Full Screen Layout

- Object Tools ("t")
- Main Menu
- Property-specific Options
- Object Properties ("n")
- Properties Buttons
- Outliner
- Animation Controls

The Create and Add Menus
The Coordinate and Viewing System

- Right-handed coordinate system
- X = Red
- Y = Green
- Z = Blue
- Middle mouse button (MMB) – orbit
- Shift MMB – pan
- Scroll wheel – zoom
- View → Left, Right, ...
- View → Toggle Quad View
- View → View Persp/Ortho

Selecting an Object to Work On

RMB-click on the object you want to select. It will then be highlighted with an orange outline.
Moving Things By Clicking and Dragging

- Use the click-and-drag icons
- Translate ("grab")
- Rotate
- Scale
- Use Global or Local Coordinate System

Saying How to Move Things by Using the Keyboard

- RMB click to select an object
- Grab 'g'
- Rotate 'r'
- Scale 's'
- Pick global axis 'g' → 'x', etc.
- Pick local axis: 'g' → 'x' → 'x'
- Show global vs. local coordinates
- Transform a specific distance, angle, or scale 'r' → 'x' → 45 <return>

This is important – you will use this a lot!
Blender is able to play a graphics trick to make your curved geometry look better. Go to the Object Tools tabs and select **Tools**.

Scroll down, and click on **Smooth**.

This doesn’t actually change any geometry – it’s just a really good computer graphics display trick.

Making the Mesh Objects Look Nicer

Editing a Vertex, Edge, or Face on a Mesh

Click here, or hit the **Tab** key, to get into Edit Mode

Select and edit:
- A vertex
- An edge
- A face

This is so common, that “tab” has become a verb in the Blender community.
Editing a Vertex

Be sure you are in vertex-editing mode

Right click on a vertex
Hit ‘g’ (grab) and move the mouse
You can also hit ‘x’, ‘y’, or ‘z’ to restrict motion

The Button Properties Menu
The Material Menu

Setting Diffuse and Specular Colors

Clicking one of these brings up a color-selection dialog box.
The Modifiers Menu

Subdivision Surface Modifier

This controls how much to subdivide
Fun: try it on a cube!
“Rendering” is Blender’s process for creating really high-quality images.

The view that is rendered is not the same orientation that you see on the screen. It is from the Camera position, which needs to be set separately.
Aligning The Camera to Your Current Screen View

But, if you like your current screen view and want to move the camera there, just do this:

View → Align View → Align Active Camera to View

Lighting

The answer is that Solid Shading Mode doesn’t require your scene to be lit, but Rendering does. Texture Shading mode does want your scene to be lit, but if it isn’t, even that won’t let you know how bad your rendering is going to turn out:
There are five types of Lamps that you can Add

1. A **Point** Lamp shines light in all directions. The light is local to the scene. This is usually the best type of light to start out with.

2. A **Sun** Lamp appears to come from a single direction and its rays are parallel. This acts as if the light is very far away.

3. A **Spot** Lamp is like a Point Lamp, but only shines in one particular direction.

4. A **Hemi** Lamp is meant to emulate a cloudy day – light is coming from a glowing dome.

5. An **Area** Lamp is light coming from a finite surface, like most lights really are.

1. Get into Texture Shading Mode

2. Add a Point Lamp

3. Position the Lamp ('g').

4. The Point Lamp has no obvious local coordinate system, so it just uses the global coordinate system.

5. As you move the Lamp, you will see the lighting of the scene change.

6. You will probably have to rotate the scene (MMB) to get the position where you think it should be. Or, you can also use the Quad View mode.
Quick Physics Cheats

Original Scene

Quick Explode
Importing Objects from Other Places

Select File → Import

Collada = export format from game modeling systems

Stl = 3D printer format

3ds = format from Autodesk 3D Studio

Obj = Probably world’s most common export format (there are a ton of .obj models for free on the Internet!)

.obj files are also pretty straightforward to create. So, if you have a shape in mind and can write a computer program to generate it, you can write your own .obj file and import it into Blender.

File = dino.obj
As-is, flat shaded

Subdivision surfaced
Smooth shaded