Arrays

Mike Bailey
mjb@cs.oregonstate.edu
int NumPoints = 5000;
int W = 800;
int H = 800;
int [] X;
int [] Y;
int [] R;
int [] G;
int [] B;

Total number of points

The arrays that will hold the points and the colors. They have only been declared. They don’t yet have any memory given to them.
void setup() {
 X = new int [NumPoints];
 Y = new int [NumPoints];
 R = new int [NumPoints];
 G = new int [NumPoints];
 B = new int [NumPoints];

 size(800, 800);
 for(int i = 0; i < NumPoints; i = i + 1) {
 X[i] = int(random(0, W));
 Y[i] = int(random(0, H));
 R[i] = int(random(0, 255));
 G[i] = int(random(0, 255));
 B[i] = int(random(0, 255));
 }
}

Allocate the arrays to hold the random points and the random colors. At this point, memory has been given to them, but they don't have any values assigned.

Each point is assigned a random location.

Each point is assigned a random color. There is no significance to each point’s specific color – it is to look cool!

Note: Array indices start at 0 and end at the number of element minus one
So, an array dimensioned [10] indexes from 0 to 9
```cpp
void draw( )
{
  background( 200, 200, 255 );

  stroke( 0, 0, 0 );

  for( int i = 0; i < NumPoints; i = i + 1 )
  {
    fill( R[ i ], G[ i ], B[ i ] );
    ellipse( X[ i ], Y[ i ], 8, 8 );
  }
}
```

Draw each point with its color.
A Cool Pattern
A Cool Pattern will be made even Cooler

For our next trick, during each frame we are going move each point halfway towards one of three target triangle vertices.
int NumPoints = 5000; // Total number of random points
int TARGET_SIZE = 40; // Size of the target vertices
int W = 800;
int H = 800;

int [] X;
int [] Y;
int [] R;
int [] G;
int [] B;

int [] XC = { 50, W/2, W-50 };
int [] YC = { H-50, 50, H-50 }; // The arrays that hold the three center points. Because of the way this was coded, these arrays do have memory given to them.

The arrays that will hold the points and the colors. They have only been declared. They don’t yet have any memory given to them.
void setup()
{
 X = new int [NumPoints];
 Y = new int [NumPoints];
 R = new int [NumPoints];
 G = new int [NumPoints];
 B = new int [NumPoints];

 size(W, H);
 for(int i = 0; i < NumPoints; i = i + 1)
 {
 X[i] = int(random(0, W));
 Y[i] = int(random(0, H));
 R[i] = int(random(0, 255));
 G[i] = int(random(0, 255));
 B[i] = int(random(0, 255));
 }
 frameRate(2);
}
Using the Arrays in a for-loop

```cpp
void draw( )
{
    background( 200, 200, 255 );

    fill( 255, 0, 0 );
    ellipse( XC[0], YC[0], TARGET_SIZE, TARGET_SIZE );
    fill( 0, 255, 0 );
    ellipse( XC[1], YC[1], TARGET_SIZE, TARGET_SIZE );
    fill( 0, 0, 255 );
    ellipse( XC[2], YC[2], TARGET_SIZE, TARGET_SIZE );

    stroke( 0, 0, 0 );
    for( int i = 0; i < NumPoints; i = i + 1 )
    {
        fill( R[i], G[i], B[i] );
        ellipse( X[i], Y[i], 8, 8 );
    }

    for( int i = 0; i < NumPoints; i = i + 1 )
    {
        int randTarget = int( random( 0.000, 2.999 ) );
        X[i] = ( X[i] + XC[randTarget] ) / 2;
        Y[i] = ( Y[i] + YC[randTarget] ) / 2;
    }
}
```

- Draw the three targets.
- Draw each point with its color.
- Re-compute each point’s position by randomly picking one of the targets (0, 1, or 2) and moving halfway towards it.
A Surprising Result

Mathematicians call shapes like this “attractors”