-in Procedural Textures
Image Texturing

Start with a **UV Sphere** being shown in **Render Preview** mode.
Image Texturing

Says that you want to read a texture image from a file

Click here to open an image file
Image Texturing

worldtex.bmp is a good texture to try!
Image Texturing

worldtex.bmp is a good texture to try!
Image Texturing

Sphere

Cube

Tube

Flat
Places to Find Good Texture Images

https://www.shutterstock.com/search/textured

https://ambientcg.com/list?sort=Popular

https://www.freepik.com/photos/texture
Let’s Say That We Want to Render This Scene

Cube and Monkey are opaque

Sphere is both reflective and refractive

Plane has a checkerboard texture on it

Scene has lighting and shadows

Sphere is both reflective and refractive

reflrefr.blend
Making the Sphere Reflective and Refractive

Combine refraction and reflection effects together with the Mix Shader

- How much to mix each shader
- First shader is **Glass** to get the refraction
- Transmission color
- Index of Refraction
- Second shader is **Glossy** to get the reflection
- No inherent color in the reflection
1. Leave **Use Nodes** turned on.

2. Select **Principled BSDF** (probably already selected)

3. Here, where you would normally select a color, click on this little circle

4. From that pop-up menu, select **Checker Texture** (or one of the others)

5. Here you can select the two colors making up the checkerboard

6. Change the scale to change the size of the checkerboard squares
Onscreen and Rendered Results with *Eevee*

On-screen

Rendered
Onscreen and Rendered Results with *Cycles*
Rendered Results with Cycles
You may have noticed some “sparkling” in the rendered image on the previous slide. That is a natural artifact of the path-tracing algorithm that Cycles uses. In computer graphics, this is called “render noise”. Blender has a denoising feature. All you have to do is turn it on in the Denoising tab of the Render Properties menu.
BTW, I don’t recommend you turn Denoising on for the Viewport display. It really slows down your interaction when using Cycles.
What Actually is Ray-Tracing?

It starts at the eye:

The pixel is painted the color of the nearest object that is hit.
What Actually is Ray-Tracing?

It’s also straightforward to see if this point lies in a shadow:

Fire another ray towards each light source. If the ray hits anything, then the point does not receive that light.
What Actually is Ray-Tracing?

It’s also straightforward to handle reflection.

Fire another ray that represents the bounce from the reflection. Paint the pixel the color that this ray sees.
The Physics of Reflection

Law of Reflection:

\[\theta_r = \theta_i \]

Angle of reflection = Angle of incidence
It’s also straightforward to handle refraction.

Fire another ray that represents the bend from the refraction. Paint the pixel the color that this ray sees.
The Physics of Refraction

Snell’s Law of Refraction:

\[
\frac{\sin \Theta_B}{\sin \Theta_A} = \frac{\eta_A}{\eta_B}
\]

<table>
<thead>
<tr>
<th>Material</th>
<th>Index of Refraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vacuum</td>
<td>1.00000</td>
</tr>
<tr>
<td>Air</td>
<td>1.00029</td>
</tr>
<tr>
<td>Ice</td>
<td>1.309</td>
</tr>
<tr>
<td>Water</td>
<td>1.333</td>
</tr>
<tr>
<td>Plexiglass</td>
<td>1.49</td>
</tr>
<tr>
<td>Glass</td>
<td>1.60</td>
</tr>
<tr>
<td>Diamond</td>
<td>2.42</td>
</tr>
</tbody>
</table>

http://en.wikipedia.org/wiki/Refractive_index
11. Vertex Sculpting
Vertex Sculpting

Vertex Sculpting is, well, sculpting vertices. But, in order to do this well, we need a lot of vertices.

Start with a UV sphere mesh object.

Tab over to **Edit Mode**.

RMB → **Subdivide** → **Subdivide**

When you get back to Object Mode, the sphere won’t look any different than before because you just subdivided the polygons, not smoothed them. If you had wanted smoothing, you could have used the **Subdivision Surface Modifier**.

Now go to **Sculpt Mode**.
Vertex Sculpting

Lots of new options will appear at the top:

- **Brush Radius** (I like 25)
- **Brush Strength** (height)
- **Add Material (+) or Subtract Material (-)**
- **Brush Characteristics**

- **Stroking Characteristics**
- **Surface Falloff from the Center of the Brush** (I like Smoother)
- **Symmetry Control** (I recommend you click all of these off for now.)
Vertex Sculpting

Go back and forth over the object with the brush to increase the sculpting effect

Add material

Subtract material

Sculpting usually looks better if you quick get over into Object Mode, RMB → Shade Smooth
Vertex Sculpting Options

I like this one
<table>
<thead>
<tr>
<th>Brush</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blob</td>
<td>Change the local mesh into a spherical shape</td>
</tr>
<tr>
<td>Brush</td>
<td>Moves vertices in or out</td>
</tr>
<tr>
<td>Clay</td>
<td>Like Brush, but lets you set a plane of action</td>
</tr>
<tr>
<td>Clay Strips</td>
<td>Like Clay, but uses a cube to limit the action</td>
</tr>
<tr>
<td>Crease</td>
<td>Creates ridges by pulling/pushing vertices and pinching them</td>
</tr>
<tr>
<td>Fill/Deepen</td>
<td></td>
</tr>
<tr>
<td>Flatten/Cont</td>
<td>Push/pull vertices towards a plane</td>
</tr>
<tr>
<td>Grab</td>
<td>Grab and move a single vertex</td>
</tr>
<tr>
<td>Inflate/Deflate</td>
<td>Like Brush, but vertices are moved in the direction of their normal</td>
</tr>
<tr>
<td>Layer</td>
<td>Like Brush, but the height is capped</td>
</tr>
<tr>
<td>Mask</td>
<td>??</td>
</tr>
<tr>
<td>Nudge</td>
<td>Slightly push vertices in a certain direction</td>
</tr>
<tr>
<td>Pinch/Magnify</td>
<td>Pinches vertices towards the brush’s center</td>
</tr>
<tr>
<td>Polish</td>
<td>??</td>
</tr>
<tr>
<td>Scrape/Peak</td>
<td>Like Flatten?</td>
</tr>
<tr>
<td>Sculpt Draw</td>
<td>Moves vertices in or out</td>
</tr>
<tr>
<td>Smooth</td>
<td>Smooth a region by averaging out vertex coords</td>
</tr>
<tr>
<td>Snake Hook</td>
<td>Pulls vertices along the brush’s path</td>
</tr>
<tr>
<td>Thumb</td>
<td>Like Nudge, but over a larger area</td>
</tr>
<tr>
<td>Twist</td>
<td>Rotate a single vertex</td>
</tr>
</tbody>
</table>
Vertex Sculpting with Dynamic Topology ("Dyntopo")

This cool – you are really going to like this!

Set the Sculpt Mode to **Draw**

Set Radius to **20**

Set Brush Strength to **1.0**

Add Material (+)

Surface Falloff from the Center of the Brush to Smoother

No Symmetry

Click **Dyntopo** on (if you get a message, just click **OK**)
Vertex Sculpting with Dynamic Topology ("Dyntopo")

Set Dyntopo Detailing to **Brush Detail**

And, have at it!
Vertex Sculpting with Dynamic Topology ("Dyntopo")

How does Dyntopo Mode make such a smooth sculpt? Let’s look at this in **Sculpt Mode** and then in **Edit Mode**:

That’s why it is called **Dynamic Topology**!
12. Vertex Painting
Vertex Painting

Vertex Sculpting is, well, sculpting vertices. But, in order to do this well, we need a lot of vertices.

Start with a UV sphere mesh object.

Tab over to **Edit Mode**.
RMB → **Subdivide** → **Subdivide**

When you get back to Object Mode, the sphere won’t look any different than before because you just subdivided the polygons, not smoothed them. If you had wanted smoothing, you could have used the **Subdivision Surface Modifier**.

Now go to **Vertex Paint Mode**.
Setting up for Vertex Painting

Be in **Solid Shading mode**

Brush Color

Brush Radius (I like ~25)

Brush Intensity

Brush Characteristics

Stroking Characteristics

Surface Falloff from the Center of the Brush (I like **Smoother**)

Oregon State University
Computer Graphics
A Word on Brush Size

Note: the brush size does not scale with zooming in or out. It stays the same size.
How Does Vertex Painting Work?

The “paintbrush” only drops “paint” when a vertex is inside the circle brush. This means that the paint does not smear along a nice line but looks splotchy like this.
How Do We Make it Less Splotchy?

Two approaches:

1. Make the object look smaller. That way more vertices will end up inside the brush circle.
2. Use **Subdivide** or **Subdivision Surfaces** to add more vertices.
Making Your Vertex Painting Show Up

Be in **Rendered Shading mode**

Click on the small circle and select **Mix** from the pop-up menu.
Then click here and select **Color Burn** or **Multiply** from the pull-down menu ("Mix" will change to whichever you picked)
Making Your Vertex Painting Show Up

Click here and select a color for the sphere

Click on the small circle and select **Vertex Color** from the pop-up menu

Click and adjust the value of **Fac**
The *Fac* Parameter Tells Blender What to do on the Parts of Your Object that have both an Object Color and a Paint Color.

- **Multiply**
 - Fac = 0.00
 - All Object Color

- **Multiply**
 - Fac = 0.50
 - Half of Each

- **Multiply**
 - Fac = 1.00
 - All Paint Color
Have a Nice Day!
13. Keyframe Animation
Keyframe Example

http://ieeexplore.ieee.org/ieee_pilot/articles/05/ttg2009050853/figures.html
Keyframe Animation

Keyframe animation is a technique that goes all the way back to the beginning of hand drawn animation (e.g., Walt Disney). Senior animators would specify key positions for the animated characters and then more junior animators would fill in the frames in between. This became known as **keyframing** and **in-betweening**.

Blender allows you to create the keyframes and gets the computer to do the in-betweening. Here, we will keyframe-animate the monkey as she slaloms around a group of colored cubes:
Keyframe Animation

Select the **Animation** workspace from the list at the top. This creates a screen layout that looks like this:

![Screen layout](image)

This makes your screen look like this. These new sections are:

- **3D Viewport Window** – what you are used to
- **Camera View Window** – what you will see if you Render
- **Timeline Window** – keeps track of what frame number we are on.
Keyframe Animation
Keyframe Animation

Slide the timeline indicator to what frame number you want to set, position the object (grab, scale, rotate) how you want it to be (grab, scale, rotate), and RMB → Insert Keyframe (or hit the ‘i’ key). From the pop-up menu, select Location, Rotation, and Scale, indicating that you want to record location, rotation, and scale factor.
Keyframe Animation

Do it again: slide the timeline indicator to what frame number you want to set, position the object how you want it to look, and RMB → Insert Keyframe (or hit the ‘i’ key). From the pop-up menu, select Location, Rotation, and Scale, indicating that you want to record location, rotation, and scale factor.
Keyframe Animation

After a while, your timeline will look like this:

Then, click here and change the type of display to the **Graph Editor**:
Graph Editor
Keyframe Animation

Your **Graph Editor** window should now look about like this.

Note that Blender has filled in the in-between values for you. (This is the “**In-Betweening**”.)
The Graph Editor Window

Click on the triangle. This gives you access to the curves. Clicking on the eye toggles whether or not you can see a curve. Clicking on the name of the curve makes that the current curve. You can then edit it.
The Graph Editor Window

Shortcuts when the cursor is in the **Graph Window**:

<table>
<thead>
<tr>
<th>Shortcut</th>
<th>What it does</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMB</td>
<td>Select a keyframe dot</td>
</tr>
<tr>
<td>Scroll wheel</td>
<td>Zoom in and out of the Graph</td>
</tr>
<tr>
<td>MMB</td>
<td>Pan the Graph</td>
</tr>
<tr>
<td>Shift-scroll wheel</td>
<td>Pan in Value (vertical)</td>
</tr>
<tr>
<td>Shift-MMB</td>
<td>Pan in Value (vertical) and Time (horizontal)</td>
</tr>
<tr>
<td>Control-MMB</td>
<td>Scale in Value (vertical) and Time (horizontal)</td>
</tr>
</tbody>
</table>
Hit the ‘n’ key. Like in the 3D View, a Number Panel pops up.

Click on the **Modifier** tab.

Then click on **Add Modifier**.
Animation Mischief

Select **Add Modifier**.
From the list of Modifiers, select **Noise**.
Animation Mischief 😊

Use this menu to change the noise parameters **scale** and **strength**. Notice what this does to the curve. Now play the animation.
Two Characters Interacting

To avoid a collision, the monkey jumps up and the cube squishes
Animating the Camera and the Lamps

Cameras and Lamps are just like any other object. As you have seen, they can be positioned. They can also be keyframe-animated. Like other objects, just select them and hit the ‘i’ key to insert a keyframe.
Computer Graphics

Animating (almost) Any Parameter

One of the many cool things about Blender is that you can do more than just keyframe-animate the objects, you can also keyframe-animate the parameters you are setting. For example, suppose you want to animate the Metallic-ness. To set a keyframe for this, **right click** on the Metallic box and select **Insert Keyframe** from the pop-up menu. Do this for two keyframes and then animate.

[Image of Blender UI showing Metallic parameter animation]

Frame 0

Frame 60
Animating a Human-ish Form

Start with this …

... and turn it into a Blender model:

model.blend
modelmoved.blend
Animating a Human-ish Form

But, it’s more than just a collection of parts!

Be sure that the origins of the different parts are where you want the part to pivot around.

Then establish the proper parent-child relationships.
Animating a Human-ish Form

Now tell Blender to do all rotations around each part’s origin

Selecting this … causes object rotation to happen about the previously-set origin
Now try rotating the individual parts.

Be sure you are rotating in *local coordinates*, e.g., ‘r’-’y’-’y’
There is a time-honored tradition in stop-motion animation to use an internal support, called an armature, to help position the object at each frame.

Digital animation has adopted the same technique, and has even retained the same terminology, armature.

The process of creating this digital armature is referred to as Rigging.
Let’s say we have a cheesy noodle character named *Mac*. We would like to rig him to bend.

The first step is to create Mac’s geometry. In this case, one cylinder was Boolean-subtracted from another and then was Edit → Subdivide’d a couple of times.

The second step is to go to the Add tab on the Object Tools and click on Armature. This brings up the submenu here.
Grab the armature just like you would any other object and position it next to Mac. (I scaled it up a couple of times to make it more visible.)

This is what the pieces of a Blender armature look like. The three sections of one of these bones are the root, the body, and the tip.
Rigging for Animation

We could put lots of bones in place to animate Mac, but, for simplicity we will just use two.

Tab into **Edit Mode**, select the **Armature**, then select **Extrude**. Lift up on the **plus sign**. This will add a second armature on top of the first and connect them tip-to-root. Click here to let go. Tab back to **Object Mode**.
In the **Outliner**, you can see the bones you have created.

Also, in the Properties buttons, you will see that there are now **Armature** and **Bone** buttons.
When you click the **Armature Properties** button, a bunch of new information comes up. The most important for right now is in the **Viewport Display** tab:

Try these. They change the appearance of the Bones.

Click on **Names**. It puts the name of the Bone next to it so you know which one is which.
It’s always good to name your Bones. In the Outliner, double-left-click on Bone.001 and rename it **Top**. Double-left-click on Bone and rename it **Bottom**. Your display now looks like this:
We next need to make the armature a Parent and the object (i.e., Mac) its Child. Select Mac and then shift-select the armature. (The order is important!)

To create the Parent-Child relationship, hit **Control-P**. In the pop-up menu, select **Armature Deform With Automatic Weights**

To verify that this worked, the **Outliner** will show that Mac is now part of the Armature.
Almost there – the last step is to assign which vertices on Mac will be deformed by the Bottom Bone and which will be deformed by the Top Bone. These groups do not need to be mutually exclusive – they can (and should) have vertices in common.

Earlier in these notes we talked about selecting multiple vertices and Vertex Groups. We are going to do that again. We are going to put some of Mac’s vertices into a Vertex Group called **Bottom**, and some into a Vertex Group called **Top**. These must match the names of the respective Bones exactly,

1. Select Mac
2. In the properties area, select the **Object Data Properties**
3. Tab into **Edit Mode**
4. Select View → **Perspective/Orthographic** to place yourself in orthographic display mode
5. Turn on the **X-ray** button at the top
6. Hit ‘a’ to unselect everything
7. Use the Border Select to select the top 2/3 of Mac’s vertices
8. Create a Vertex Group with them called Top by clicking on Top and then clicking on Assign
9. Hit ‘a’ to unselect everything
Rigging for Animation

10. Use the Border Select to select the *bottom 2/3* of Mac’s vertices
11. Create a Vertex Group with them called Top by clicking on **Bottom** and then clicking on **Assign**
12. Hit ‘a’ to unselect everything
13. Turn off **X-ray** mode and go back to **Perspective**
14. Tab back to **Object Mode**
Select the Armature and go to Pose Mode.

Select the different Bones and try grabbing, rotating, and scaling them. Obviously, a serious Mac animation will require more than two Bones! Bone transformation can be keyframed just like transformation parameters of any other object.
Rendering an Animation

Hint: if this is just a test render, and you have lots of time-consuming visual effects going on, you might cut down the resolution and/or the number of rendered frames to speed things up.

This kicks off the rendering of all your animation frames in order.

This brings up a separate window and plays back your animation.
Rendering an Animation to a File

Before kicking off the animation rendering, you need to specify the file name to put the animation into

C:\tmp\mjb.avi

and the type of file that it is to be
Rendering an Animation to a File

Here are the animation file types that Blender supports.

Here is how large a 100-frame animation of the cube turned out to be.

<table>
<thead>
<tr>
<th>Movie File Type</th>
<th>File Size</th>
<th>Displayed?</th>
<th>Import into PowerPoint?</th>
</tr>
</thead>
<tbody>
<tr>
<td>AVI JPEG</td>
<td>Didn’t work</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AVI Raw</td>
<td>148 MB</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Note: this scene is simple and compresses well. The mileage you get may vary.
Importing an Animation into YouTube

YouTube accepts videos in **AVI** and **MPEG** formats.
Importing an Animation into PowerPoint

<table>
<thead>
<tr>
<th>Movie File Type</th>
<th>File Size</th>
<th>Displayed?</th>
<th>Import into PowerPoint?</th>
</tr>
</thead>
<tbody>
<tr>
<td>AVI JPEG</td>
<td>Didn’t work</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AVI Raw</td>
<td>148 MB</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
1. In this example, we added the first keyframe, then the last keyframe, then three keyframes in the middle. Sometimes it is easiest to work that way. Other times it is easier to add them in sequential order.

2. Sometimes it is easier if you initially add a bunch of duplications of the object in various positions to get a feel for the motion, edit those positions as you see fit, and then use them as keyframe positions.

3. Extending from each keyframe dot is a line. That line can be twisted to change the slope of the curve at that keyframe. Select the dots at the end of that line and move them.

4. The Camera position and the Lamps can be animated too. For each, define an Empty object, force the Camera or Lamp to follow it (it’s one of the Constraints), then animate the Empty. Be sure to give the Empty a descriptive name – all Empties look alike.
1. **Squash and Stretch** -- Defining the rigidity and mass of an object by distorting its shape during an action.

2. **Timing** -- Spacing actions to define the weight and size of objects and the personality of characters.

3. **Anticipation** -- The preparation for an action.

4. **Staging** -- Presenting an idea so that it is unmistakably clear.

5. **Follow Through and Overlapping Action** -- The termination of an action and establishing its relationship to the next action.

6. **Straight Ahead Action and Pose-To-Pose Action** -- The two contrasting approaches to the creation of movement.

7. **Slow In and Out** -- The spacing of the inbetween frames to achieve subtlety of timing and movement.

8. **Arcs** -- The visual path of action for natural movement.

9. **Exaggeration** -- Accentuating the essence of an idea via the design and the action.

10. **Secondary Action** -- The action of an object resulting from another action.

11. **Appeal** -- Creating a design or an action that the audience enjoys watching.

14. 3D Printing
The Process

“3D Printing” is defined by some sort of “additive” process. The current frenzy in 3D Printing consists mostly of systems that deposit layers of molten plastic:
The 3D Printing Geometry File

3D Printers are fed a file called an “STL File”, which lists all the triangles in the object. Blender (as well as all CAD systems) can produce this type of file for you.

```
solid
  facet normal  0.00  0.00  -1.00
  outer loop
    vertex   -2.000000   -2.000000   0.250000
    vertex   -1.980000   -1.980000   0.250000
    vertex   -1.980000   -2.000000   0.250000
  endloop
endfacet

faceted normal  0.00  0.00  -1.00
  outer loop
    vertex   -2.000000   -2.000000   0.250000
    vertex   -2.000000   -1.980000   0.250000
    vertex   -1.980000   -1.980000   0.250000
  endloop
endfacet

... 

endsolid
```
Object Rules for 3D Printing

1. The object must be a mesh and *consist only of triangles*.

1. **Alt-’c’** to turn a Meta object or 3D Text into a mesh

2. Modifiers → Add Modifier → Triangulate
2. The object must be a legal solid. It must have a definite inside and a definite outside. It can’t have any missing face pieces.
The Simplified Euler's Formula* for Legal Solids

*sometimes called the Euler-Poincaré formula

\[F - E + V = 2 \]

<table>
<thead>
<tr>
<th>F</th>
<th>Faces</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>Edges</td>
</tr>
<tr>
<td>V</td>
<td>Vertices</td>
</tr>
</tbody>
</table>

For a cube, \(6 - 12 + 8 = 2 \)

The full formula is:

\[F - E + V - L = 2(B - G) \]

- F: Faces
- E: Edges
- V: Vertices
- L: Inner Loops (within faces)
- B: Bodies
- G: Genus (number of through-holes)
Watch Out for Overhangs!

These layers will build fine

This layer will fall to the plate

Note that if you build it upside-down, it will probably work fine
Watch Out for Overhangs!

Some 3D printers handle this by leaving unused material in place to support the overhangs.

Some 3D printers handle this by using software to add “support structures” to the overhangs.

Some 3D printers handle this better than others… 😊

http://twistedsifter.com/2013/08/when-3d-printing-goes-wrong/
Object Rules for 3D Printing

3. You can’t make an object by simply overlapping two objects in 3D. If you want both shapes together, do a Boolean union on them so that they become one complete object.

Overlapped in 3D Boolean union
What Happens if You Do Overlap Objects?

Here's what one of the 3D Printers in the OSU Library did:

Overlapped in 3D

Boolean union

Not bad – it could have been lots worse …
4. Each edge in the mesh must bound 2 and only 2 triangles (this is known as the Vertex-to-Vertex Rule)
Installing the 3D Printing Add-on

Select **Edit → Preferences**
Installing the 3D Printing Add-on

Select Add-ons → Mesh: 3D Print Toolbox
Installing the 3D Printing Add-on

Hit the ‘n’ key to see the sidebar menu. The 3D Print Toolbox will be a tab like this.
Selecting your object and then clicking on **Check All** will give you this nice list of problems Blender thinks you will have if you try to 3D Print this object.

Selecting **Clean Up** will try to fix the problems.
Tab over to **Edit Mode**. Click in an empty area to unselect everything. Then click in all the places that show problems. Blender will light up the object in the places that provoked that problem, giving you a chance to fix them.
Output for 3D Printing

To export an STL file for 3D Printing:

1. Click here and select a folder for the file
2. Click here to write the file

.stl is the most common 3D printing file format

“STL” stands for Stereolithography.
The word “stereolithography” comes from the Greek words for “3D” and “writing”.
Want to see 3D Printing in Action?

Oregon State University’s library has 3D Printers for use by OSU students. To see them via webcam, go to: http://webcam.oregonstate.edu/3dprinter

Click here to see the live, streaming view.
15. Stereographics
Stereoscopy is not new – it’s been in common use since the 1950s

But, with virtual reality and 3D movies being so popular, stereoscopy has made a big comeback. And, you can get at it through Blender!

For more information on stereoscopy, see: https://en.wikipedia.org/wiki/Stereoscopy
We Humans have Binocular Vision

In everyday living, part of our perception of depth comes from the slight difference in how our two eyes see the world around us. This is known as *binocular vision*. We care about this because computer graphics can simulate that slight viewing difference and thus create the binocular viewing of a synthetic scene.
Step #1a – Turn the Stereographics On

Open the **Output Properties** menu

Enable the **Stereoscopy** checkbox and open the menu

Select **Stereo 3D**.

Be sure these are both checked
Step #1b – Turn the Stereographics On

While still in the Output Properties menu ...

Click on **Stereo 3D**.

Pick one of these here

Red-Cyan is good here if you picked Analglyph before. On the screen, the display will always be a Red-Cyan anaglyph. This menu controls how it will be drawn when you write a file after a **Render**.
Step #2 – Set the Stereo Cameras

Select your **Camera** (in the scene or in the Outliner) and then open the **Camera Data** menu.

Any of these will work well. I’m kind of partial to **Off-Axis** or **Tow-In**.

These are interesting to experiment with. They control how deep the stereo focuses and how easy the stereo images are to converge.
Step #3 – Tell the Renderer to Produce both a Left and Right View

Open the **Object Properties** menu (hit ‘n’ on the keyboard) and click on the **View** tab.

This tells the Renderer to produce both a left and right view, and to make a red-cyan stereopair from them.
Step #4 – Render → Render Image
Red-Cyan Glasses

The universal convention is:
• Red goes over the left eye
• Cyan goes over the right eye

No, they are not *red-blue* glasses!
No, they are not *red-green* glasses!

If you want your own red-cyan glasses, one of the many places you can find them is:

https://www.3dglassesonline.com/products/anaglyphic/
Step #5 – (if you want): From the Render window, write out a Stereographics Image File

This assumes you have already done the other steps
Select your Camera (in the scene or in the Outliner) and then open the Camera Data menu.

The Convergence Plane Distance controls how much the scene appears to exist behind or in front of the display screen. Use a small distance to make the scene look like it is living in the monitor.

Use a larger distance to make the scene look like it is living in the air in front of the monitor. (Don’t go too crazy with this – it will look less cool than you are expecting.)
How Deep does the Scene Appear to be into and out of the Computer Screen? Setting the Convergence Plane

The Convergence Plane is in front of the object – the object will appear to be inside the monitor

The Convergence Plane is behind the object – the object will appear to be in the air in front of the monitor

I like placing the Convergence Plane about 1/3 of the way through the object
There are many ways to display the correct view into the correct eye.
16. References
Blender References

http://cs.oregonstate.edu/~mjb/blender

http://blender.org

http://www.blender.org/education-help/

http://www.blenderguru.com/

