Randomness

Oregon State University
Mike Bailey
mjb@cs.oregonstate.edu

Start With Something We've Seen Before

```plaintext
void setup() {
  size(800, 800);
  colorMode(RGB);
  background(255, 255, 255);
  stroke(0, 8, 255);
  strokeWeight(4.0);
  fill(255, 58, 58);
  noFill();
}

void draw() {
  beginShape();
    vertex(188, 100);
    vertex(188, 400);
    vertex(288, 400);
    vertex(388, 300);
    vertex(488, 56);
  endShape();
}
```
Pure Randomness is Pretty Jarring

```java
void draw()
{
    background( 255, 255, 255 );
    beginShape();
    for( int x = 0; x < width; x += 5 )
    {
        int y = int( random( 0, height ) );
        vertex( x, y );
    }
    endShape();
}
```

A Better Approach – Add a Random Number to the Current Value

```java
void draw()
{
    background( 255, 255, 255 );
    int y = height / 2;
    beginShape();
    for( int x = 0; x < width; x += 5 )
    {
        int dy = int( random( -height/10, height/10 ) );
        y += dy;
        vertex( x, y );
    }
    endShape();
}
```
Computer Graphics Noise

- The built-in `noise()` function is a smoothly-changing sequence of values.
- It returns values from 0. to 1.
- It is centered around 0.5, i.e., the midline.
- It can be spread out (made smoother) by making the argument smaller.
- It can be compressed (made more jagged) by making the argument larger.
- It is **Coherent** in that the noise value at one point is close to the noise value at the next point.
- Setting `noiseSeed()` makes it **Repeatable** in that the same input always gives the same output.

Noise Octaves Create More Detail

A Noise Octave is another noise wave with lower amplitude (height) and higher frequency (jagginess). We add octaves together to get a combination of smoothness and jagginess.

1 octave 2 octaves

4 octaves 8 octaves
float NoiseFactor = 200.; // larger to make the noise gentler
int NoiseSeed = 22019; // start the random number sequence
int MinOctaves = 1;
int MaxOctaves = 8;

void setup()
{
 size(800, 600);
 colorMode(RGB);
 noFill();
 noiseSeed(NoiseSeed);
}

void draw()
{
 background(200, 200, 255);
 stroke(128, 0, 0);
 strokeWeight(1.);
 beginShape();
 vertex(0, height/2);
 vertex(width, height/2);
 endShape();
 for(int octaves = MinOctaves; octaves <= MaxOctaves; octaves = octaves*2)
 {
 noiseDetail(octaves);
 int green = int(map(octaves, MinOctaves, MaxOctaves, 0, 255));
 stroke(255, green, 0);
 beginShape();
 for(int x = 0; x < width; x = x + 5)
 {
 int y = (height / 2) + int((height) * (noise(x / NoiseFactor) - 0.5));
 vertex(x, y);
 }
 endShape();
 }
}
int y = (height / 2) + int((height) * (noise(x / NoiseFactor) - 0.5));

- Gives us 0. to 1.
- Gives us -0.5 to +0.5
- Gives us -height/2. to +height/2.
- Gives us 0. to height

Using Noise to Affect Size

float NoiseFactor = 200.; // larger to make the noise gentler
int NoiseSeed = 22019; // start the random number sequence

void setup()
{
 size(800, 800);
 colorMode(RGB);
 background(200, 200, 255);
 fill(255, 255, 0);
 stroke(0, 0, 0);
 noiseSeed(NoiseSeed);
 noiseDetail(4);
}

if (mousePressed)
{
 float nx = noise(mouseX/NoiseFactor);
 float ny = noise(mouseY/NoiseFactor);
 ellipse(mouseX, mouseY, 200*nx, 200*ny);
}
Using Noise to Affect Color

float NoiseFactor = 200.; // larger to make the noise gentler
int NoiseSeed = 22019; // start the random number sequence

void setup()
{
 size(800, 800);
 colorMode(RGB);
 background(200, 200, 255);
 fill(255, 255, 0);
 stroke(0, 0, 0);
 noiseSeed(NoiseSeed);
 noiseDetail(4);
}

In draw():
 if (mousePressed)
 {
 float nx = noise(mouseX/NoiseFactor);
 float ny = noise(mouseY/NoiseFactor);
 int red = int(nx*255.);
 int green = int(ny*255.);
 fill(red, green, 0.);
 ellipse(mouseX, mouseY , 100, 100);
 }

Using 2D Noise to Affect Color

float NoiseFactor = 200.; // larger to make the noise gentler

void setup()
{
 size(600, 600);
 colorMode(RGB);
 background(200, 200, 255);
 fill(255, 255, 0);
 stroke(0, 0, 0);
 noiseDetail(4);
}
Using 2D Noise to Affect Color

// takes about 40 seconds to do 600x600 = approx 9,000 points/sec

void draw()
{
 for(int x = 0; x < width; x++)
 {
 for(int y = 0; y < height; y++)
 {
 noiseSeed(0);
 int red = int(255.*noise(x/NoiseFactor, y/NoiseFactor));
 noiseSeed(1000);
 int green = int(255.*noise(x/NoiseFactor, y/NoiseFactor));
 noiseSeed(2000);
 int blue = int(255.*noise(x/NoiseFactor, y/NoiseFactor));
 stroke(red, green, blue);
 point(x, y);
 }
 }
 //noLoop();
 //saveFrame("ColorClouds.png");
}

Here are some fun things to try (make the window size smaller first!):
• What happens if you make NoiseFactor larger? Smaller?
• What happens if you only stroke with (red, green, 0.)?
• What if you only use red and blue? Green and blue?